首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypochlorous acid (HOCl) is an oxygen-derived species involved in physiological processes related to the defence of the organism that may cause adverse effects when its production is insufficiently controlled. In order to examine its reactivity with potential scavenging molecules from the non steroidal anti-inflammatory drugs (NSAIDs) family, a competition assay based on para-aminobenzoic acid (PABA) chlorination was developed. The original optimised in vitro fluorimetric procedure offered the possibility to determine rate constants (ks) for the reaction with HOCl in physiologically relevant conditions. The specificity of the system was improved by a liquid chromatography (LC) which allows the separation of the drugs and their oxidation products. After determination of the rate constant for PABA chlorination by HOCl (mean±SD in M-1 s-1: 4.3±0.3×103), the applied mathematical model for a chemical competition permits to obtain linear curves from competition studies between several NSAIDs and PABA. Their slopes provided the following rate constants for the different studied drugs: tenoxicam: 4.0±0.7×103, piroxicam: 3.6±0.7×103, lornoxicam: 4.3±0.7×103, meloxicam: 1.7±0.3×104, nimesulide: 2.3±0.6×102. Meloxicam therefore reacted significantly faster than the other oxicams and nimesulide, which is the weakest scavenger of the studied series. The identification of some of the oxidation products by NMR or MS permitted to explore the reaction mechanism and to examine some aspects of the structure/activity relationships for the molecules of the same chemical family.  相似文献   

2.
Alpha-Chymotrypsin was found to show a 119% increase in activity after three phase partitioning. The kcat/Km of the partitioned enzyme (TPP-C) for hydrolysis of Bz-Tyr-OEt in aqueous medium at 25°C was found to be 48.3×104 mM-1 min-1 as compared to the corresponding value of 17.7×104 mM-1 min-1 for the untreated control (C). The λmax of the fluorescence emission spectrum of TPP-C showed 178% increase in the quantum yield when compared to C. TPP-C showed a 2.94 and 3.58 fold increase (as compared to C) in initial rates for formation of the ester Ac-Phe-OEt (from Ac-Phe and ethanol) in low water containing toluene and n-octane, respectively. It was found that TPP-C also showed the phenomenon of pH memory. At 5% (v v-1) water (in t-amyl alcohol), while no esterification was observed with C, TPP-C still showed significant level of esterification activity.  相似文献   

3.
Adult mice which had been thymectomized, irradiated and given stem-cell protection were incapable of making a self-cure response to a primary infection with the nematode Trichuris muris. The capacity to mount a self-cure response was restored by the injection of 2·5 × 106 mesenteric lymph node lymphocytes or by 2·5 × 108, but not 2·5 × 107, thymocytes. Restoration of the ability to respond to sheep red blood cells was achieved with all three cell injections. Suppression of the immune response was also achieved by injection of ALS during the second week of infection and at intervals thereafter. The results of thymectomy and ALS treatment show that immunity to T. muris is dependent upon the presence of an intact thymus and thymus-dependent cell population.  相似文献   

4.
Electron self-exchange in solutions of the ‘blue’ copper protein plastocyanin is catalysed by the redox-inert multivalent cations Mg2+ or Co(NH3)3+6. Measurements of specific 1H-NMR line broadening with 50% reduced solutions in the presence of these cations show that electron exchange proceeds through encounters of cation-protein complexes which dissociate at high ionic strength. In the presence of 8mM (5 equivalents/total protein) Co(NH3)3+6, with 10 mM cacodylate (pH*6.0) as background electrolyte, the bimolecular rate constant at 25°C is 7 × 104 M−1·s−1. For comparison, the ‘electrostatically screened’ rate constant measured in 0.1 M KCl in the absence of added multivalent cations is ˜ 4 × 103 M1·s−1.

Plastocyanin Electron self-exchange NMR Protein-protein interaction Multivalent cation Blue copper protein  相似文献   


5.
Low-molecular-weight chitosan were prepared using 85% phosphoric acid at different reaction temperatures and reaction time. At room temperature, the viscosity average-molecular weights (Mv) of chitosan decreased to 7.1×104 from 21.4×104 after 35 days treatment. The degradation rate decreased with increasing hydrolysis time. The yields of chitosan also continuously decreased from 68.4 to 40.2% after 35 days. At 40, 60 and 80 °C, the molecular weight decreased to 3.70×104, 3.50×104 and 2.00×104 on 8 h hydrolysis, respectively. The yields of chitosan remain at a high level compared with that at room temperature and were 86.5, 71.4 and 61.3% at 40, 60 and 80 °C treatment, respectively. The different reaction time gave chitosan with different molecular weights. At 60 °C, the molecular weight of products decreased to 7.40×104 from 21.4×104 within 4 h, then decreased slowly to 1.90×104 in 15 h. It was also found that the water-solubility of chitosan increased as the molecular weight decreased. Results show the changes in yields and molecular weight of chitooligomers were strongly dependent on the reaction temperature and reaction time.  相似文献   

6.
The structure of the 7S globulin from Phaseoulus vulgaris L in dilatue solutions has been studied by small angle X-ray scattering (SAXS), by quasi-elastic light scattering (Q ELS), by circular dichroism spectroscopy (c.d.), and by precise density measurements. The molar mass, the radius of gyration, the volume, the maximum dimension and the diffusion coefficient were determined as M = 1.45 × 105 g mol−1, RG = 4.05 nm, V = 300- nm3, L = 13.0 nm and D20,w0 = 4.5 × 10−7 cm2 s−1, respectively. The molecule has an asymmetrical shape with the dimensions 12.5 × 12.5 × 3.75 nm. The secondary structure of the 7S globulin is characterized by a small portion of -helical structure (14%) and a marked content of β-structure (18%).  相似文献   

7.
The fluorescence induction and other fluorescence properties of spinach chloroplasts at room temperature were probed utilizing two 30-ps wide laser pulses (530 nm) spaced Δt (s) apart in time (Δt = 5–110 ns). The energy of the first pulse (P1) was varied (1012–1016 photons · cm−2), while the energy of the second (probe) pulse (P2) was held constant (5 · 1013 photons · cm−2). A gated (10 ns) optical multichannel analyzer-spectrograph system allowed for the detection of the fluorescence generated either by P1 alone, or by P2 alone (preceded by P1). The dominant effect observed for the fluorescence yield generated by P1 alone is the usual singlet-singlet exciton annihilation which gives rise to a decrease in the yield at high energies. However, when the fluorescence yield of dark-adapted chloroplasts is measured utilizing P2 (preceded by pulse P1) an increase in this yield is observed. The magnitude of this increase depends on Δt, and is characterized by a time constant of 28 ± 4 ns. This rise in the fluorescence yield is attributed to a reduction of the oxidized (by P1) reaction center P-680+ by a primary donor. At high pulse energies (P1 = 4 · 1014 photons · cm−2) the magnitude of this fluorescence induction is diminished by another quenching effect which is attributed to triplet excited states generated by intense P1 pulses. Assuming that the P1 pulse energy dependence of the fluorescence yield rise reflects the closing of the reaction centers, it is estimated that about 3–4 photon hits per reaction center are required to close completely the reaction centers, and that there are 185–210 chlorophyll molecules per Photosystem II reaction center.  相似文献   

8.
The interaction between sialosyl cholesterol (- or neuraminyl cholesterol, - or β-SC) and the plasma membrane of astrocytes was investigated by the use of 14C-labeled - or β-SC. Both - and β-SC were dose-dependently and time-dependently bound to rat astrocytes. The Scatchard plot analyses showed that rat astrocytes bound apparently 9.69 × 109 molecules of both -SC/cell (apparent Kd = 2.29 × 10−5 M) and β-SC/cell (apparent Kd = 5.39 × 10−5 M) at 37°C. Both the binding of -SC to astrocytes and the subsequent inhibition of DNA synthesis were decreased at the low temperature (4°C), and also suppressed by serum proteins including albumin. One molecule of bovine serum albumin (BSA) bound 2.3 molecules of -SC with the slightly lower Kd-value (8.03 × 10−6 M) than that for the binding site on astrocytes. BSA not only suppressed the -SC-binding to astrocytes but also increased its release from the cells to the culture media. Gangliosides such as GM1 and GM3 unaffected the -SC-binding, promoted the small release of -SC from the cell surface, and inhibited the morphological changes of astrocytes induced by -SC. The mechanism of -SC-binding to cultured astrocytes with reference to the effects of serum or gangliosides is discussed.  相似文献   

9.
Rhizopus nigricans (R. nigricans) transforms fungitoxic progesterone into the less toxic 11-hydroxyprogesterone which is then able to exit the mycelia into the surrounding water. Hydroxylation of progesterone is an inducible process in which cytosolic progesterone receptors could be involved. In the present study, we characterised receptors with respect to ligand specificity and to their involvement in progesterone induction of hydroxylase. EC50 values of different ligands (steroids, xenobiotic arylhydrocarbons and natural flavonoids) were determined by competition studies using 40 nM (3H)progesterone. C21 and C19 3-oxo-4-ene steroids were good competitors (EC50 of progesterone 2.3 ± 0.1 × 10−7 M, EC50 of androsten-3,17-dione 24 ± 2 × 10−7 M). The presence of hydroxyl groups in steroids significantly decreased the affinity for receptors. The arylhydrocarbons -naphthoflavone and ketoconazole exhibited EC50 values of 0.3 ± 0.01 × 10−7 M and 27 ± 5 × 10−7 M, respectively, whereas β-naphthoflavone and benzo(a)pyrene were not able to displace labelled progesterone completely. The competition curves obtained by natural flavonoids also did not reach the bottom level of non-labelled progesterone, indicating the interaction at some allosteric binding site(s) of progesterone receptors. All ligands were examined for their involvement in progesterone-hydroxylase induction. Steroid agonists induced the enzyme in a dose-dependent manner in accordance with their affinity for receptors, whereas arylhydrocarbons and natural flavonoids did not induce the enzyme. The agonistic action of steroids, together with the antagonistic action of -naphthoflavone, strongly suggests the involvement of progesterone receptors in progesterone signalling resulting in the induction of progesterone-hydroxylase.  相似文献   

10.
Aqueous solutions of fractions of an extracellular linear mannan formed by Rhodotorula rubra yeast have been investigated by hydrodynamic methods (high-speed sedimentation, translation isothermic diffusion and viscometry). The molecular weight was determined according to Svedberg ( ) and the polydispersity parameters of the initial sample were also determined (Mw/Mn = 1·20 and Mz/Mw = 1·21). Relationships between the molecular weight (M) and so, Do and [η] in the range were: [η] = 2·33 × 10−2 M0.75, Do = 1·65 × 10−4 M0·58, so = 2·24 × 10−15 M0·43. The equilibrium rigidity and hydrodynamic diameter of chains representing mannan molecules were evaluated.  相似文献   

11.
Under physiological pH conditions (pH 7.2-7.4) the rate constant of the reaction NO + O2 yielding peroxonitrite (ONOO) was determined as k = (3.7 ± 1.1) × 107 M 1 s 1. The decay of peroxonitrite at this pH follows first order kinetics with a rate constant of 1.4 s 1. At alkaline pH peroxonitrite is practically stable.

Possible consequences of these reactions for the biological lifetime of EDRF will be discussed.  相似文献   

12.
The oxidation of TEMPO (2,2,6,6-tetramethyl-piperidine-1-oxyl radical) has been studied in the presence of recombinant laccases (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) from Polyporus pinsitus (rPpL), Myceliophthora thermophila (rMtL), Coprinus cinereus (rCcL) and Rhizoctonia solani (rRsL) in buffer solution pH 4.5–7.3 and at 25 °C. At pH 5.5 the oxidation constant calculated from the initial rate of TEMPO oxidation was 1.7 × 104, 1.4 × 103, 7.8 × 102 and 5.2 × 102 M−1 s−1 for rPpL, rRsL, rCcL and rMtL, respectively. The maximal activity of rPpL-catalysed TEMPO oxidation was at pH 5.0. The pKa obtained in neutral pH range was 6.2. The reactivity of laccases is in a good agreement with laccases copper type I redox potential.

TEMPO oxidation rate increased 541 times in the presence of 10-(3-propylsulfonate) phenoxazine (PSPX). The model of synergistic TEMPO and PSPX oxidation was proposed. Experimentally obtained rate constants for rPpL-catalysed PSPX oxidation were in a good agreement with those calculated from the synergistic model, therefore confirming the feasibility of the model. The acceleration of TEMPO oxidation with high reactive laccase substrates opens new possibilities for TEMPO application as a mediator.  相似文献   


13.
To clarify the radical-scavenging activity of butylated hydroxytoluene (BHT), a food additive, stoichiometric factors (n) and inhibition rate constants (kinh) were determined for 2,6-di-tert-butyl-4-methylphenol (BHT) and its metabolites 2,6-di-tert-butyl-p-benzoquinone (BHT-Q), 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHA-CHO) and 3,5-di-tert-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadiene-1-one (BHT-OOH). Values of n and kinh were determined from differential scanning calorimetry (DSC) monitoring of the polymerization of methyl methacrylate (MMA) initiated by 2,2′-azobis(isobutyronitrile) (AIBN) or benzoyl peroxide (BPO) at 70 °C in the presence or absence of antioxidants (BHT-related compounds). The n values declined in the order BHT (1–2) > BHT-CHO, BHT-OOH (0.1–0.3) > BHT-Q (0). The n value for BHT with AIBN was approximately 1.0, suggesting dimerization of BHT. The kinh values declined in the order BHT-Q ((3.5–4.6)×104 M−1 s−1) > BHT-OOH (0.7–1.9×104 M−1 s−1) > BHT-CHO ((0.4–1.7)×104 M−1 s−1) > BHT ((0.1–0.2)×104 M−1 s−1). The kinh for metabolites was greater than that for the parent BHT. Growing MMA radicals initiated by BPO were suppressed much more efficiently by BHT or BHT-Q compared with those initiated by AIBN. BHT was effective as a chain-breaking antioxidant.  相似文献   

14.
A ten member microbial consortium (AS) consisting of eight phenol-degrading and two non-phenol-degrading strains of bacteria was developed and maintained in a fed-batch reactor by feeding 500 mg l−1 phenol for four years at 28 ± 3 °C. The consortium could degrade 99% of 500 mg l−1 phenol after 24 hours incubation with a biomass increase of 2.6 × 107 to 4 × 1012 CFU ml−1. Characterization of the members revealed that it consisted of 4 principal genera, Bacillus, Pseudomonas, Rhodococcus, Streptomyces and an unidentified bacterium. Phenol degradation by the mixed culture and Bacillus subtilis, an isolate from the consortium was compared using a range of phenol concentrations (400 to 700 mg l−1) and by mixing with either 160 mg l−1 glucose or 50 mg l−1 of 2,4-dichlorophenol in the medium. Simultaneous utilization of unrelated mixed substrates (glucose/2,4-dichlorophenol) by the consortium and Bacillus subtilis, indicated the diauxic growth pattern of the organisms. A unique characteristic of the members of the consortia was their ability to oxidize chloro aromatic compounds via meta pathway and methyl aromatic compounds via ortho cleavage pathway. The ability of a large membered microbial consortia to maintain its stability with respect to its composition and effectiveness in phenol degradation indicated its suitability for bioremediation applications.  相似文献   

15.
In order to better understand the function of aromatase, we carried out kinetic analyses to asses the ability of natural estrogens, estrone (E1), estradiol (E2), 16-OHE1, and estriol (E3), to inhibit aromatization. Human placental microsomes (50 μg protein) were incubated for 5 min at 37°C with [1β-3H]testosterone (1.24 × 103 dpm 3H/ng, 35–150 nM) or [1β-3H,4-14C]androstenedione (3.05 × 103 dpm 3H/ng, 3H/14C = 19.3, 7–65 nM) as substrate in the presence of NADPH, with and without natural estrogens as putative inhibitors. Aromatase activity was assessed by tritium released to water from the 1β-position of the substrates. Natural estrogens showed competitive product inhibition against androgen aromatization. The Ki of E1, E2, 16-OHE1, and E3 for testosterone aromatization was 1.5, 2.2, 95, and 162 μM, respectively, where the Km of aromatase was 61.8 ± 2.0 nM (n = 5) for testosterone. The Ki of E1, E2, 16-OHE1, and E3 for androstenedione aromatization was 10.6, 5.5, 252, and 1182 μM, respectively, where the Km of aromatase was 35.4 ± 4.1 nM (n = 4) for androstenedione. These results show that estrogens inhibit the process of andrigen aromatization and indicate that natural estrogens regulate their own synthesis by the product inhibition mechanism in vivo. Since natural estrogens bind to the active site of human placental aromatase P-450 complex as competitive inhibitors, natural estrogens might be further metabolized by aromatase. This suggests that human placental estrogen 2-hydroxylase activity is catalyzed by the active site of aromatase cytochrome P-450 and also agrees with the fact that the level of catecholestrogens in maternal plasma increases during pregnancy. The relative affinities and concentration of androgens and estrogens would control estrogen and catecholestrogen biosynthesis by aromatase.  相似文献   

16.
We report spectrophotometric equilibrium studies of both the self-association of the new antibiotic iremycin and of its binding to calf thymus DNA in solution (ionic strength 0.2 M; pH 6.0). Iremycin forms dimers in this solution with a dimerization constant K4=(1.19 ± 0.10) × 103 M−1. This equilibrium is taken into account in the evaluation of the interaction of iremycin with DNA. The binding behaviour can be completely described by a single binding mechanism of monomeric iremycin to DNA with allowance both for neighbour exclusion and for cooperativity of interaction. The three intrinsic binding parameters for the homogeneous model were determined simultaneously by a least squares fit of the original titration data: equilibrium constant of cooperative binding K = (2.72 ± 0.66) × 105 M−1 cooperativity parameter σ=0.38±3.27 ± 0.32. The binding parameters of iremycin and adriamycin and their microbial activities are compared.  相似文献   

17.
The growth of the freshwater microalga Scenedesmus obliquus was studied at 30°C in a mineral culture medium with phosphorus concentrations of between 0 and 372 μ . The values for the specific growth rates, between and , fitted a semistructured substrate-limitation model with μm1 = 0·0466 h−1, μm2 = 0·0256 h−1 and . The specific uptake rate of phosphorus reached a maximum value of qSm1 = 658·01 × 10−4 μmol P mg−1 biomass h−1.  相似文献   

18.
Cytosol extracts of human amnion tissue contained high affinity binding of cortisol (Ka = 2.48 ± 1.06 × 109 M−1; N = 30) and low capacity binding of cortisol (Nmax = 279 ± 15.5 fmol mg−1 protein). Kinetic studies of cortisol binding resulted in a similar value of Ka to that obtained by Scatchard analysis. Nuclear extracts of amnion tissue contained high affinity binding of cortisol (Ka = 5.8 ± 1.91 × 107 M−1) and low binding capacity (Nmax = 91.4±21.4 fmol mg−1 protein). Ka values were an order of magnitude higher in cytosol than in blood serum when amnion and blood were obtained from the same individuals. Differences in competitive ligand binding, especially dexamethasone, were observed between the amnion receptor and transcortin in serum. Gel permeation chromatography gave only one peak at 320 kDa for amnion receptor and only one peak at 48 kDa for transcortin from serum. When amnion tissue was incubated with or without cortisol, cytosol receptor activity was significantly lower in cortisol treated tissue than in control. The nuclear extracted receptor activity was significantly higher in cortisol treated tissue than control. The Ka values from cortisol treated tissue were significantly lower from control. Together the data support the presence of a specific cortisol receptor in the human amnion that is different from transcortin.  相似文献   

19.
Microbial characterization during composting of municipal solid waste   总被引:29,自引:0,他引:29  
This study investigates the prevailing physico-chemical conditions and microbial community; mesophilic bacteria, yeasts and filamentous fungi, bacterial spores, Salmonella and Shigella as well as faecal indicator bacteria: total coliforms, faecal coliforms and faecal Streptococci, present in a compost of municipal solid waste. Investigations were conducted in a semi-industrial pilot plant using a moderate aeration during the composting process. Our results showed that: (i) auto-sterilization induced by relatively high temperatures (60–55°C) caused a significant change in bacterial communities. For instance, Escherichia coli and faecal Streptococci populations decreased, respectively, from 2×107 to 3.1×103 and 107 to 1.5×103 cells/g waste dry weight (WDW); yeasts and filamentous fungi decreased from 4.5×106 to 2.6×103 cells/g WDW and mesophilic bacteria were reduced from 5.8×109 to 1.8×107 bacteria/g WDW. On the other hand, the number of bacterial spores increased at the beginning of the composting process, but after the third week their number decreased notably; (ii) Salmonella disappeared completely from compost by the 25th day as soon as the temperature reached 60°C; and (iii) the bacterial population increased gradually during the cooling phase. While Staphylococci seemed to be the dominant bacteria during the mesophilic phase and at the beginning of the thermophilic phase, bacilli predominated during the remainder of the composting cycle. The appearance of gram-negative rods (opportunistic pathogens) during the cooling phase may represent a serious risk for the sanitary quality of the finished product intended for agronomic reuse. Compost sonication for about 3 min induced the inactivation of delicate bacteria, in particular gram-negatives. By contrast, gram-positive bacteria, especially micrococcus, spores of bacilli, and fungal propagules survived, and reached high concentrations in the compost.  相似文献   

20.
Experimental evidence is provided that selenomethionine oxide (MetSeO) is more readily reducible than its sulfur analogue, methionine sulfoxide (MetSO). Pulse radiolysis experiments reveal an efficient reaction of MetSeO with one-electron reductants, such as e-aq (k = 1.2 × 1010M-1s-1), CO·-2 (k = 5.9 × 108 M-1s-1) and (CH3)2) C·OH (k = 3.5 × 107M-1s-1), forming an intermediate selenium-nitrogen coupled zwitterionic radical with the positive charge at an intramolecularly formed Se N 2σ/1σ* three-electron bond, which is characterized by an optical absorption with λmax at 375 nm, and a half-life of about 70 μs. The same transient is generated upon HO· radical-induced one-electron oxidation of selenomethionine (MetSe). This radical thus constitutes the redox intermediate between the two oxidation states, MetSeO and MetSe. Time-resolved optical data further indicate sulfur-selenium interactions between the Se N transient and GSH. The Se N transient appears to play a key role in the reduction of selenomethionine oxide by glutathione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号