首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Management and research of moose (Alces alces) in Alaska, USA, often require chemical immobilization; however, moose may be prone to capture-induced hyperthermia while immobilized. We chemically immobilized moose with carfentanil citrate and xylazine hydrochloride to measure rump fat depth, collect blood and fecal samples, and to deploy modified vaginal implant transmitters and global positioning system (GPS)-collars for recording body temperature and movement during and after the chemical immobilization. We predicted wild moose pursued and captured from a helicopter would have elevated body temperature at time of capture, whereas body temperature would remain stable in hand-raised captive moose not pursued and only hand-injected for immobilization. Additionally, we expected post-capture body temperature would be a function of activity, time immobilized, and ambient temperature. As predicted, body temperature of wild moose was elevated 1 hour after capture (38.9°C, 95% CI = 38.7–39.1°C) but returned to baseline levels within 3 hours (38.0°C, 95% CI = 37.9–38.1°C); however, body temperatures then rose above baseline levels and remained elevated 12–48 hours post-capture when movement rates were also elevated. Body temperatures in captive moose were not elevated 1-hour post-immobilization (37.9°C, 95% CI = 37.8–38.0°C). Body temperatures of wild moose were positively related to cortisol levels at time of capture. Two moose that died after immobilization had initial body temperatures similar to other immobilized moose; however, their body temperature began to rise at 17 hours and 40 hours post-immobilization. Our study provides evidence that chemical immobilization affects body temperature and movement of wild moose up to 48 hours after capture, possibly as a result of renarcotization from carfentanil citrate. With advancements in technology, we recommend fine-scale GPS data (<1-hr fix rates) and continuous body temperature be evaluated to detect evidence of renarcotization during and after opioid-based captures of northern ungulates. © 2020 The Wildlife Society.  相似文献   

2.
The relation between stress-induced and morphine-induced body temperature changes was examined in rats. Three groups of eight animals thoroughly habituated to handling and rectal probing, and three groups of eight experimentally naive animals were injected intraperitoneally with either 1, 5, or 30 mg/kg morphine sulphate on each of six consecutive days. Differences in temperature readings from the pre-injection baseline showed that on Day 1 of the experiment stress acted to effectively increase the potency of morphine, causing slightly increased hyperthermia at the lowest dose and greatly increased hypothermia at the highest dose. Thus for habituated animals the dose-response curve for morphine was shifted to the right. By Day 6, after repeated morphine injections, all animals showed a hyperthermic response to morphine and the differences between habituated and unhabituated animals had disappeared. These findings were discussed in terms of the interaction between the temperature changes produced by endogenous opioids in stressed animals and the actions of exogenously administered morphine.  相似文献   

3.
This study compared the stress induced in captive estuarine crocodiles, Crocodylus porosus, by two different handling methods: manual restraint (noosing with ropes) and immobilization by electro-stunning. To stun, a short charge (approx. 6 s) at 110 V was delivered to the back of the necks of C. porosus using a custom-built device, which immobilized the animals for 5-10 min. Immobilized and restrained animals were measured and sexed, and the condition of the skin assessed. Blood samples were taken from some animals immediately after restraint or immobilization. Other animals were returned to their pens to recover for periods of 30 min, 1, 4, 12, 24 or 48 hours after which they were stunned and blood samples taken. Individual animals (mean body length 1.96 m, N=99) were bled only once. Haematocrit and haemoglobin concentrations were measured and plasma samples were analysed for corticosterone, glucose and lactate levels. Following restraint, there were significant increases in haematocrit, haemoglobin, glucose, lactate and corticosterone concentrations in C. porosus. For restrained animals, recovery to baseline levels occurred after approximately 8 hours. The stress response of stunned animals was significantly reduced compared to manually captured and restrained crocodiles. Both groups showed a significant increase in haematocrit, haemoglobin concentration and lactate levels, however the magnitude of change was significantly reduced, and recovery was faster in stunned animals. No increase in either glucose or corticosterone levels occurred with immobilisation. The results imply that immobilization by electro-stunning is much less stressful.  相似文献   

4.
Heat stress can limit the activity time budget of ungulates due to hyperthermia, which is relevant for African antelopes in ecosystems where temperature routinely increases above 40 °C. Body size influences this thermal sensitivity as large bodied ungulates have a lower surface area to volume ratio than smaller ungulates, and therefore a reduced heat dissipation capacity. We tested whether the activity pattern during the day of three antelope species of different body size—eland, blue wildebeest and impala—is negatively correlated with the pattern of black globe temperature (BGT) during the day of the ten hottest days and each season in a South African semi-arid ecosystem. Furthermore, we tested whether the larger bodied eland and wildebeest are less active than the smaller impala during the hottest days and seasons. Our results show that indeed BGT was negatively correlated with the diurnal activity of eland, wildebeest and impala, particularly during summer. During spring, only the activity of the larger bodied eland and wildebeest was negatively influenced by BGT, but not for the smallest of the three species, the impala. We argue that spring, with its high heat stress, coupled with poor forage and water availability, could be critical for survival of these large African antelopes. Our study contributes to understanding how endothermic animals can cope with extreme climatic conditions, which are expected to occur more frequently due to climate change.  相似文献   

5.
Hyperthermia is described as the major cause of morbidity and mortality associated with capture, immobilization and restraint of wild animals. Therefore, accurately determining the core body temperature of wild animals during capture is crucial for monitoring hyperthermia and the efficacy of cooling procedures. We investigated if microchip thermometry can accurately reflect core body temperature changes during capture and cooling interventions in the springbok (Antidorcas marsupialis), a medium-sized antelope. Subcutaneous temperature measured with a temperature-sensitive microchip was a weak predictor of core body temperature measured by temperature-sensitive data loggers in the abdominal cavity (R2=0.32, bias >2 °C). Temperature-sensitive microchips in the gluteus muscle, however, provided an accurate estimate of core body temperature (R2=0.76, bias=0.012 °C). Microchips inserted into muscle therefore provide a convenient and accurate method to measure body temperature continuously in captured antelope, allowing detection of hyperthermia and the efficacy of cooling procedures.  相似文献   

6.
The physiologic effects of two methods of capture, chemical immobilization of free-ranging (FR) bears by remote injection from a helicopter and physical restraint (PR) by leg-hold snare prior to chemical immobilization, were compared in 46 grizzly bears (Ursus arctos) handled during 90 captures between 1999 and 2001. Induction dosages and times were greater for FR bears than PR bears, a finding consistent with depletion of, or decreased sensitivity to, catecholamines. Free-ranging bears also had higher rectal temperatures 15 min following immobilization and temperatures throughout handling that correlated positively with induction time. Physically restrained bears had higher white blood cell counts, with more neutrophils and fewer lymphocytes and eosinophils, than did FR bears. This white blood cell profile was consistent with a stress leukogram, possibly affected by elevated levels of serum cortisol. Serum concentrations of alanine aminotransferase, aspartate aminotransferase, and creatine kinase were higher in PR bears that suggested muscle injury. Serum concentrations of sodium and chloride also were higher in PR bears and attributed to reduced body water volume through water deprivation and increased insensible water loss. Overall, different methods of capture resulted in different patterns of physiologic disturbance. Reducing pursuit and drug induction times should help to minimize increase in body temperature and alteration of acid-base balance in bears immobilized by remote injection. Minimizing restraint time and ensuring snare-anchoring cables are short should help to minimize loss of body water and prevent serious muscle injury in bears captured by leg-hold snare.  相似文献   

7.
The laryngeal chemoreflex (LCR), elicited by a drop of water in the larynx, is exaggerated by mild hyperthermia (body temperature = 40-41 degrees C) in neonatal piglets. We tested the hypothesis that thermal prolongation of the LCR results from heating the nucleus of the solitary tract (NTS), where laryngeal afferents first form synapses in the brain stem. Three- to 13-day-old piglets were decerebrated and vagotomized and studied without anesthesia while paralyzed and ventilated. Phrenic nerve activity and rectal temperature were recorded. A thermode was placed in the medulla, and the brain tissue temperature was recorded with a thermistor approximately 1 mm from the tip of the thermode. When the thermode was inserted into the brain stem, respiratory activity was arrested or greatly distorted in eight animals. However, the thermode was inserted in nine animals without disrupting respiratory activity, and in these animals, warming the medullary thermode (thermistor temperature = 40-41 degrees C) while holding rectal temperature constant reversibly exaggerated the LCR. The caudal raphé was warmed focally by approximately 2 degrees C in four additional animals; this did not alter the duration of the LCR in these animals. Thermodes placed in the NTS did not disrupt respiratory activity, but they did prolong the LCR when warmed. Thermodes that were placed deep to the NTS in the region of the nucleus ambiguus disrupted respiratory activity, which precluded any analysis of the LCR. We conclude that prolongation of the laryngeal chemoreflex by whole body hyperthermia originates from the elevation of brain tissue temperature within in the NTS.  相似文献   

8.
In conscious animals, handling and immobilization increase plasma levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). This study examined plasma concentrations of endogenous compounds related to catecholamine synthesis and metabolism during and after exposure to these stressors in conscious rats. Plasma levels of 3,4-dihydroxyphenylalanine (DOPA), NE, EPI, and dopamine (DA), the deaminated catechol metabolites 3,4-dihydroxyphenylglycol (DHPG), and 3,4-dihydroxyphenylacetic acid (DOPAC), and their O-methylated derivatives methoxyhydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were measured using liquid chromatography with electrochemical detection at 1, 3, 5, 20, 60, and 120 min of immobilization. By 1 min of immobilization, plasma NE and EPI levels had already reached peak values, and plasma levels of DOPA, DHPG, DOPAC, and MHPG were increased significantly from baseline, whereas plasma DA and HVA levels were unchanged. During the remainder of the immobilization period, the increased levels of DOPA, NE, and EPI were maintained, whereas levels of the metabolites progressively increased. In animals immobilized briefly (5 min), elevated concentrations of the metabolites persisted after release from the restraint, whereas DOPA and catecholamine levels returned to baseline. Gentle handling for 1 min also significantly increased plasma levels of DOPA, NE, EPI, and the NE metabolites DHPG and MHPG, without increasing levels of DA or HVA. The results show that in conscious rats, immobilization or even gentle handling rapidly increases plasma levels of catecholamines, the catecholamine precursor DOPA, and metabolites of NE and DA, indicating rapid increases in the synthesis, release, reuptake, and metabolism of catecholamines.  相似文献   

9.
We compared the efficiency of succinylcholine chloride, xylazine hydrochloride and carfentanil/xylazine mixtures in immobilizing 364 free-ranging moose (Alces alces) between 1987 and 1997 in Québec (Canada). With succinylcholine chloride (0.070, 0.062, 0.051 mg/kg of estimated body weight for calves, juveniles and adults), 63% of the 252 immobilization attempts led to complete immobilization and marking, whereas 7% of the darted animals died of respiratory paralysis during handling. The moose took an average of 13 min to lay down after darting (down time). Injection of xylazine (3.67-4.22 mg/kg) permitted sedation (the animal laid down but got up again when approached) or complete immobilization in 78% of the 40 darted adult moose, the mean down time being 8.7 min. No mortality was noted with this drug but 58% of the marked animals were only sedated. The use of RX821002A (0.058 mg/kg) as an antagonist, permitted a mean recovery time of 2.8 min after intravenous injection. With the carfentanil/xylazine mixtures (0.0071 and 0.181 mg/kg), 96% of the immobilization trials (n = 72) led to complete (88%) or partial (8%) immobilization, but 6% of the moose died several days after capture. The mean down time was 6.6 min, and injection of naltrexone (0.709 mg/kg) antagonized the effect of the immobilizing agent within 3.7 min. The respiratory rate was higher (P < 0.05) among moose immobilized with xylazine (35/min) than among those immobilized with carfentanil/xylazine mixtures (19/min) but this variation could be related to a longer pursuit time (z = 3.60; P < 0.01) and higher stress levels during handling. Rectal temperature also was higher with xylazine but the difference was small (39.7 vs. 39.3, P = 0.03) and did not differ significantly between the sexes (P > 0.05). Considering loss of materials and helicopter flight time due to non-successful marking trials, carfentanil/xylazine mixtures were the least expensive ($333 Cdn/animal).  相似文献   

10.
The laryngeal chemoreflex (LCR) is elicited by water in the larynx and leads to apnea and respiratory disruption in immature animals. The LCR is exaggerated by the elevation of brain temperature within or near the nucleus of the solitary tract (NTS) in decerebrate piglets. Thermal prolongation of reflex apnea elicited by superior laryngeal nerve stimulation is reduced by systemic administration of GABA(A) receptor antagonists. Therefore, we tested the hypothesis that microdialysis within or near the NTS of gabazine, a GABA(A) receptor antagonist, would reverse thermal prolongation of the LCR. We examined this hypothesis in 21 decerebrate piglets (age 3-13 days). We elicited the LCR by injecting 0.1 ml of water into the larynx before and after each piglet's body temperature was elevated by approximately 2.5 degrees C and before and after 2-5 mM gabazine was dialyzed unilaterally and focally in the medulla. Elevated body temperature failed to prolong the LCR in one piglet, which was excluded from analysis. Elevated body temperature prolonged the LCR in all the remaining animals, and dialysis of gabazine into the region near the NTS (n = 10) reversed the thermal prolongation of the LCR even though body temperature remained elevated. Dialysis of gabazine in other medullary sites (n = 10) did not reverse thermal prolongation of the LCR. Gabazine had no consistent effect on baseline respiratory activity during hyperthermia. These findings are consistent with the hypothesis that hyperthermia activates GABAergic mechanisms in or near the NTS that are necessary for the thermal prolongation of the LCR.  相似文献   

11.
Information garnered from the capture and handling of free-ranging animals helps advance understanding of wildlife ecology and can aid in decisions on wildlife management. Unfortunately, animals may experience increased levels of stress, injuries, and death resulting from captures (e.g., exertional myopathy, trauma). Partial sedation is a technique proposed to alleviate stress in animals during capture, yet efficacy of partial sedation for reducing stress and promoting survival post-capture remains unclear. We evaluated the effects of partial sedation on physiological, biochemical, and behavioral indicators of acute stress and probability of survival post-capture for mule deer (Odocoileus hemionus) that were captured via helicopter net-gunning in the eastern Greater Yellowstone Ecosystem, Wyoming, USA. We administered 10–30 mg of midazolam and 15 mg of azaperone intramuscularly (IM) to 32 mule deer in 2016 and 53 mule deer in 2017, and maintained a control group (captured but not sedated) of 38 mule deer in 2016 and 54 mule deer in 2017. To evaluate indicators of acute stress, we measured heart rate, blood-oxygen saturation, body temperature, respiration rate, and levels of serum cortisol. We recorded number of kicks and vocalizations of deer during handling and evaluated behavior during release. We also measured levels of fecal glucocorticoids as an indicator of baseline stress. Midazolam and azaperone did not reduce physiological, biochemical, or behavioral indicators of acute stress or influence probability of survival post-capture. Mule deer that were administered midazolam and azaperone, however, were more likely to hesitate, stumble or fall, and walk during release compared with individuals in the control group, which were more likely to trot, stot, or run without stumbling or falling. Our findings suggest that midazolam (10–30 mg IM) and azaperone (15 mg IM) may not yield physiological or demographic benefits for captured mule deer as previously assumed and may pose adverse effects that can complicate safety for captured animals, including drug-induced lethargy. Although we failed to find efficacy of midazolam and azaperone as a method for reducing stress in captured mule deer, the efficacy of midazolam and azaperone or other combinations of partial sedatives in reducing stress may depend on the dose of tranquilizer, study animal, capture setting, and how stress is defined. © 2020 The Wildlife Society.  相似文献   

12.
The effect of elevated body temperatures on the concentrations of epididymal cyclic AMP levels in non-diabetic, diabetic and hypophysectomized rats was studied. Cyclic AMP levels were increased during hyperthermia in all animals examined. This increase in epididymal cyclic AMP concentration was not seen in animals that had been supplemented with exogenous insulin prior to the experiment. The effect of pituitary lipolytic hormones on epididymal cyclic AMP levels was also investigated. Significant elevations of epididymal cyclic AMP levels were observed in hypophysectomized rats during hyperthermia indicating that pituitary hormones are not essential in causing these increases. Extrapituitary hormones, such as glucagon, might be responsible for epididymal cyclic AMP increases. Increases in epididymal cyclic AMP levels may therefore be the result of the reduction of blood insulin and concomitant increases of lipolytic hormones of both pituitary and extrapituitary origins.  相似文献   

13.
We used an enclosure trap with a lifting net to capture Alpine chamois (Rupicapra rupicapra). The trap was activated by remote radio-controlled electromagnets powered by photovoltaic modules. The up-net trap had considerable advantages over mechanical methods described in the literature for the capture of chamois. During 36 capture sessions, we captured 50 chamois, or 1.39 animals per session. Capture success was 96.2% of the average of 1.4 animals that entered the trap during a capture session. Mortality was 2%, and another 2% of the captured chamois was injured. There were no known postrelease capture-induced pathologies, and the capture effort was 1.7 man-days per chamois. The trap allowed to select specific target animals and to capture sex–age classes (particularly kids and their mothers) that are normally difficult or impossible to capture. It could be set off from a distance; it only required about 4 h to assemble and could be operated by as few as two people.  相似文献   

14.
Many wildlife species are live captured, sampled, and released; for polar bears (Ursus maritimus) capture often requires chemical immobilization via helicopter darting. Polar bears reduce their activity for approximately 4 days after capture, likely reflecting stress recovery. To better understand this stress, we quantified polar bear activity (via collar-mounted accelerometers) and body temperature (via loggers in the body core [Tabd] and periphery [Tper]) during 2–6 months of natural behavior, and during helicopter recapture and immobilization. Recapture induced bouts of peak activity higher than those that occurred during natural behavior for 2 of 5 bears, greater peak Tper for 3 of 6 bears, and greater peak Tabd for 1 of 6 bears. High body temperature (>39.0°C) occurred in Tper for 3 of 6 individuals during recapture and 6 of 6 individuals during natural behavior, and in Tabd for 2 of 6 individuals during recapture and 3 of 6 individuals during natural behavior. Measurements of Tabd and Tper correlated with rectal temperatures measured after immobilization, supporting the use of rectal temperatures for monitoring bear response to capture. Using a larger dataset (n = 66 captures), modeling of blood biochemistry revealed that maximum ambient temperature during recapture was associated with a stress leukogram (7–26% decline in percent lymphocytes, 12–21% increase in percent neutrophils) and maximum duration of helicopter operations had a similar but smaller effect. We conclude that polar bear activity and body temperature during helicopter capture are similar to that which occurs during the most intense events of natural behavior; high body temperature, especially in warm capture conditions, is a key concern; additional study of stress leukograms in polar bears is needed; and additional data collection regarding capture operations would be useful.  相似文献   

15.
Deviations of the body temperature of homeothermic animals may be regulated or forced. A regulated change in core temperature is caused by a natural or synthetic compound that displaces the set-point temperature. A forced shift occurs when an excessive environmental or endogenous heat load, or heat sink, exceeds the body's capacity to thermoregulate but does not affect set-point. A fever is the paradigm of a regulated increase in body temperature, but the term fever has acquired a strict pathological definition over the past two decades. Consequently, other forms of nonpathological, regulated elevations in body temperature have generally been classified as hyperthermia; and decreases in core temperature--either forced or regulated--have generally been classified as hypothermia. Since the terms hyperthermia and hypothermia fail to distinguish a regulated vs. a forced temperature change, a confusion of terms has been created in the literature. It would appear that “resisted or unregulated hyperthermia” and “hypothermia,” respectively, are appropriate terms for describing a forced increase and decrease in core temperature. A nonpathological but regulated elevation in temperature may be defined as unresisted or regulated hyperthermia, whereas a regulated decrease in temperature may be termed unresisted or regulated hypothermia. This simple scheme appears to be the most practical means for distinguishing between forced and regulated changes in core temperature.  相似文献   

16.
Corticotropin-releasing hormone (CRH) mediates responses to a variety of stressors. We subjected rats to a 1-h period of an acute stressor, physical restraint, and determined the impact on subsequent sleep-wake behavior. Restraint at the beginning of the light period, but not the dark period, increased waking and reduced rapid eye movement sleep without dramatically altering slow-wave sleep (SWS). Electroencephalogram (EEG) slow-wave activity during SWS and brain temperature were increased by this manipulation. Central administration of the CRH receptor antagonist astressin blocked the increase in waking after physical restraint, but not during the period of restraint itself. Blockade of CRH receptors with astressin attenuated the restraint-induced elevation of brain temperature, but not the increase of EEG slow-wave activity during subsequent SWS. Although corticosterone increased after restraint in naive animals, it was not altered by this manipulation in rats well habituated to handling and injection procedures. These results suggest that under these conditions central CRH, but not the hypothalamic-pituitary-adrenal axis, is involved in the alterations in sleep-wake behavior and the modulation of brain temperature of rats exposed to physical restraint.  相似文献   

17.
LSD-induced hyperthermia is implicated in the brain-specific disaggregation of polysomes which is induced following intravenous administration of the drug to rabbits. Both LSD-induced hyperthermia and brain polysome disaggregation were found to increase in parallel under conditions which accentuated the effect of the drug on brain protein synthesis. Pretreatment with neurotransmitter receptor blockers or placing the animal at an ambient temperature of 4°C after LSD administration prevented both hyperthermia and brain polysome disaggregation. The administration of apomorphine, which causes hyperthermia in rabbits also caused disaggregation of brain polysomes. Direct elevation of the body temperature to levels similar to that found after LSD was achieved by placing animals at an ambient temperature of 37°C. Under these conditions a brain-specific disaggregation of polysomes resulted which was not due to RNAase activation. After either LSD or direct heating, the brain polysome shift was associated with a relocalization of polyadenylated mRNA from polysomes to monosomes as determined by [3H]polyuridylate hybridization. Since polysome disaggregation was found only in brain, it appears that the brain may be more sensitive to elevations in body temperature compared to other organs.  相似文献   

18.
Behavioural thermoregulation is an animal's primary defence against changes in the thermal environment. We aimed to validate a remote technique to quantify the thermal environment behaviourally selected by free-ranging ungulates. First, we demonstrated that the temperature of miniature, 30 mm diameter, black globes (miniglobes) could be converted to standard, 150 mm diameter, black globe temperatures. Miniglobe temperature sensors subsequently were fitted to collars on three free-ranging ungulates, namely blue wildebeest (Connochaetes taurinus), impala (Aepyceros melampus) and horse (Equus caballus). Behavioural observations were reflected in animal miniglobe temperatures which differed from those recorded by an identical miniglobe on a nearby exposed weather station. The wildebeest often selected sites protected from the wind, whereas the impala and the horse sheltered from the sun. Nested analysis of variances revealed that the impala and horse selected significantly less variable environments than those recorded at the weather station (P<0.001) over a 20-min time interval, whereas, the microclimates selected by wildebeest tended to be more variable (P=0.08). Correlation of animal miniglobe against weather station miniglobe temperature resulted in regression slopes significantly less than one (P<0.001) for all species studied, implying that, overall, the animals selected cooler microclimates at high environmental heat loads and/or warmer microclimates at low environmental heat loads. We, therefore, have developed an ambulatory device, which can be attached to free-ranging animals, to remotely quantify thermoregulatory behaviour and selected microclimates.  相似文献   

19.
Capture techniques to deploy radio-collars often risk mortality and injury to the animal. Capture-induced mortality can affect population sizes but also introduces bias in survival estimates based on data from captured animals. In recent years, a large-scale research and monitoring project in Utah, USA, has involved capturing and radio-collaring hundreds of mule deer (Odocoileus hemionus), a species of great interest in large parts of North America. Our objective was to investigate how the survival rates of these mule deer were affected by capture and handling. During winters of 2014–2018, an experienced capture crew net-gunned and fitted 1,805 animals with global positioning system (GPS)-collars. We estimated survival rates during the first 6 weeks after capture using Cox proportional hazard regression, and compared the survival rates of animals that were captured in a particular year to those of animals that were not captured but fitted with a GPS-collar in a previous year. We used a model selection framework to evaluate how long survival rates of captured animals were different from those of animals that were not captured. Our results indicated that weekly survival rates of captured animals were 0.985 ± 0.003 (SE), 0.988 ± 0.002, and 0.990 ± 0.001 in weeks 1, 2 and 3, respectively. Weekly survival rates of captured deer during weeks 4–6 were 0.993 ± 0.001, the same as those of deer that were not captured at the same time. Furthermore, post-capture survival rates were positively influenced by body size and negatively influenced by age. We conclude that the mortality resulting from helicopter capture was low but recommend comparing newly captured and previously captured individuals to examine what proportion of observed mortality is likely capture-related. © 2020 The Wildlife Society.  相似文献   

20.
Nature-based tourism can generate important revenue to support conservation of biodiversity. However, constant exposure to tourists and subsequent chronic activation of stress responses can produce pathological effects, including impaired cognition, growth, reproduction, and immunity in the same animals we are interested in protecting. Utilizing fecal samples (N = 53) from 2 wild habituated orangutans (Pongo pygmaeus morio) (in addition to 26 fecal samples from 4 wild unhabituated orangutans) in the Lower Kinabatangan Wildlife Sanctuary of Sabah, Malaysian Borneo, we predicted that i) fecal glucocorticoid metabolite concentrations would be elevated on the day after tourist visitation (indicative of normal stress response to exposure to tourists on the previous day) compared to samples taken before or during tourist visitation in wild, habituated orangutans, and ii) that samples collected from habituated animals would have lower fecal glucocorticoid metabolites than unhabituated animals not used for tourism. Among the habituated animals used for tourism, fecal glucocorticoid metabolite levels were significantly elevated in samples collected the day after tourist visitation (indicative of elevated cortisol production on the previous day during tourist visitation). Fecal glucocorticoid metabolite levels were also lower in the habituated animals compared to their age-matched unhabituated counterparts. We conclude that the habituated animals used for this singular ecotourism project are not chronically stressed, unlike other species/populations with documented permanent alterations in stress responses. Animal temperament, species, the presence of coping/escape mechanisms, social confounders, and variation in amount of tourism may explain differences among previous experiments. Acute alterations in glucocorticoid measures in wildlife exposed to tourism must be interpreted conservatively. While permanently altered stress responses can be detrimental, preliminary results in these wild habituated orangutans suggest that low levels of predictable disturbance can likely result in low physiological impact on these animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号