首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strongylus vulgaris is an important strongyle nematode with high pathogenic potential infecting horses world-wide. Several decades of intensive anthelmintic use has virtually eliminated clinical disease caused by S. vulgaris, but has also caused high levels of anthelmintic resistance in equine small strongyle (cyathostomin) nematodes. Recommendations aimed at limiting the development of anthelmintic resistance by reducing treatment intensity raises a simultaneous demand for reliable and accurate diagnostic tools for detecting important parasitic pathogens. Presently, the only means available to differentiate among strongyle species in a faecal sample is by identifying individual L3 larvae following a two week coproculture procedure. The aim of the present study is to overcome this diagnostic obstacle by developing a fluorescence-based quantitative PCR assay capable of identifying S. vulgaris eggs in faecal samples from horses. Species-specific primers and a TaqMan probe were designed by alignment of published ribosomal DNA sequences of the second internal transcribed spacer of cyathostomin and Strongylus spp. nematodes. The assay was tested for specificity and optimized using genomic DNA extracted from identified male worms of Strongylus and cyathostomin species. In addition, eggs were collected from adult female worms and used to evaluate the quantitative potential of the assay. Statistically significant linear relationships were found between egg numbers and cycle of threshold (Ct) values. PCR results were unaffected by the presence of cyathostomin DNA in the sample and there was no indication of PCR inhibition by faecal sources. A field evaluation on faecal samples obtained from four Danish horse farms revealed a good agreement with the traditional larval culture (kappa-value=0.78), but with a significantly higher performance of the PCR assay. An association between Ct values and S. vulgaris larval counts was statistically significant. The present assay can reliably and semi-quantitatively detect minute quantities of S. vulgaris eggs in faecal samples.  相似文献   

2.
Nematode cys-loop ligand gated ion channels (CLGIC) mediate neurotransmission and are important targets for anthelmintics in parasitic nematodes. The CLGIC superfamily in nematodes includes ion channels gated by acetylcholine, γ-amino butyric acid (GABA), glutamate, glycine and 5-HT. The macrocyclic lactones and the nicotinic agonists are important groups of anthelmintics that target the glutamate gated chloride channels and the nicotinic acetylcholine receptors, respectively. The model organism Caenorhabditis elegans has the most diverse families of cys-loop LGIC known in any organism. Many parasitic nematodes have homologues of C. elegans receptors but to date no genome wide investigations have been done. The genome sequencing projects of Brugia malayi (clade III) and Trichinella spiralis (clade I) have allowed us to characterise the CLGIC families in these species. Although the main groups of CLGICs targeted by anthelmintics are represented in both the nematode genomes investigated here, the CLGIC family is much smaller in B. malayi and T. spiralis, suggesting that care must be taken when using C. elegans as a model organism for distantly related nematodes.  相似文献   

3.
Understanding the composition of gastrointestinal nematode communities may help to mitigate or exploit parasite adaptations within their host. We have used nemabiome deep amplicon sequencing of internal transcribed spacer-2 (ITS-2) ribosomal DNA to describe the temporal and host species composition of gastrointestinal nematode communities following sampling of six Scottish ponies across 57 months. In the absence of parasite control, each horse showed seasonal trends of increases and decreases in faecal egg counts, consistent with the epidemiology of equine strongylid parasites, however, the composition of parasites within individuals changed over time. Sixteen presumptive strongylid species were identified in each of the horses, 13 of which were distributed in a complex clade together with small numbers of amplicon sequences which could not be classified beyond the Cyathostominae subfamily level. Egg shedding of seven trichostrongylid species, which had previously been identified in co-grazed Soay sheep, was identified during the early spring. Faecal egg counts and the percentage of amplicon sequences assigned to each gastrointestinal nematode species were combined to describe their relative abundance across both host and time. Significant differences in species diversity between horses and between months were observed, being greatest from March to May and least from October to December. The magnitude of the individual horse effect varied between months and, conversely, the magnitude of the seasonal effect varied between individual horses. The most abundant gastrointestinal nematode in each of the horses was Cylicostephanus longibursatus (46.6% overall), while the abundance of the other strongylid species varied between horses and relative to each other. Patent C. longibursatus infections over the winter months might represent a genetic adaptation towards longer adult worm survival, or a lower rate of developmental arrest in the autumn. This study provides insight into highly complex phylogenetic relationships between closely related cyathostomin species; and describes the dynamics of egg shedding and pasture contamination of co-infecting equine gastrointestinal nematode communities. The results could be applied to determine how climatic and management factors affect the equilibrium between hosts and their parasites, and to inform the development of sustainable gastrointestinal nematode control strategies for different host species.  相似文献   

4.
Parasitic nematodes represent formidable pathogens of humans, livestock and crop plants. Control of these parasites is almost exclusively dependent on a small group of anthelmintic drugs, the most important of which belong to the macrocyclic lactone class. The extensive use of these drugs to control the ubiquitous trichostrongylid parasites of grazing livestock has resulted in the emergence of both single and multi-drug resistance. The expectation is that this resistance will eventually occur in the human parasites such as the common and debilitating soil transmitted nematodes and vector-borne filarial nematodes. While the modes of action of anthelmintics such as ivermectin, have been elucidated, notably in the model nematode Caenorhabditis elegans, the molecular nature of this resistance remains to be fully determined. Here we show that the anterior amphids play a key role in ivermectin uptake and mutations in these sensory structures result in ivermectin resistance in C. elegans. Random genetic mutant screens, detailed analysis of existing amphid mutants and lipophilic dye uptake indicate that the non-motile ciliated amphid neurons are a major route of ivermectin ingress; the majority of the mutants characterised in this study are predicted to be involved in intraflagellar transport. In addition to a role in ivermectin resistance, a subset of the amphid mutants are resistant to the non-related benzimidazole class of anthelmintics, raising the potential link to a multi-drug resistance mechanism. The amphid structures are present in all nematodes and are clearly defined in a drug-sensitive strain of Haemonchus contortus. It is predicted that amphidial drug uptake and intraflagellar transport may prove to be significant in the development of single and multi-drug resistance in the nematode pathogens of veterinary and human importance.  相似文献   

5.
A growing body of evidence, particularly in humans and rodents, supports the existence of a complex network of interactions occurring between gastrointestinal (GI) helminth parasites and the gut commensal bacteria, with substantial effects on both host immunity and metabolic potential. However, little is known of the fundamental biology of such interactions in other animal species; nonetheless, given the considerable economic losses associated with GI parasites, particularly in livestock and equines, as well as the global threat of emerging anthelmintic resistance, further explorations of the complexities of host-helminth-microbiota interactions in these species are needed. This study characterises the composition of the equine gut commensal flora associated with the presence, in faecal samples, of low (Clow) and high (Chigh) numbers of eggs of an important group of GI parasites (i.e. the cyathostomins), prior to and following anthelmintic treatment. High-throughput sequencing of bacterial 16S rRNA amplicons and associated bioinformatics and statistical analyses of sequence data revealed strong clustering according to faecal egg counts (P?=?0.003). A trend towards increased populations of Methanomicrobia (class) and Dehalobacterium (genus) was observed in Clow in comparison with Chigh. Anthelmintic treatment in Chigh was associated with a significant reduction of the bacterial Phylum TM7 14?days post-ivermectin administration, as well as a transient expansion of Adlercreutzia spp. at 2?days post-treatment. This study provides a first known insight into the discovery of the intimate mechanisms governing host-parasite-microbiota interactions in equines, and sets a basis for the development of novel, biology-based intervention strategies against equine GI helminths based on the manipulation of the commensal gut flora.  相似文献   

6.
The interactions between parasitic helminths and gut microbiota are considered to be an important, although as yet incompletely understood, factor in the regulation of immunity, inflammation and a range of diseases. Infection with intestinal helminths is ubiquitous in grazing horses, with cyathostomins (about 50 species of which are recorded) predominating. Consequences of infection include both chronic effects, and an acute inflammatory syndrome, acute larval cyathostominosis, which sometimes follows removal of adult helminths by administration of anthelmintic drugs. The presence of cyathostomins as a resident helminth population of the equine gut (the “helminthome”) provides an opportunity to investigate the effect helminth infection, and its perturbation, has on both the immune system and bacterial microbiome of the gut, as well as to determine the specific mechanisms of pathophysiology involved in equine acute larval cyathostominosis. We studied changes in the faecal microbiota of two groups of horses following treatment with anthelmintics (fenbendazole or moxidectin). We found decreases in both alpha diversity and beta diversity of the faecal microbiota at Day 7 post-treatment, which were reversed by Day 14. These changes were accompanied by increases in inflammatory biomarkers. The general pattern of faecal microbiota detected was similar to that seen in the relatively few equine gut microbiome studies reported to date. We conclude that interplay between resident cyathostomin populations and the bacterial microbiota of the equine large intestine is important in maintaining homeostasis and that disturbance of this ecology can lead to gut dysbiosis and play a role in the aetiology of inflammatory conditions in the horse, including acute larval cyathostominosis.  相似文献   

7.
Macrocyclic lactones have been the most widely used drugs for equine parasite control during the past four decades. Unlike ivermectin, moxidectin exhibits efficacy against encysted cyathostomin larvae, and is reported to have persistent efficacy with substantially longer egg reappearance periods. However, shortened egg reappearance periods have been reported recently for both macrocyclic lactones, and these findings have raised several questions: (i) are egg reappearance period patterns different after ivermectin or moxidectin treatment? (ii) Are shortened egg reappearance periods associated with certain cyathostomin species or stages? (iii) How does moxidectin’s larvicidal efficacy affect egg reappearance period? To address these questions, 36 horses at pasture, aged 2–5 years old, were randomly allocated to three treatment groups: 1, moxidectin; 2, ivermectin; and 3, untreated control. Strongylid fecal egg counts were measured on a weekly basis, and the egg reappearance period was 5 weeks for both compounds. Strongylid worm counts were determined for all horses: 18 were necropsied at 2 weeks post-treatment (PT), and the remaining 18 at 5 weeks PT. Worms were identified to species morphologically and by internal transcribed spacer-2 (ITS-2) rDNA metabarcoding. Moxidectin and ivermectin were 99.9% and 99.7% efficacious against adults at 2 weeks post treatment, whereas the respective efficacies against luminal L4s were 84.3% and 69.7%. At 5 weeks PT, adulticidal efficacy was 88.3% and 57.6% for moxidectin and ivermectin, respectively, while the efficacy against luminal L4s was 0% for both drugs. Moxidectin reduced early L3 counts by 18.1% and 8.0% at 2 or 5 weeks, while the efficacies against late L3s and mucosal L4s were 60.4% and 21.2% at the same intervals, respectively. The luminal L4s surviving ivermectin treatment were predominantly Cylicocyclus (Cyc.) insigne. The ITS-2 rDNA metabarcoding was in good agreement with morphologic species estimates but suggested differential activity between moxidectin and ivermectin for several species, most notably Cyc. insigne and Cylicocyclus nassatus. This study was a comprehensive investigation of current macrocyclic lactone efficacy patterns and provided important insight into potential mechanisms behind shortened egg reappearance periods.  相似文献   

8.
Soil-transmitted nematodes infect over a billion people and place several billion more at risk of infection. Hookworm disease is the most significant of these soil-transmitted nematodes, with over 500?million people infected. Hookworm infection can result in debilitating and sometimes fatal iron-deficiency anemia, which is particularly devastating in children and pregnant women. Currently, hookworms and other soil-transmitted nematodes are controlled by administration of a single dose of a benzimidazole to targeted populations in endemic areas. While effective, people are quickly re-infected, necessitating frequent treatment. Widespread exposure to anthelmintic drugs can place significant selective pressure on parasitic nematodes to generate resistance, which has severely compromised benzimidazole anthelmintics for control of livestock nematodes in many areas of the world. Here we report, to our knowledge, the first naturally occurring multidrug-resistant strain of the canine hookworm Ancylostoma caninum. We reveal that this isolate is resistant to fenbendazole at the clinical dosage of 50?mg/kg for 3?days. Our data shows that this strain harbors a fixed, single base pair mutation at amino acid 167 of the β-tubulin isotype 1 gene, and by using CRISPR/Cas9 we demonstrate that introduction of this mutation into the corresponding amino acid in the orthologous β-tubulin gene of Caenorhabditis elegans confers a similar level of resistance to thiabendazole. We also show that the isolate is resistant to the macrocyclic lactone anthelmintic ivermectin. Understanding the mechanism of anthelmintic resistance is important for rational design of control strategies to maintain the usefulness of current drugs, and to monitor the emergence of resistance. The isolate we describe represents the first multidrug-resistant strain of A. caninum reported, and our data reveal a resistance marker that can emerge naturally in response to heavy anthelminthic treatment.  相似文献   

9.
Heavy reliance on macrocyclic lactones to treat parasitic nematodes has resulted in the evolution of widespread drug resistance that threatens human and animal health. Management strategies have been proposed that would slow the rise of resistance, however testing these strategies has been hampered by the lack of identified strong-effect resistance markers in parasites. We show that the Caenorhabditis elegans gene Cel_dyf-7, necessary for amphid sensory neuron development, also confers macrocyclic lactone sensitivity. In the sheep parasite Haemonchus contortus: (i) strains selected for macrocyclic lactone resistance were enriched in a Hco_dyf-7 haplotype that was rare in the drug-naïve population, (ii) the resistant haplotype correlated with the sensory neuron defects, and (iii) the resistant haplotype was associated with decreased Hco_dyf-7 expression. Resistant field isolates of H. contortus from five continents were enriched for the resistant haplotype, demonstrating the relevance of the Hco_dyf-7 haplotype to practise and indicating that it is a locus of strong effect. Hemizygosity resulting from sex linkage of dyf-7 likely contributes to the rise of resistance in treated populations.  相似文献   

10.
11.
12.
Filarial parasitic nematodes (Filarioidea) cause substantial disease burden to humans and animals around the world. Recently there has been a coordinated global effort to generate, annotate, and curate genomic data from nematode species of medical and veterinary importance. This has resulted in two chromosome-level assemblies (Brugia malayi and Onchocerca volvulus) and 11 additional draft genomes from Filarioidea. These reference assemblies facilitate comparative genomics to explore basic helminth biology and prioritize new drug and vaccine targets. While the continual improvement of genome contiguity and completeness advances these goals, experimental functional annotation of genes is often hindered by poor gene models. Short-read RNA sequencing data and expressed sequence tags, in cooperation with ab initio prediction algorithms, are employed for gene prediction, but these can result in missing clade-specific genes, fragmented models, imperfect mapping of gene ends, and lack of isoform resolution. Long-read RNA sequencing can overcome these drawbacks and greatly improve gene model quality. Here, we present Iso-Seq data for B. malayi and Dirofilaria immitis, etiological agents of lymphatic filariasis and canine heartworm disease, respectively. These data cover approximately half of the known coding genomes and substantially improve gene models by extending untranslated regions, cataloging novel splice junctions from novel isoforms, and correcting mispredicted junctions. Furthermore, we validated computationally predicted operons, manually curated new operons, and merged fragmented gene models. We carried out analyses of poly(A) tails in both species, leading to the identification of non-canonical poly(A) signals. Finally, we prioritized and assessed known and putative anthelmintic targets, correcting or validating gene models for molecular cloning and target-based anthelmintic screening efforts. Overall, these data significantly improve the catalog of gene models for two important parasites, and they demonstrate how long-read RNA sequencing should be prioritized for ongoing improvement of parasitic nematode genome assemblies.  相似文献   

13.
Rapid, cost‐effective, efficient, and reliable helminth species identification is of considerable importance to understand host–parasite interactions, clinical disease, and drug resistance. Cyathostomins (Nematoda: Strongylidae) are considered to be the most important equine parasites, yet research on this group is hampered by the large number of 50 morphologically differentiated species, their occurrence in mixed infections with often more than 10 species and the difficulties associated with conventional identification methods. Here, MALDI‐TOF MS, previously successfully applied to identify numerous organisms, is evaluated and compared with conventional and molecular genetic approaches. A simple and robust protocol for protein extraction and subsequent DNA isolation allowing molecular confirmation of proteomic findings is developed, showing that MALDI‐TOF MS can discriminate adult stages of the two closely related cyathostomin species Cylicostephanus longibursatus and Cylicostephanus minutus. Intraspecific variability of proteomic profiles within morphospecies demonstrated an identification of morphospecies with an accuracy of close to 100%. In contrast, three genospecies within C. minutus and sex‐specific profiles within both morphospecies could not be reliably discriminated using MALDI‐TOF MS. In conclusion, MALDI‐TOF MS complemented by the molecular protocol is a reliable and efficient approach for cyathostomin species identification.  相似文献   

14.
SUMMARY Studies on anthelmintic resistance in equine parasites do not include facultative parasites. Halicephalobus gingivalis is a free-living bacterivorous nematode and a known facultative parasite of horses with a strong indication of some form of tolerance to common anthelmintic drugs. This research presents the results of an in vitro study on the anthelmintic tolerance of several isolates of Halicephalobus to thiabendazole and ivermectin using an adaptation of the Micro-Agar Larval Development Test hereby focusing on egg hatching and larval development. Panagrellus redivivus and Panagrolaimus superbus were included as a positive control. The results generally show that the anthelmintic tolerance of Halicephalobus to both thiabendazole and ivermectin was considerably higher than that of the closely related Panagrolaimidae and, compared to other studies, than that of obligatory equine parasites. Our results further reveal a remarkable trend of increasing tolerance from fully free-living isolates towards horse-associated isolates. In vitro anthelmintic testing with free-living and facultative parasitic nematodes offers the advantage of observing drug effect on the complete life cycle as opposed to obligatory parasites that can only be followed until the third larval stage. We therefore propose Halicephalobus gingivalis as an experimental tool to deepen our understanding of the biology of anthelmintic tolerance.  相似文献   

15.
16.
Acetylcholine receptors are pentameric ligand–gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.  相似文献   

17.
18.
19.
Strongyle infection is an important issue in horse breeding. It impairs horse health and performance, with young horses being the most sensitive. Strongyle control has long relied on the systematic use of chemical treatments. However, expanding anthelmintic resistance among strongyles calls for alternative options. Mixed grazing is assumed to reduce strongyle load on the pasture as the result of a dilution effect. This has been shown in small ruminants grazing with cattle, but the putative benefits of co-grazing between horses and cattle have not yet been evaluated. Here, we conducted field surveys and face-to-face interviews on 44 farms from two contrasted saddle-horse production areas, Normandy and northern Massif Central, to compare equine strongyle management practices between specialized systems and mixed horse-cattle systems. Our goals were (i) to quantify breeders’ awareness of the putative benefits associated with the co-grazing of horses and cattle, (ii) to establish whether mixed farming was associated with different strongyle management strategies and (iii) to test whether strongyle egg excretion was reduced in horses grazed with beef cattle. Every breeder relied on systematic calendar treatments, and only 8 out of the 23 mixed breeders were aware that co-grazing of horses with cattle could be used as part of their strongyle control strategy. Management practices were similar across both systems in Normandy. In Massif Central, mixed breeders formed a distinct cluster from their specialized counterparts: deworming was less frequent and stocking density was higher in mixed farms, while specialized breeders seemed more willing to integrate herd and plot management into control strategies. Faecal egg counts measured in horses from Massif Central were significantly reduced when horses were grazed with cattle. This was the result of an increased reliance on macrocyclic lactones in mixed farms (P < 0.01) and a significant dilution effect (P < 0.01). When considering a subsample of horses treated with macrocyclic lactones only, young horses grazed with cattle had 50% fewer strongyle eggs excreted in their faeces than horses grazed in equine-only pastures (P < 0.01). This is the first evidence of the benefits of mixed grazing with cattle as an alternative to control strongyle infection in horses, although this promising alternative remains largely unknown by horse breeders.  相似文献   

20.
The role of the drug efflux pump, known as P-glycoprotein, in the pharmacokinetic disposition (host) and resistance mechanisms (target parasites) of the macrocyclic lactone (ML) antiparasitic compounds has been demonstrated. To achieve a deeper comprehension on the relationship between their pharmacokinetic and pharmacodynamic behaviors, the aim of the current work was to assess the comparative effect of loperamide, a well-established P-glycoprotein modulator, on the ivermectin and moxidectin disposition kinetics and efficacy against resistant nematodes in cattle. Fifty (50) Aberdeen Angus male calves were divided into five (5) experimental groups. Group A remained as an untreated control. Animals in the other experimental Groups received ivermectin (Group B) and moxidectin (Group C) (200 μg/kg, subcutaneuosly) given alone or co-administered with loperamide (0.4 mg/kg, three times every 24 h) (Groups D and E). Blood samples were collected over 30 days post-treatment and drug plasma concentrations were measured by HPLC with fluorescence detection. Estimation of the anthelmintic efficacy for the different drug treatments was performed by the faecal egg count reduction test (FECRT). Nematode larvae were identified by pooled faecal cultures for each experimental group. Cooperia spp. and Ostertagia spp. were the largely predominant nematode larvae in pre-treatment cultures. A low nematodicidal efficacy (measured by the FECRT) was observed for both ivermectin (23%) and moxidectin (69%) in cattle, which agrees with a high degree of resistance to both molecules. Cooperia spp. was the most abundant nematode species recovered after the different drug treatments. The egg output reduction values increased from 23% to 50% (ivermectin) and from 69% to 87% (moxidectin) following their co-administration with loperamide. Enhanced systemic concentrations and an altered disposition of both ML in cattle, which correlates with a tendency to increased anthelmintic efficacy, were observed in the presence of loperamide. Overall, the in vivo modulation of P-glycoprotein activity modified the kinetic behavior and improved the efficacy of the ML against resistant nematodes in cattle. The work provides further evidence on the high degree of resistance to ML in cattle nematodes and, shows for the first time under field conditions, that modulation of P-glycoprotein may be a valid pharmacological approach to improve the activity and extend the lifespan of these antiparasitic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号