首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Science China Life Sciences - The phylogenetic structure incorporates both ecological and evolutionary processes to explain assembly of a local community. The “phylogenetic niche...  相似文献   

3.
Critically endangered Galápagos pink land iguanas, Conolophus marthae, are considered a rare and elusive species. These iguanas are endemic to Wolf Volcano, on Isabela Island (Galápagos), where they persist as a single, very small population on the northwestern slope of the volcano. In an attempt to unveil important information about their ecology and behavior we monitored and analyzed the movement data of a male C. marthae collected over a period of 159 days, from 25 September 2019 until 3 March 2020. We used a custom designed GPS-Wireless Sensor Node (WSN) to remotely track and describe the migration pattern of this individual. Using GPS location data and trajectory reconstruction we documented an altitudinal shift of more than 1000 m. These results not only agree with observations recorded while collecting data in the field but were also used to reconstruct and describe the individual’s migratory behavior, and to document the potential path that this individual, and presumably others of this species, follow while searching for food or mates. The altitudinal shift described whether shared across individuals of the species or part of intraspecific variation, may be related to different factors. Here, we discuss alternative interpretations of this behavior. The urgent need to gather data on the species’ ecology and develop an appropriate conservation strategy underlines the importance of this research. Although it is not possible to draw conclusions for an entire species based on results from one individual, this work represents a significant advancement for the conservation of this species, as it validates the importance of using cutting-edge remote-tracking technology to collect data on a very elusive species, and it reveals ecological traits not previously documented for these critically endangered iguanas.  相似文献   

4.
5.
青藏高原草地群落组成和结构的海拔梯度格局 青藏高原高寒草地是维持区域生态安全的天然屏障,也在一定程度上造就了该区域较高的生物多样性。然而,我们对青藏高原高寒草地植物群落组成和结构的海拔分布格局及其自身维持机制仍知之甚少。本研究在青藏高原东北部沿公路形成的海拔梯度设置了39个实验样地(海拔跨度为2800–5100m),每个样地设5个调查样方进行群落调查,包括物种组成、高度、盖度,评估青藏高原高寒草地植物群落的α和β多样性的海拔梯度格局及其影响因素。研究结果发现草地群落高度随着海拔的增加而显著降低,而群落盖度变化却不显著。随着海拔的增加,植物物种丰富度(α多样性)显著增加,而群落变异性(β多样性)显著降低。约束聚类分析表明,随海拔增加草地群落结构逐渐发生变化,基于此,在这种变化过程中,我们监测到3个渐变的海拔间断点,分别在海拔3640、4252和4333 m处。结构方程模型(SEM)表明,降水增加和温度降低对α多样性有显著的正向作用,但植物群落α多样性的变化显著改变群落变异性。以上结果表明,青藏高原的群落组成和结构沿海拔梯度发生了从量变到质变的过程。  相似文献   

6.
7.
Local adaptation of populations along elevational gradients is well known, but conclusive evidence that such divergence has resulted in the origin of distinct species in parapatry remains lacking. We integrated morphological, vocal, genetic and behavioural data to test predictions pertaining to the hypothesis of parapatric ecological speciation associated with elevation in populations of a tropical montane songbird, the Grey‐breasted Wood‐wren (Henicorhina leucophrys: Troglodytidae), from the Sierra Nevada de Santa Marta, Colombia. We confirmed that two distinct populations exist along the elevational gradient. Phylogenetic analyses tentatively indicate that the two populations are not sister taxa, suggesting they did not differentiate from a single ancestor along the gradient, but rather resulted from separate colonization events. The populations showed marked divergence in morphometrics, vocalizations and genetic variation in mitochondrial and nuclear loci, and little to no evidence of hybridization. Individuals of both populations responded more strongly to their own local songs than to songs from another elevation. Although the two forms do not appear to have differentiated locally in parapatry, morphological and vocal divergence along the elevational gradient is consistent with adaptation, suggesting a possible link between adaptive evolution in morphology and songs and the origin of reproductive isolation via a behavioural barrier to gene flow. The adaptive value of phenotypic differences between populations requires additional study.  相似文献   

8.
The biodiversity of non‐volant small mammals along an extensive subtropical elevational gradient was studied for the first time on Gongga Mountain, the highest mountain in Hengduan Mountain ranges in China, located in one of the 25 global biodiversity hotspots. Non‐volant small mammals were replicate sampled in two seasons at eight sampling sites between 1000 and 4200 m elevation on the eastern slope of Gongga Mountain. In all, 726 individual small mammals representing 25 species were documented in 28 800 trap nights. The species richness pattern for non‐volant small mammals along the elevational gradients was hump‐shaped with highest richness at mid‐elevations. However, different richness patterns emerged between endemic and non‐endemic species, between larger‐ranged and smaller‐ranged species and between rodents and insectivores. Temperature, precipitation, plant species richness and geometric constraints (mid‐ domain effect) were most significant in explaining species richness patterns. Based on the analysis of simple ordinary least squares (OLS) and stepwise multiple regressions, the overall richness pattern, as well as the pattern of insectivores, endemic species and larger‐ranged species showed strong correlation with geometric constraint predictions. However, non‐endemic species richness was more strongly correlated with temperature, while rodent richness was correlated with plant species richness. Our study shows that no single key factor can explain all richness patterns of non‐volant small mammals. We need to be cautious in summarizing a general richness pattern of large species groups (e.g. small mammals or mammals) from species in smaller groups having different ecological distributions and life histories. Elevational richness patterns and their driving factors for small mammals are more likely dependent on what kind of species we study.  相似文献   

9.
Environmental stress may favour facilitative interactions among plants but whether these interactions are positive for the benefactor and how this depends on stress factors, remains to be determined. We studied the effect of beneficiary cover and biomass on reproduction of the benefactor cushion plant Laretia acaulis (Apiaceae) in the central Chilean Andes during three years. Study sites were situated along an elevational gradient at 2600, 2800, 3000 and 3150 m a.s.l. This range comprises a cold‐ and a drought‐stress gradient, with moisture increasing and temperature decreasing with elevation. We studied the effect of natural gradients in beneficiary cover and of experimental cover removal on cushion flower and fruit production. Beneficiary cover had a negative effect on flower production but not on infructescence and fruit densities or fruit weights. A positive effect of beneficiaries on the fraction of flowers converted into fruits was detected for hermaphrodite cushions. The effect of beneficiary cover on flowering was independent of elevation or cushion gender, although these latter factors explained most of the variation. Removing the aboveground parts of the beneficiaries positively affected flowering at 2800 m a.s.l. but not at the other elevations. Our results suggest negative effects of facilitation on L. acaulis flowering, but these are neutralized in fruit production. Surprisingly, this conclusion holds along the entire elevational or stress gradient. This suggests that this system of facilitation is evolutionarily stable and not very sensitive to environmental change. It remains to be tested, however, whether facilitation affects fitness via growth and long‐term survival in these slow‐growing alpine cushions.  相似文献   

10.
Environment and genetics combine to influence tree growth and should therefore be jointly considered when evaluating forest responses in a warming climate. Here, we combine dendroclimatology and population genetic approaches with the aim of attributing climatic influences on growth of European larch (Larix decidua) and Norway spruce (Picea abies). Increment cores and genomic DNA samples were collected from populations along a ~900-m elevational transect where the air temperature gradient encompasses a ~4 °C temperature difference. We found that low genetic differentiation among populations indicates gene flow is high, suggesting that migration rate is high enough to counteract the selective pressures of local environmental variation. We observed lower growth rates towards higher elevations and a transition from negative to positive correlations with growing season temperature upward along the elevational transect. With increasing elevation there was also a clear increase in the explained variance of growth due to summer temperatures. Comparisons between climate sensitivity patterns observed along this elevational transect with those from Larix and Picea sites distributed across the Alps reveal good agreement, and suggest that tree-ring width (TRW) variations are more climate-driven than genetics-driven at regional and larger scales. We conclude that elevational transects are an extremely valuable platform for understanding climatic-driven changes over time and can be especially powerful when working within an assessed genetic framework.  相似文献   

11.
A network of ten Faxon fir tree-ring width chronologies was constructed from sites ranging in elevation from 3,000 to 3,450 m in the Wolong Natural Reserve in Western Sichuan Province, China. The site chronologies display significant inter-site correlations (mean R = 0.647, p < 0.001) and the first principal component (PC1) accounts for 68.32 % of the total variation of the chronologies, implying a high degree of similarity in growth variation among the elevation gradients. Correlation analysis using monthly climate data indicates that the radial growth response of Faxon fir along the elevation gradients is markedly similar to common climatic signals, such as sunshine duration (positive) and cloud cover (negative), from January to March. Thus, it appears that winter freezing stress, which is caused by low solar radiation and high cloudiness, is the major environmental factor regulating the growth of trees across the elevational gradients. In addition, the site chronologies have no elevation-dependent growth responses to temperature or precipitation. Irrespective of the elevational differences of the sample sites, an anomalous reduction in radial growth occurred consistently since the 1960s, diverging from the instrumental temperature records since the 1990s. The cause of this divergence may be ascribed to the recent accelerated winter freezing stress and its role in controlling radial growth.  相似文献   

12.
An upward shift in elevation is one of the most conspicuous species responses to climate change. Nevertheless, downward shifts and, apparently, the absences of response have also been recently reported. Given the growing evidence of multiple responses of species distributions due to climate change and the paucity of studies in the tropics, we evaluated the response of a montane bird community to climate change, without the confounding effects of land‐use change. To test for elevational shifts, we compared the distribution of 21 avian species in 1998 and 2015 using occupancy models. The historical data set was based on point counts, whereas the contemporary data set was based on acoustic monitoring. We detected a similar number of species in historical (36) and contemporary data sets (33). We show an overall pattern of no significant change in range limits for most species, although there was a significant shift in the range limit of eight species (38%). Elevation limits shifted mostly upward, and this pattern was more common for upper than lower limits. Our results highlight the variability of species responses to climate change and illustrate how acoustic monitoring provides an easy and powerful way to monitor animal populations along elevational gradients.  相似文献   

13.
In their recent paper published in Science (2016, 351 , 1437–1439), Chan et al. analysed 137 montane gradients, concluding that they found a novel pattern—a negative relationship between mean elevational range size of species and daily temperature variation, which was claimed as empirical evidence for a novel macrophysiological principle (Gilchrist's hypothesis). This intriguing possibility was their key conceptual contribution. Unfortunately, as we show, the empirical evidence was flawed because of errors in the analyses and substantial sampling bias in the data. First, we re‐ran their analyses using their data, finding that their model should have been rejected. Second, we performed two additional re‐analyses of their data, addressing biases and pseudoreplication in different ways, both times again rejecting the evidence claimed to support Gilchrist's hypothesis. These results overturn the key empirical findings of Chan et al.'s study. Therefore, the “macrophysiological principle” should be regarded as currently remaining unsupported by empirical evidence.  相似文献   

14.
Climate change leads to species range shifts and consequently to changes in diversity. For many systems, increases in diversity capacity have been forecast, with spare capacity to be taken up by a pool of weedy species moved around by humans. Few tests of this hypothesis have been undertaken, and in many temperate systems, climate change impacts may be confounded by simultaneous increases in human-related disturbance, which also promote weedy species. Areas to which weedy species are being introduced, but with little human disturbance, are therefore ideal for testing the idea. We make predictions about how such diversity capacity increases play out across elevational gradients in non-water-limited systems. Then, using modern and historical data on the elevational range of indigenous and naturalized alien vascular plant species from the relatively undisturbed sub-Antarctic Marion Island, we show that alien species have contributed significantly to filling available diversity capacity and that increases in energy availability rather than disturbance are the probable underlying cause.  相似文献   

15.
Increasing temperatures are predicted to have profound effects on montane ecosystems. In tropical forests, biotic attrition may reduce lowland diversity if losses of species due to upslope range shifts are not matched by influxes of warmer‐adapted species, either because there are none or their dispersal is impeded. Australian rainforests consist of a north–south chain of patches, broken by dry corridors that are barriers to the dispersal of rainforest species. These rainforests have repeatedly contracted and expanded during Quaternary glacial cycles. Many lowland rainforests are expansions since the Last Glacial Maximum and may, therefore, show a signal of historical biotic attrition. We surveyed ants from replicated sites along three rainforest elevational transects in eastern Australia spanning 200 to 1200 m a.s.l. and nearly 14° of latitude. We examined elevational patterns of ant diversity and if there was possible evidence of lowland biotic attrition. Each transect was in a different biogeographic region; the Australian Wet Tropics (16.3°S), the central Queensland coast (21.1°S) and subtropical south‐eastern Queensland (28.1°S). We calculated ant species density (mean species per site) and species richness (estimated number of species by incorporating site‐to‐site species turnover) within elevational bands. Ant species density showed no signal of lowland attrition and was high at low and mid‐elevations and declined only at high elevations at all transects. Similarly, estimated species richness showed no evidence of lowland attrition in the Wet Tropics and subtropical south‐east Queensland; species richness peaked at low elevations and declined monotonically with increasing elevation. Persistence of lowland rainforest refugia in the Wet Tropics during the Last Glacial Maximum and latitudinal range shifts of ants in subtropical rainforests during the Holocene climatic optimum may have counteracted lowland biotic attrition. In central Queensland, however, estimated richness was similar in the lowlands and mid‐elevations, and few ant species were indicative of lower elevations. This may reflect historical biotic attrition due perhaps to a lack of lowland glacial refugia and the isolation of this region by a dry forest barrier to the north.  相似文献   

16.
A tree’s crown interacts with atmospheric variables such as CO2, temperature, and humidity. Physioecology of leaves/needles (e.g. δ13C, mobile carbohydrates, and nitrogen) is, therefore, strongly affected by microclimate in and surrounding a tree crown. To understand the physiological responses of leaves to changes in air temperature and moisture, we measured δ13C, soluble sugars, starch, and total nitrogen (N) concentrations in current year and 1-yr-old needles of Pinus koraiensis trees, and compared the growing season air temperature and relative humidity within and outside P. koraiensis crowns along an elevational gradient from 760 to 1,420 m a.s.l. on Changbai Mountain, NE China. Our results indicated that needle N and mobile carbohydrates concentrations, as well as needle δ13C values changed continuously with increasing elevation, corresponding to a continuous decrease in air temperature and an increase in relative humidity. Needle carbon and nitrogen status is highly significantly negatively correlated with temperature, but positively correlated with relative humidity. These results indicate that increases in air temperature in combination with decreases in relative humidity may result in lower levels of N and mobile carbohydrates in P. koraiensis trees, suggesting that future climate changes such as global warming and changes in precipitation patterns will directly influence the N and carbon physiology at P. koraiensis individual level, and indirectly affect the competitive ability, species composition, productivity and functioning at the stand and ecosystem level in NE China. Due to the relatively limited range of the transect (760–1,420 m) studied, further research is needed to explain whether the present results are applicable to scales across large elevational gradients.  相似文献   

17.
Using a set of methods (C-banding, DAPI-staining, fluorescence hybridization in situ (FISH) with probes of 26S and 5S rDNA, and analysis of meiosis), the first comparative cytogenetic study of three species of Macleaya, producers of complex isoquinoline alkaloids, cordate Macleaya cordata (Willd.) R. Br. (2n = 20), small-fruited Macleaya microcarpa (Maxim.) Fedde (2n = 20) and Macleaya kewensis Turrill (2n = 20), was first carried out. On the basis of morphometric analysis, formulas of karyotypes were made for each species. Species ideograms for M. cordata, M. microcarpa, and M. kewensis were constructed taking into account the polymorphic variants of the C-banding patterns and indicating the location of 26S and 5S rDNA sites. A comparative study revealed that the karyotypes of M. microcarpa and M. kewensis have more in common with each other than with M. cordata. Analysis of meiotic chromosomes suggests of genetic stability of Macleaya genomes. The results of chromosome analysis were used to confirm the close relationship of Macleaya and to clarify their phylogenetic relationships.  相似文献   

18.
The Gō-like models of proteins are constructed based on the knowledge of the native conformation. However, there are many possible choices of a Hamiltonian for which the ground state coincides with the native state. Here, we propose to use experimental data on protein stretching to determine what choices are most adequate physically. This criterion is motivated by the fact that stretching processes usually start with the native structure, in the vicinity of which the Gō-like models should work the best. Our selection procedure is applied to 62 different versions of the Gō model and is based on 28 proteins. We consider different potentials, contact maps, local stiffness energies, and energy scales—uniform and nonuniform. In the latter case, the strength of the nonuniformity was governed either by specificity or by properties related to positioning of the side groups. Among them is the simplest variant: uniform couplings with no i, i + 2 contacts. This choice also leads to good folding properties in most cases. We elucidate relationship between the local stiffness described by a potential which involves local chirality and the one which involves dihedral and bond angles. The latter stiffness improves folding but there is little difference between them when it comes to stretching.  相似文献   

19.
A thermosensitive uracil requiring mutant of Bacillus subtilis Marburg 168 thy trp2 ts42 was examined as to the colony forming ability at the permissive and nonpermissive temperatures. The viability of the mutant cells decreased rapidly at the restrictive temperature in the modified Woese’s (MW) medium. However, the cells retained viability when sodium succinate or potassium chloride was added to the medium at that temperature although uracil deficiency was unchanged. A little but significant incorporation of adenine-8-14C into RNA still continued even after the incorporation of N-acetyl-3H-d-glucosamine into acid insoluble fraction of the cells terminated in the MW medium at 48°C. Both incorporations as well as increase of absorbance were slowed down in the presence of sodium succinate at 48°C. This mutant, ts42, was more sensitive to deoxycholate (DOC) than the parent strain. The restoration of colony forming ability after the temperature shift back from 48 to 37°C was suppressed by the addition of DOC to the medium. However, the cell became resistant to DOC when uracil was added to the medium prior to the temperature shift.  相似文献   

20.
The -amylase of Micromonospora melanosporea was produced extracellularly during batch fermentation in a 5.0-1 fermentor. The absence of an organic nitrogen source in its growth medium facilitated subsequent purification of the enzyme by ammonium sulphate fractionation and two consecutive Superose-12 gel-filtration steps. The enzyme exhibited maxima for activity at pH 7.0 and 55° C and was 72% stable at pH 6.0–12.0 for 30 min at 40° C. It had a relative molecular mass of 45 000 and an isoelectric point at pH 7.6. The enzyme catalyses the conversion of starch to maltose (53%, w/w) as the predominant final end-product. Initial hydrolysis of this substrate, however, gave rise to the formation of maltooligosaccharides in the range maltotriose to maltohexaose. Maximum yields of these intermediate sugars accumulated to between 31 and 42% (w/w) as the reaction proceeded. The action of the M. melanosporea amylase on high concentrations of saccharides larger than maltotriose resulted in the formation of mainly maltose and maltotriose without concomitant glucose production. A combination of hydrolytic and transfer events is postulated to be responsible for this phenomenon and for the high maltose levels achieved. Correspondence to: C. T. Kelly  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号