首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The uptake of (+)-S- and (−)-R-abscisic acid (ABA) by suspension culture cells of hopbush (Dodonaea viscosa L. Jacqu.) was followed over a range of temperatures, pH values, and time intervals. The natural (+)-S-ABA was taken up about five times faster than the unnatural (−)-R-ABA. Each 10°C rise in temperature from 1 to 31°C increased the rate of uptake (Q10) of (+)-S-ABA about 2.2-fold, whereas that of the (−)-R increased with a Q10 of 1.4. (+)-ABA was taken into the cells by a saturable carrier, but (−)-ABA and both enantiomers of 2-trans-ABA were not; they appeared to enter by passive diffusion. The uptake of (+)-ABA was linear over the first 8 hours but concentrations within the cells decreased after 2 hours to remain constant after 4 hours as rapid metabolism was induced. Electron microscopy of thin sections of the cells, combined with a stereological analysis of their shape, showed that the vacuoles comprised 80% of the cell volume and the cytoplasm plus nucleus comprised 20%. There were no photosynthetically active plastids in the cells. Concentrations of the endogenous ABA in the cytoplasm (pH 7.32) and vacuoles (pH 5.88) were calculated by applying the Henderson-Hasselbalch equation (ABA pKa 4.7) so that, provided no active metabolic redistribution occurred, the concentration in the cytoplasm was 7.9 micromolar and that in the vacuole was 0.3 micromolar. In vivo pH was measured by 31P nuclear magnetic resonance spectroscopy.  相似文献   

2.
Abscisic acid (ABA) uptake by Amaranthus tricolor cell suspensions was found to include both a nonsaturable component and a saturable part with Km of 3.74 ± 0.43 micromolar and an apparent Vmax of 1.5 ± 0.12 nanomoles per gram per minute. These kinetic parameters as well as the uptake by intact cells at 0°C or by frozen and thawed cells, are consistent with operation of a saturable carrier. This carrier-mediated ABA uptake was partially energized by ΔpH: it increased as the external pH was lowered to pH 4.0; it decreased after the lowering of the ΔpH by the proton ionophore carbonylcyanide-m-chlorophenylhydrazone or after the altering of metabolically maintained pH gradient by metabolic inhibitors (KCN, oligomycin). The carrier is specific for ABA among the plant growth regulators tested, is unaffected by (RS)-trans-ABA and was inhibited by (S)-ABA, (R)-ABA, and also by the ABA analog LAB 173711.  相似文献   

3.
It has previously been shown that the abscisic acid (ABA)-deficient flacca and sitiens mutants of tomato are impaired in ABA-aldehyde oxidation and accumulate trans-ABA-alcohol as a result of the biosynthetic block (IB Taylor, RST Linforth, RJ Al-Naieb, WR Bowman, BA Marples [1988] Plant Cell Environ 11: 739-745). Here we report that the flacca and sitiens mutants accumulate trans-ABA and trans-ABA glucose ester and that this accumulation is due to trans-ABA biosynthesis. 18O labeling of water-stressed wild-type and mutant tomato leaves and analysis of [18O]ABA by tandem mass spectrometry show that the tomato mutants synthesize a significant percentage of their ABA and trans-ABA as [18O]ABA with two 18O atoms in the carboxyl group. We further show, by feeding experiments with [2H6]ABA-alcohol and 18O2, that this doubly-carboxyl-labeled ABA is synthesized from [18O]ABA-alcohol with incorporation of molecular oxygen. In vivo inhibition of [2H6]ABA-alcohol oxidation by carbon monoxide establishes the involvement of a P-450 monooxygenase. Likewise, carbon monoxide inhibits the synthesis of doubly-carboxyl-labeled ABA in 18O-labeling experiments. This minor shunt pathway from ABA-aldehyde to ABA-alcohol to ABA operates in all plants examined. For the ABA-deficient mutants impaired in ABA-aldehyde oxidation, this shunt pathway is an important source of ABA and is physiologically significant.  相似文献   

4.
The isotherm for isocitrate oxidation by potato (Solanum tuberosum L. var. Russet Burbank) mitochondria in the presence of exogenous NAD is characterized by a hyperbolic phase at isocitrate concentrations below 3 millimolar, and a sigmoid, or positively cooperative phase from approximately 3 to 30 millimolar. The two forms of isocitrate dehydrogenase were separated and characterized following the sonication of mitochondria in 15% glycerol in the absence of buffer, followed by fractionation in a density step gradient to yield inner membrane and matrix components. The membrane-associated isocitrate dehydrogenase was found to have a Hill, or cooperativity, number of 1, while the Hill number of the matrix enzyme was 2.5. Upon digitonin extraction the cooperativity number of the membrane enzyme rose to 3.5. The isocitrate Km for the membrane enzyme was calculated to be approximately 5.9 × 10−4 molar, while the S0.5 for the matrix was 6.9 × 10−4 molar. The NAD Km for both enzymes was 150 micromolar. Whereas the membrane enzyme proved indifferent to adenine nucleotides, the matrix enzyme was arguably inhibited by AMP and ADP, and inhibited some 25% by 5 millimolar ATP. Both enzymes were negatively responsive to the mole fraction of NADH, the membrane enzyme being 50% inhibited at a mole fraction of 0.26, and the matrix enzyme by a mole fraction of 0.32. The suggestion is offered that the enzymes in question constitute two forms of a single enzyme, one peripherally associated with the inner membrane, and one soluble in the matrix. It is proposed that a degree of regulation may be achieved by the apportionment of the enzyme between the bound and free forms.  相似文献   

5.
NADP-Utilizing Enzymes in the Matrix of Plant Mitochondria   总被引:9,自引:4,他引:5       下载免费PDF全文
Purified potato tuber (Solanum tuberosum L. cv Bintie) mitochondria contain soluble, highly latent NAD+- and NADP+-isocitrate dehydrogenases, NAD+- and NADP+-malate dehydrogenases, as well as an NADPH-specific glutathione reductase (160, 25, 7200, 160, and 16 nanomoles NAD(P)H per minute and milligram protein, respectively). The two isocitrate dehydrogenase activities, but not the two malate dehydrogenase activities, could be separated by ammonium sulfate precipitation. Thus, the NADP+-isocitrate dehydrogenase activity is due to a separate matrix enzyme, whereas the NADP+-malate dehydrogenase activity is probably due to unspecificity of the NAD+-malate dehydrogenase. NADP+-specific isocitrate dehydrogenase had much lower Kms for NADP+ and isocitrate (5.1 and 10.7 micromolar, respectively) than the NAD+-specific enzyme (101 micromolar for NAD+ and 184 micromolar for isocitrate). A broad activity optimum at pH 7.4 to 9.0 was found for the NADP+-specific isocitrate dehydrogenase whereas the NAD+-specific enzyme had a sharp optimum at pH 7.8. Externally added NADP+ stimulated both isocitrate and malate oxidation by intact mitochondria under conditions where external NADPH oxidation was inhibited. This shows that (a) NADP+ is taken up by the mitochondria across the inner membrane and into the matrix, and (b) NADP+-reducing activities of malate dehydrogenase and the NADP+-specific isocitrate dehydrogenase in the matrix can contribute to electron transport in intact plant mitochondria. The physiological relevance of mitochondrial NADP(H) and soluble NADP(H)-consuming enzymes is discussed in relation to other known mitochondrial NADP(H)-utilizing enzymes.  相似文献   

6.
Seven varieties of Zea mays were analysed for cis-abscisic acid (ABA) and trans-ABA levels in the primary root tips by a stable isotope dilution technique. Differences in ABA levels were observed between the first 1 mm apical segments of the different varieties. No trans-ABA could be detected. In the next 2 mm ofthe root segments, the amount of ABA did not vary very much from one variety to another. The levels of ABA might very well reflect the growth reactivity of the root tips towards geotropism and light.  相似文献   

7.
Cytosolic NADP-specific isocitrate dehydrogenase was isolated from leaves of Pisum sativum. The purified enzyme was obtained by ammonium sulfate fractionation, ion exchange, affinity, and gel filtration chromatography. The purification procedure yields greater than 50% of the total enzyme activity originally present in the crude extract. The enzyme has a native molecular weight of 90 kilodaltons and is resolved into two catalytically active bands by isoelectric focusing. Purified NADP-isocitrate dehydrogenase exhibited Km values of 23 micromolar for dl-isocitrate and 10 micromolar for NADP, and displayed optimum activity at pH 8.5 with both Mg2+ and Mn2+.  相似文献   

8.
(±) Abscisic acid (ABA) injected into petioles of attached transpiring leaves of Pharbitis nil Chois. cv violet reduced the photosynthetic capacity of the mesophyll of these leaves as well as the stomatal conductance to CO2 diffusion. Greater than 75% of the injected ABA was recovered as ABA, suggesting that ABA rather than some metabolite thereof was the active compound. The nonstomatal effect of ABA increased from 30% reduction in photosynthesis at 0.25 micromolar ABA in the leaf blade to 90% reduction at 18 micromolar. Despite the effect of ABA on the nonstomatal component of leaf net CO2 uptake, it was calculated that a substantial part of the reduction in leaf net CO2 uptake (50-80%) could be accounted for by the effect of ABA on stomatal conductance.  相似文献   

9.
The compartmentation of endogenous abscisic acid (ABA), applied (±)-[3H]ABA, and (±)-trans-ABA was measured in isolated mesophyll cells of the Chicago strain of Xanthium strumarium L. The release of ABA to the medium in the presence or absence of DMSO was used to determine the equilibration of ABA in the cells. It was found that a greater percentage of the (±)-[3H]ABA and the (±)-trans-ABA was released into the medium than of the endogenous ABA, indicating that applied ABA did not equilibrate with the endogenous material.  相似文献   

10.
The response of developing maize (Zea mays L.) endosperm to elevated levels of abscisic acid (ABA) was investigated. Maize kernels and subtending cob sections were excised at 5 days after pollination (DAP) and placed in culture with or without 90 micromolar (±)-ABA in the medium. A decreased number of cells per endosperm was observed at 10 DAP (and later sampling times) in kernels cultured in medium containing ABA from 5 DAP, and in kernels transferred at 8 DAP to medium containing ABA, but not in kernels transferred at 11 DAP to medium containing ABA. The number of starch granules per endosperm was decreased in some treatments, but the reduction, when apparent, was comparable to the decreased number of endosperm cells. The effect on endosperm fresh weight was slight, transient, and appeared to be secondary to the effect on cell number. Mature endosperm dry weight was reduced when kernels were cultured continuously in medium containing ABA. Endosperm (+)-ABA content of kernels cultured in 0, 3, 10, 30, 100, or 300 micromolar (±)-ABA was measured at 10 DAP by indirect ELISA using a monoclonal antibody. Content of (+)-ABA in endosperms correlated negatively (R = −0.92) with endosperm cell number. On the basis of these studies we propose that during early kernel development, elevated levels of ABA decrease the rate of cell division in maize endosperm which, in turn, could limit the storage capacity of the kernel.  相似文献   

11.
Endogenous gibberellins and inhibitors in caryopses of rye   总被引:1,自引:0,他引:1  
Gibberellins A8, A16, A24, and abscisic acid were identified by GC-MS of derivatized extracts from immature fruits of Secale cereale. Mature caryopses contained ABA and trans-ABA in a ratio 1:1 as well as 4′-dihydrophaseic acid. During milk ripeness a neutral GA conjugate was detected. Free GA, afforded by enzymatic hydrolysis of the conjugate, was chromatographically identified as GA16  相似文献   

12.
A cell-free enzyme system capable of metabolizing abscisic acid has been obtained from Eastern Wild Cucumber (Echinocystis lobata Michx.) liquid endosperm. The reaction products were determined to be phaseic acid (PA) and dihydrophaseic acid (DPA) by co-chromatography on thin layer chromatograms as the free acids, methyl esters, and their respective oxidation or reduction products. The crude enzyme preparation was separated by centrifugation into a particulate abscisic acid (ABA)-hydroxylating activity and a soluble PA-reducing activity. The particulate ABA-hydroxylating enzyme showed a requirement for O2 and NADPH, inhibition by CO, and high substrate specificity for (+)-ABA. Acetylation of short term incubation mixtures gave evidence for the presence of 6′-hydroxymethyl-ABA as an intermediate in PA formation. Determinations of endogenous ABA and DPA concentrations suggest that the ABA-hydroxylating and PA-reducing enzymes are extensively metabolizing ABA in the intact E. lobata seed.  相似文献   

13.
An investigation was conducted into the relation of ABA (cis-trans-abscisic acid) in the dormant buds of alternate bearing `Valencia' orange (Citrus sinensis [L.] Osbeck) trees. ABA did not appear to be related to alternate bearing but t-ABA (2-transabscisic acid) did. There was 5- to 10-fold more t-ABA than ABA in the buds. There was more t-ABA in the buds of the “on” trees than in the buds of the “off” trees, and a drastic drop in t-ABA in both types of buds as spring growth approached. Bud dormancy and readiness for growth as related to t-ABA are discussed.  相似文献   

14.
The subcellular location of NADP+-isocitrate dehydrogenase was investigated by preparing protoplasts from leaves of pea seedlings. Washed protoplasts were gently lysed and the whole lysate separated on sucrose gradients by a rate-zonal centrifugation. Organelles were located by marker enzymes and chlorophyll analysis. Most of the NADP+-isocitrate dehydrogenase was in the soluble fraction. About 10% of the NADP+-isocitrate dehydrogenase was present in the chloroplasts as a partially latent enzyme. Less than 1% of the activity was found associated with the peroxisome fraction. NADP+-isocitrate dehydrogenase was partially characterized from highly purified chloroplasts isolated from shoot homogenates. The enzyme exhibited apparent Km values of 11 micromolar (NADP+), 35 micromolar (isocitrate), 78 micromolar (Mn2+), 0.3 millimolar (Mg2+) and showed optimum activity at pH 8 to 8.5 with Mn2+ and 8.8 to 9.2 with Mg2+. The NADP+-isocitrate dehydrogenase activity previously claimed in the peroxisomes by other workers is probably due to isolation procedures and/or nonspecific association. The NADP+-isocitrate dehydrogenase activity in the chloroplasts might help supply α-ketoglutarate for glutamate synthase action.  相似文献   

15.
Measurements were made using GC/MS SIM1 of the effects of temperatureon cis,trans-ABA levels in developing ovules and embryos oftwo pea genotypes contrasted in seed size. These effects werethen related to differences in the growth of the pods, seeds,embryos, and testae. In both genotypes high temperatures hastenedthe onset and rate of logarithmic and then linear growth, greatlyshortening the duration of pod and seed development but withoutgreatly altering seed size. Cis,trans-ABA was most concentratedxin the ovules immediately after fertilization. It also accumulatedin the embryo, more rapidly in the larger-seeded line, duringseed maturation. The stage when accumulation in the embryo beganwas the same irrespective of temperature. Accumulation ceasedwhen the pods started to desiccate. The effects of differentconstant temperatures on the maximum levels of embryo cis,trans-ABAwere relatively small and confounded in one genotype by variationin ovule abortion and in the other by differences in the stagewhen cis,trans-ABA accumulation ceased. However, when plantswere transferred from 13 °C to 29 °C at two differentstages during seed maturation, further seed growth was greatlyinhibited coincident with a substantial increase in embryo cis-trans-ABA.The results suggested a role for cis,trans-ABA in the controlof cotyledon enlargement during the linear phase of seed growth.  相似文献   

16.
We investigated the effects of calcium on the oxidative metabolism and steroidogenic activity of human term placental mitochondria. Submicromolar Ca(2+) concentrations stimulated state 3 oxygen consumption with 2-oxoglutarate and isocitrate and activated the 2-oxoglutarate and the NAD-isocitrate dehydrogenases by diminishing their Michaelis-Menten constants. Ca(2+) inhibited NADP-isocitrate dehydrogenase (NADP-ICDH) and the synthesis of progesterone. The NADP-ICDH maximal velocity was threefold higher than that of NAD-ICDH and had a threefold lower K(m) for isocitrate than NAD-ICDH. Isocitrate but not malate or 2-oxoglutarate supported progesterone synthesis. Calcium inhibition of progesterone synthesis was observed with isocitrate but not with malate or 2-oxoglutarate. Tight regulation of NADP-isocitrate dehydrogenase by calcium ions suggests that this enzyme plays an important role in placental mitochondrial metabolism.  相似文献   

17.
Abstract Two wilty tomato mutants, flacca and sitiens, fail to increase their endogenous ABA concentration in response to water stress. Instead, a compound accumulates which has been identified as 2-trans-ABA alcohol. Levels of this compound have been estimated for three wilty mutants and the control; both before and after water stress. When the compound was biosynthesized in the presence of 18O2, one atom appeared to be incorporated into the primary alcohol group. The possible implications of this for the ABA biosynthetic pathway are discussed.  相似文献   

18.
The induction of freezing tolerance in bromegrass (Bromus inermis Leyss) cell culture was used to investigate the activity of absisic acid (ABA) analogs. Analogs were either part of an array of 32 derived from systematic alterations to four regions of the ABA molecule or related, pure optical isomers. Alterations were made to the functional group at C-1 (acid replaced with methyl ester, aldehyde, or alcohol), the configuration at C-2, C-3 (cis double bond replaced with trans double bond), the bond order at C-4, C-5 (trans double bond replaced with a triple bond), and ring saturation (C-2′, C-3′ double bond replaced with a single bond so that the C-2′ methyl and side chain were cis). All deviations in structure from ABA reduced activity. A cis C-2, C-3 double bond was the only substituent absolutely required for activity. Overall, acids and esters were more active than aldehydes and alcohols, cyclohexenones were more active than cyclohexanones, and dienoic and acetylenic analogs were equally active. The activity associated with any one substituent was, however, markedly influenced by the presence of other substituents. cis, trans analogs were more active than their corresponding acetylenic analogs unless the C-1 was an ester. Cyclohexenones were more active than cyclohexanones regardless of oxidation level at C-1. An acetylenic side chain decreased the activity of cyclohexenones but increased the activity of cyclohexanones relative to their cis, trans counterparts. Trends suggested that for activity the configuration at C-1′ has to be the same as in (S)-ABA, in dihydro analogs the C-2′-methyl and the side chain must be cis, small positional changes of the 7′-methyl are tolerable, and the C-1 has to be at the acid oxidation level.  相似文献   

19.
Abscisic acid (ABA) and 2-trans-ABA (t-ABA) biosynthesis werestudied in wild type Landsberg erecta and the three allelicaba mutants of Arabidopsis thaliana (L.) Heynh., which are impairedin epoxy-carotenoid biosynthesis. Labelling experiments with18O2and mass spectrometric analysis of [18O]ABA and its catabolitesABA-glucose ester (ABA-GE) and phaseic acid (PA), and t- ABAand t-ABA-GE, showed that t-ABA biosynthesis was less affectedthan ABA biosynthesis by mutations at the ABA locus. The aba-4allele caused the most severe impairment of ABA biosynthesiscompared with the other two mutant alleles aba-1 and aba-3,yet aba-4 plants synthesized as much t-ABA as wild type Landsbergerecta plants. Feeding experiments with RS- [2H6]ABA-aldehydeisomers and unlabelled xanthoxin isomers suggest that t-xanthoxinand t-ABA-aldehyde are precursors to ABA and t-ABA in Arabidopsis Key words: ABA-alcohol, ABA-aldehyde, ABA-glucose ester, 18O2 labelling, phaseic acid  相似文献   

20.
Uptake of 3H-labelled (±)-abscisic acid (ABA) into isolated barley (Hordeum vulgare L.) epidermal cell protoplasts (ECP) was followed over a range of pH values and ABA concentrations. The present results show that ABA uptake is not always linearly correlated with the external concentration of undissociated ABA (ABAH). At pH 7.25, ABA uptake exhibited saturation kinetics with an apparent K m value of 75 mmol·m–3 to tal ABA. This saturable transport component was inhibited by pretreating the protoplasts with 1 mol·m–3 p-chloromercuribenzenesulfonic acid at pH 8.0, conditions that minimized the uptake of this acid sulfhydryl reagent. Moreover, the rate of (±)-[3]HABA uptake was reduced by addition of 0.1 mol·m–3 (±)-ABA to 41%, whereas the same concentration of (±)-ABA was approximately half as effective (46% of the inhibitory effect). Thus, it was concluded that only (±)-ABA competes for an ABA carrier that is located in the epidermal cell plasma membrane. The permeability of the epidermal cell plasma membrane was studied by performing a Collander analysis. At pH 6 the overall plasma-membrane permeability of epidermal cells was similar to that of guard cells but was about two times higher than that of mesophyll cells.Abbreviations ABA abscisic acid - ABA anion of ABA - ABAH undissociated ABA - 2,4-D 2,4-dichlorophenoxyacetic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - ECP deepidermal cell protoplast - Kr partition coefficient - Mr relative molecular mass - NEM N-ethylmaleimide - PCMBS p-chloromercuriben zenesulfonic acid - Ps permeability coefficient We are grateful to Barbara Dierich for expert technical assistance, to Prof. H. Gimmler (Lehrstuhl für Botanik I, Universität Würzburg, FRG) for helpful discussions and to the Deutsche Forschungsgemeinschaft (SFB 251, TP 3) for financial support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号