首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

To investigate the relationship between the response to influenza vaccination and the ability to produce proinflamatory cytokines in elderly subjects.

Methods

Whole blood samples from 25 elderly subjects collected before influenza vaccination were stimulated with the influenza vaccine in order to evaluate the secretion of five specific cytokines: TNFα, IFNα, IFNγ, IL2 and IL10. The results were correlated with the increased HAI antibody titres two weeks after vaccination.

Results

Only 30% of elderly individuals seroconverted after vaccination. Although 50 to 70% of the cohort did not produce TNFα, IFNα, IFNγ, IL2 or IL10, all of the individuals who seroconverted were able to produceTNFα. Furthermore production of IFNγ, with or without production of IFNα/β, was not associated with a better response to the vaccine.

Conclusion

Production of TNFα appears to be primordial for an efficient vaccine response, and may provide a predictive marker for the humoral response to vaccination. It may also provide the basis for evaluating agents designed to rescue TNFα-producing cells. This study emphasises a need to rescue TNF-producing cell function.
  相似文献   

2.

Background

The mimotopes of viruses are considered as the good targets for vaccine design. We prepared mimotopes against multiple subtypes of influenza A and evaluate their immune responses in flu virus challenged Balb/c mice.

Methods

The mimotopes of influenza A including pandemic H1N1, H3N2, H2N2 and H1N1 swine-origin influenza virus were screened by peptide phage display libraries, respectively. These mimotopes were engineered in one protein as multi- epitopes in Escherichia coli (E. coli) and purified. Balb/c mice were immunized using the multi-mimotopes protein and specific antibody responses were analyzed using hemagglutination inhibition (HI) assay and enzyme-linked immunosorbent assay (ELISA). The lung inflammation level was evaluated by hematoxylin and eosin (HE).

Results

Linear heptopeptide and dodecapeptide mimotopes were obtained for these influenza virus. The recombinant multi-mimotopes protein was a 73 kDa fusion protein. Comparing immunized infected groups with unimmunized infected subsets, significant differences were observed in the body weight loss and survival rate. The antiserum contained higher HI Ab titer against H1N1 virus and the lung inflammation level were significantly decreased in immunized infected groups.

Conclusions

Phage-displayed mimotopes against multiple subtypes of influenza A were accessible to the mouse immune system and triggered a humoral response to above virus.
  相似文献   

3.

Background

The age-related weakening of the immune system makes elderly subjects less responsive to influenza vaccination. In the last years, two “enhanced vaccines” were licensed for individuals aged ≥65 years, one being a subunit vaccine (Fluad®) containing the MF59 adjuvant administered intramuscularly (IM-MF59) and the other one a split non-adjuvanted vaccine administered intradermally (Intanza® 15mcg) (ID). In the present study, we evaluated and compared the antibody responses against the three vaccine antigens and heterovariant A(H3N2) circulating viruses induced by IM-MF59 and ID influenza vaccines in 80 elderly institutionalized volunteers (40 per group) during the Winter season 2011–2012.

Results

Hemagglutination inhibiting (HI) antibody titers were assessed in blood samples collected before, 1 and 6 months after vaccination. One month after vaccination both the IM-MF59 and ID vaccines induced increases in HI titers against all the three vaccine strains. The results in the two groups were similar against the A(H3N2) and A(H1N1) strains. Responses against the B strain typically tended to be higher after ID than IM-MF59, yet both vaccines stimulated lower responses against the B strain than against the two A strains. The two vaccines induced favorable results also against four epidemic drifted A(H3N2) viruses circulating in Winter 2011–2012. Six months after vaccination, the HI titers decreased in both groups.

Conclusion

The responses induced by IM-MF59 and ID vaccines in institutionalized elderly people were similar against the A(H3N2) and A(H1N1) strains but frequently higher, for the ID, against the B strain. The two vaccines induced positive responses against drifted A(H3N2) circulating viruses.
  相似文献   

4.

Background

A preventative strategy for Respiratory Syncytial Virus (RSV) infection constitutes an under-recognized unmet medical need among older adults. Four formulations of a novel recombinant RSV F nanoparticle vaccine (60 or 90 μg RSV F protein, with or without aluminum phosphate adjuvant) administered concurrently with a licensed inactivated trivalent influenza vaccine (TIV) in older adult subjects were evaluated for safety and immunogenicity in this randomized, observer-blinded study.

Results

A total of 220 healthy males and females?≥?60 years of age, without symptomatic cardiopulmonary disease, were vaccinated concurrently with TIV and RSV F vaccine or placebo. All vaccine formulations produced an acceptable safety profile, with no vaccine-related serious adverse events or evidence of systemic toxicity. Vaccine-induced immune responses were rapid, rising as early as 7 days post-vaccination; and were comparable in all formulations in terms of magnitude, with maximal levels attained within 28 (unadjuvanted) or 56 (adjuvanted) days post-vaccination. Peak anti-F protein IgG antibody levels rose 3.6- to 5.6-fold, with an adjuvant effect observed at the 60 μg dose, and a dose-effect observed between the unadjuvanted 60 and 90 μg regimens. The anti-F response persisted through 12 months post-vaccination. Palivizumab-competitive antibodies were below quantifiable levels (<33 μg/mL) at day 0. The rise of antibodies with specificity for Site II peptide, and the palivizumab-competitive binding activity, denoting antibodies binding at, or in proximity to, antigenic Site II on the F protein, closely paralleled the anti-F response. However, a larger proportion of antibodies in adjuvanted vaccine recipients bound to the Site II peptide at high avidity. Day 0 neutralizing antibodies were high in all subjects and rose 1.3- to 1.7-fold in response to vaccination. Importantly, the RSV F vaccine co-administered with TIV did not impact the serum hemagglutination inhibition antibody responses to a standard-dose TIV, and TIV did not impact the immune response to the RSV F vaccine.

Conclusions

RSV F protein nanoparticle vaccine induced increases in measures of functional immunity to RSV in older adults and demonstrated an acceptable safety profile. Adjuvanted formulations provided additional immunogenicity benefit as compared to increasing antigen dose alone. This trial was registered with ClinicalTrials.gov number NCT01709019.
  相似文献   

5.

Background

Needle-free, painless and localized drug delivery has been a coveted technology in the area of biomedical research. We present an innovative way of trans-dermal vaccine delivery using a miniature detonation-driven shock tube device. This device utilizes~2.5 bar of in situ generated oxyhydrogen mixture to produce a strong shockwave that accelerates liquid jets to velocities of about 94 m/s.

Method

Oxyhydrogen driven shock tube was optimized for efficiently delivering vaccines in the intradermal region in vivo. Efficiency of vaccination was evaluated by pathogen challenge and host immune response. Expression levels of molecular markers were checked by qRT-PCR.

Results

High efficiency vaccination was achieved using the device. Post pathogen challenge with Mycobacterium tuberculosis, 100% survival was observed in vaccinated animals. Immune response to vaccination was significantly higher in the animals vaccinated using the device as compared to conventional route of vaccination.

Conclusion

A novel device was developed and optimized for intra dermal vaccine delivery in murine model. Conventional as well in-house developed vaccine strains were used to test the system. It was found that the vaccine delivery and immune response was at par with the conventional routes of vaccination. Thus, the device reported can be used for delivering live attenuated vaccines in the future.
  相似文献   

6.
7.

Objectives

To enhance the efficiency of influenza virosome-mediated gene delivery by engineering this virosome.

Results

A novel chimeric influenza virosome was constructed containing the glycoprotein of Vesicular stomatitis virus (VSV-G), along with its own hemagglutinin protein. To optimize the transfection efficiency of both chimeric and influenza cationic virosomes, HEK cells were transfected with plasmid DNA and virosomes and the transfection efficiency was assessed by FACS analysis. The chimeric virosome was significantly more efficient in mediating transfection for all amounts of DNA and virosomes compared to the influenza virosome.

Conclusions

Chimeric influenza virosome, including VSV-G, is superior to the conventional influenza virosome for gene delivery.
  相似文献   

8.

Background

Influenza vaccination coverage remains low among health care workers (HCWs) in many health facilities. This study describes the social network defined by HCWs’ conversations around an influenza vaccination campaign in order to describe the role played by vaccination behavior and other HCW characteristics in the configuration of the links among subjects.

Methods

This study used cross-sectional data from 235 HCWs interviewed after the 2010/2011 influenza vaccination campaign at the Hospital Clinic of Barcelona (HCB), Spain. The study asked: “Who did you talk to or share some activity with respect to the seasonal vaccination campaign?” Variables studied included sociodemographic characteristics and reported conversations among HCWs during the influenza campaign. Exponential random graph models (ERGM) were used to assess the role of shared characteristics (homophily) and individual characteristics in the social network around the influenza vaccination campaign.

Results

Links were more likely between HCWs who shared the same professional category (OR 3.13, 95% CI?=?2.61–3.75), sex (OR 1.34, 95% CI?=?1.09–1.62), age (OR 0.7, 95% CI?=?0.63–0.78 per decade of difference), and department (OR 11.35, 95% CI?=?8.17–15.64), but not between HCWs who shared the same vaccination behavior (OR 1.02, 95% CI?=?0.86–1.22). Older (OR 1.26, 95% CI?=?1.14–1.39 per extra decade of HCW) and vaccinated (OR 1.32, 95% CI?=?1.09–1.62) HCWs were more likely to be named.

Conclusions

This study finds that there is no homophily by vaccination status in whom HCWs speak to or interact with about a workplace vaccination promotion campaign. This result highlights the relevance of social network analysis in the planning of health promotion interventions.
  相似文献   

9.

Background

In recent epidemiological models, immunity is incorporated as a simplified value that determines the capacity of an individual to become infected or to transmit the disease. Moreover, the quality of the immune response determines the chances of infection and the length of time an individual is capable to infect others. We present a model that incorporates individuals’ immune responses to, further, examine the role of the collective immune response of individuals in a population during an infectious outbreak.

Methods

We constructed a contagion model that incorporates the collective immune response of individuals represented by the superposition of individual immune responses (PIR). Multiple probability distributions are used to represent the immunocompetence of different age groups, thereby modeling the concept of Population Immune Response (PIR). Multiple experiments were conducted in which the population is divided in different age groups for which each group has a unique immune response quality and thus a different length for its immune periods. Finally, we explored the effects of implementing different vaccination strategies in the population.

Results

The experiments displayed important variations in the outbreak dynamics as a consequence of incorporating PIR in homogeneous and mixed populations. The experiments showed that individuals with weak immune responses and those who are immune to the pathogen play a significant role in shaping the outbreak dynamics. Finally, after implementing different vaccination strategies, the results suggest that if vaccination resources are limited, the vaccination should be targeted towards individuals that spread the disease for a longer period of time.

Conclusions

Our results suggest that it is essential for the public health establishment to increase their understanding of the characteristics of regional demographics that could impact the quality of the immune response of the individuals. The results indicate that it is necessary to further investigate mitigation strategies to limit the capacity to transmit the disease by individuals that spread the pathogen for extended periods of time. Ultimately, this study suggests that it is crucial for public health researchers to identify appropriate targeted vaccination regimes and to explore the link between PIR and outbreak dynamics to improve the monitoring and mitigating efforts of ongoing and future epidemics.
  相似文献   

10.

Background

Ageing has been shown to reduce CD8 T cell repertoire diversity and immune responses against influenza virus infection in mice. In contrast, less is known about the impact of ageing on CD4 T cell repertoire diversity and immune response to influenza virus infection.

Results

The CD4 T cell response was followed after infection of young and aged C57BL/6 mice with influenza virus using a tetramer specific for an immunodominant MHC class II epitope of the influenza virus nucleoprotein. The appearance of virus-specific CD4 T cells in the lung airways of aged mice was delayed compared to young mice, but the overall peak number and cytokine secretion profile of responding CD4 T cells was not greatly perturbed. In addition, the T cell repertoire of responding cells, determined using T cell receptor Vβ analysis, failed to show the profound effect of age we previously described for CD8 T cells. The reduced impact of age on influenza-specific CD4 T cells was consistent with a reduced effect of age on the overall CD4 compared with the CD8 T cell repertoire in specific pathogen free mice. Aged mice that were thymectomized as young adults showed an enhanced loss of the epitope-specific CD4 T cell response after influenza virus infection compared with age-matched sham-thymectomized mice, suggesting that a reduced repertoire can contribute to impaired responsiveness.

Conclusions

The diversity of the CD4 T cell repertoire and response to influenza virus is not as profoundly impaired by ageing in C57BL/6 mice as previously shown for CD8 T cells. However, adult thymectomy enhanced the impact of ageing on the response. Understanding the impact of ageing on CD4 T cell responses to influenza virus infection is an important prerequisite for developing better vaccines for the elderly.
  相似文献   

11.

Background

Influenza virus infections are responsible for significant morbidity worldwide and therefore it remains a high priority to develop more broadly protective vaccines. Adjuvation of current seasonal influenza vaccines has the potential to achieve this goal.

Methods

To assess the immune potentiating properties of Matrix-M?, mice were immunized with virosomal trivalent seasonal vaccine adjuvated with Matrix-M?. Serum samples were isolated to determine the hemagglutination inhibiting (HAI) antibody titers against vaccine homologous and heterologous strains. Furthermore, we assess whether adjuvation with Matrix-M? broadens the protective efficacy of the virosomal trivalent seasonal vaccine against vaccine homologous and heterologous influenza viruses.

Results

Matrix-M? adjuvation enhanced HAI antibody titers and protection against vaccine homologous strains. Interestingly, Matrix-M? adjuvation also resulted in HAI antibody titers against heterologous influenza B strains, but not against the tested influenza A strains. Even though the protection against heterologous influenza A was induced by the adjuvated vaccine, in the absence of HAI titers the protection was accompanied by severe clinical scores and body weight loss. In contrast, in the presence of heterologous HAI titers full protection against the heterologous influenza B strain without any disease symptoms was obtained.

Conclusion

The results of this study emphasize the promising potential of a Matrix-M?-adjuvated seasonal trivalent virosomal influenza vaccine. Adjuvation of trivalent virosomal vaccine does not only enhance homologous protection, but in addition induces protection against heterologous strains and thus provides overall more potent and broad protective immunity.
  相似文献   

12.

Background

An influenza H3N2 epidemic occurred throughout Southern China in 2012.

Methods

We analyzed the hemagglutinin (HA) and neuraminidase (NA) genes of influenza H3N2 strains isolated between 2011–2012 from Guangdong. Mutation sites, evolutionary selection, antigenic sites, and N-glycosylation within these strains were analyzed.

Results

The 2011–2012 Guangdong strains contained the HA-A214S, HA-V239I, HA-N328S, NA-L81P, and NA-D93G mutations, similar to those seen in the A/ Perth/16/2009 influenza strain. The HA-NSS061–063 and NNS160–162 glycosylation sites were prevalent among the 2011–2012 Guangdong strains but the NA-NRS402–404 site was deleted. Antigenically, there was a four-fold difference between A/Perth/16/2009 -like strains and the 2011–2012 Guangdong strains.

Conclusion

Antigenic drift of the H3N2 subtype contributed to the occurrence of the Southern China influenza epidemic of 2012.
  相似文献   

13.

Purpose of review

The remarkable advances in modern medicine have paradoxically resulted in a rapidly expanding population of immunocompromised patients displaying extreme susceptibility to life-threatening fungal infections. There are currently no licensed vaccines, and the prophylaxis and therapy of fungal infections in at-risk individuals remains challenging, contributing to undesirable mortality and morbidity rates. The design of successful antifungal preventive approaches has been hampered by an insufficient understanding of the dynamics of the host-fungus interaction and the mechanisms that underlie heterogenous immune responses to vaccines and immunotherapy.

Recent findings

Recent advances in proteomics and glycomics have contributed to the identification of candidate antigens for use in subunit vaccines, novel adjuvants, and delivery systems to boost the efficacy of protective vaccination responses that are becoming available, and several targets are being exploited in immunotherapeutic approaches.

Summary

We review some of the emerging concepts as well as the inherent challenges to the development of fungal vaccines and immunotherapies to protect at-risk individuals.
  相似文献   

14.

Background

There is an urgent need to develop new innovative therapies for the control of advanced cancer. The combination of antigen-specific immunotherapy with the employment of immunomodulatory agents has emerged as a potentially plausible approach for the control of advanced cancer.

Methods

In the current study, we explored the combination of the DNA vaccine encoding calreticulin (CRT) linked to human papillomavirus type 16 (HPV-16) E7 antigen (CRT/E7) with the TLR7 agonist imiquimod for their ability to generate E7-specific immune responses and antitumor effects in tumor-bearing mice.

Results

We observed that treatment with CRT/E7 DNA in combination with imiquimod leads to an enhancement in the E7-specific CD8+ T cell immune responses and a decrease in the number of myeloid-derived suppressor cells in the tumor microenvironment of tumor-bearing mice. Furthermore, treatment with CRT/E7 DNA in combination with imiquimod leads to significantly improved antitumor effects and prolonged survival in treated mice. In addition, treatment with imiquimod led to increased number of NK1.1+ cells and F4/80+ cells in the tumor microenvironment. Macrophages and NK1.1+ cells were found to play an important role in the antitumor effects mediated by treatment with CRT/E7 DNA in combination with imiquimod.

Conclusions

Thus, our data suggests that the combination of therapeutic HPV DNA vaccination with topical treatment with the TLR7 agonist imiquimod enhances the antitumor immunity induced by DNA vaccination. The current study has significant implications for future clinical translation.
  相似文献   

15.

Background

Tuberculosis, the disease due to Mycobacterium tuberculosis, is an important cause of morbidity and mortality in the elderly. Use of mouse models may accelerate insight into the disease and tests of therapies since mice age thirty times faster than humans. However, the majority of TB research relies on inbred mouse strains, and these results might not extrapolate well to the genetically diverse human population. We report here the first tests of M. tuberculosis infection in genetically heterogeneous aging mice, testing if old mice benefit from rapamycin.

Findings

We find that genetically diverse aging mice are much more susceptible than young mice to M. tuberculosis, as are aging human beings. We also find that rapamycin boosts immune responses during primary infection but fails to increase survival.

Conclusions

Genetically diverse mouse models provide a valuable resource to study how age influences responses and susceptibility to pathogens and to test interventions. Additionally, surrogate markers such as immune measures may not predict whether interventions improve survival.
  相似文献   

16.
17.
18.

Background

Disruption to the blood brain barrier (BBB) is a leading factor associated with the development of postoperative cognitive dysfunction (POCD). Despite this, the underlying mechanism by which BBB disruption promotes POCD in the elderly population has not yet been not fully elucidated.

Results

In this study, we established a POCD mice model using isoflurane, and observed the highly expressed occludin and claudin 5 in brain tissues concomitant with the increased enrichment of CD4 positive cells and NK cells in the hippocampus of POCD mice compared to normal and non-POCD control.

Conclusions

Our data suggests that peripheral immune cells may participate in the inflammatory reaction within the hippocampus, following the administration of anesthesia via inhalation with the destruction of the blood-brain barrier.
  相似文献   

19.

Background

Signal transduction is the major mechanism through which cells transmit external stimuli to evoke intracellular biochemical responses. Understanding relationship between external stimuli and corresponding cellular responses, as well as the subsequent effects on downstream genes, is a major challenge in systems biology. Thus, a systematic approach to integrate experimental data and qualitative knowledge to identify the physiological consequences of environmental stimuli is needed.

Results

In present study, we employed a genetic algorithm-based Boolean model to represent NF-κB signaling pathway. We were able to capture feedback and crosstalk characteristics to enhance our understanding on the acute and chronic inflammatory response. Key network components affecting the response dynamics were identified.

Conclusions

We designed an effective algorithm to elucidate the process of immune response using comprehensive knowledge about network structure and limited experimental data on dynamic responses. This approach can potentially be implemented for large-scale analysis on cellular processes and organism behaviors.
  相似文献   

20.

Objectives

To evaluate MDCK and MDCK-SIAT1 cell lines for their ability to produce the yield of influenza virus in different Multiplicities of Infection.

Results

Yields obtained for influenza virus H1N1 grown in MDCK-SIAT1 cell was almost the same as MDCK; however, H3N2 virus grown in MDCK-SIAT1 had lower viral titers in comparison with MDCK cells. The optimized MOIs to infect the cells on plates and microcarrier were selected 0.01 and 0.1 for H1N1 and 0.001 and 0.01 for H3N2, respectively.

Conclusions

MDCK-SIAT1 cells may be considered as an alternative mean to manufacture cell-based flu vaccine, especially for the human strains (H1N1), due to its antigenic stability and high titer of influenza virus production.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号