首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Monochamus sutor (Linnaeus) (Coleoptera: Cerambycidae) is a secondary wood borer that has been hypothesized as capable of transmitting Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD). This fact supposes a risk of spread of PWD over Europe and has created an urgent need for effective tools to detect and monitor both the nematode and the insect species that vectors it. Recent reporting of 2‐undecyloxy‐1‐ethanol as the M. sutor male‐produced aggregation pheromone has opened the possibility of developing an efficient lure for this species. It is known that some European bark beetle pheromone compounds and host volatiles kairomonally attract this species. Besides, smoke volatiles from burnt trees might play a role in M. sutor host location. In this work, field trapping experiments during 3 years in three countries (Spain, Sweden and Austria), aimed to develop an efficient pheromone‐kairomone lure operative for M. sutor management were carried out. Electroantennographic responses by M. sutor to Ips pheromones and to the Pityogenes chalcographus pheromone chalcogran were also studied. GC‐EAG recording showed that M. sutor males and females clearly responded to ipsenol and ipsdienol, and females also responded to 2‐methyl‐3‐buten‐2‐ol. Chalcogran elicited a response to M. sutor female antennae. In field tests, ipsenol was the most attractive kairomone to both sexes of M. sutor, whereas ipsdienol, cis‐verbenol and 2‐methyl‐3‐buten‐2‐ol were attractive and chalcogran was unattractive. When combined with the pheromone, most bark beetle kairomones increased catches of both sexes although chalcogran was completely ineffective. Thus, ipsenol was the strongest individual kairomone for M. sutor and the best single kairomone to be combined with the pheromone. Smoke volatile blends tested in Spain and Austria did not elicit responses, suggesting that these compounds are likely not involved in host finding by this species.  相似文献   

2.
To develop an optimal attractant for Monochamus saltuarius (Gebler) (Coleoptera: Cerambycidae), the synergistic effects of a few potential attractants (ethanol and α‐pinene as host‐plant volatiles, and ipsenol and ipsdienol as bark beetle pheromones) were tested in a pine forest combined with 2‐(1‐undecyloxy)‐1‐ethanol (monochamol), the aggregation pheromone of Monochamus species, for two consecutive years, 2014 and 2015. Total number of catches was 65 and 33 in 2014 and 2015, respectively. Ethanol or ethanol + monochamol (a base blend) were not attractive to M. saltuarius with no difference from the control. Addition of α‐pinene and ipsdienol to the base blend did not significantly increase catches. However, ipsenol was significantly synergistic to the base blend in attracting M. saltuarius in 2014, and the blend (ipsenol + base blend) attracted meaningfully higher numbers of M. saltuarius in 2015. Our study illustrates the potential for monochamol and ipsenol baits for monitoring and trapping of M. saltuarius in the field.  相似文献   

3.
Monochamus (Coleoptera: Cerambycidae) species are longhorn pine sawyers that serve as insect vectors of the pinewood nematode Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae), which are responsible for debilitating pine wilt disease. An aggregation pheromone, 2‐(1‐undecyloxy)‐1‐ethanol (hereafter referred to as monochamol), was shown to be effective at attracting Monochamus species. However, attraction of the pine sawyers to aggregation pheromones varied depending on semiochemicals, including host plant volatiles and kairomones. In this study, we investigated the abilities of monochamol and the host‐plant volatiles α‐pinene and ethanol to attract M. saltuarius in a pine forest in Cheongsong, Gyeongsangbuk‐do, Korea. A total of 91 M. saltuarius (28 males and 63 females) were captured. The combination of monochamol (700 mg) with α‐pinene and ethanol exhibited a synergistic effect on attracting M. saltuarius (11.0 beetles per trap), whereas monochamol alone and a mixture of α‐pinene and ethanol resulted in the capture of 3.2 beetles and 3.6 beetles per trap, respectively. Our results suggest that multi‐funnel traps baited with a blend of monochamol, α‐pinene and ethanol are highly effective for monitoring M. saltuarius and M. alternatus in pine forests.  相似文献   

4.
Monochamus galloprovincialis (Olivier) (Coleoptera: Cerambycidae) is a secondary wood borer that acquired primordial importance since it was identified as the European vector of Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD). An effective trapping method is needed as a tool for managing this insect vector and allowing early detection of nematode transportation. Among effective attractants identified in recent years are the specific M. galloprovincialis aggregation pheromone, host pine kairomones such as α‐pinene and bark beetle kairomones like ipsenol and methyl‐butenol. The main objective of this study was to optimize the combination of these volatiles to improve lure attractiveness and specificity. Based on ten complementary field experiments, we found a pheromone dose‐response of trap catches. The best combination of attractants was the aggregation pheromone plus two bark beetle kairomones, ipsenol and methyl‐butenol. Addition of pine terpenes, such as α‐pinene, did not significantly improve M. galloprovincialis trap capture, but did increase catch of non target species, including natural enemies. The use of pine terpenes would be advisable only if priorizing to maximize removal of vectors. While this research has lead to the development a new, highly attractive commercial lure for mature pine sawyers, none of the tested blends were successful in attracting immature pine sawyer adults. Further investigation is needed to develop attractants for these beetles.  相似文献   

5.
The aggregation pheromone of Monochamus (Coleoptera: Cerambycidae) beetles, 2‐(undecyloxy) ethanol (hereafter referred to as monochamol), has gained considerable attention because of its usefulness in monitoring and population control of pine sawyer beetles. The hydroxyether structural motif is conserved in pheromones of the subfamily Lamiinae of the Cerambycidae. In this study, we investigated the effects of C10‐ and C12‐chain length alkyl analogs of monochamol, 2‐(decyloxy) ethanol and 2‐(dodecyloxy) ethanol, on attracting M. saltuairus in Andong, Gyeongsangbuk‐do, Korea. The C10 and C12 analogs attracted M. saltuarius when used in combination with α‐pinene and ethanol, but the responses of these alkyl chain analogs were lower than those of monochamol. Furthermore, the addition of either C10 or C12 analog to the use of monochamol with α‐pinene and ethanol had no effect on attraction of M. saltuarius, indicating high sensitivity of M. saltuarius to monochanol. Taken together, the results of this study suggest that chemical communication within a Monochamus species depends not only on monochamol, but also on other semiochemicals.  相似文献   

6.
Although mass trapping cannot be a definitive control measure, it is one of the few ones available to contain the destruction of millions of cubic metres of conifer forests perpetrated every year worldwide by bark beetles. However, using bark beetle aggregation pheromones during both monitoring and control programs may negatively affect other saproxylic insects. The aim of this study was to describe the response of both Ips sexdentatus and its saproxylic beetle associates, especially predators, to traps baited with a commercial blend of I. sexdentatus aggregation pheromone. Furthermore, the usefulness of adding pine volatiles, such as (?)‐α‐pinene and ethanol, to the pheromone was discussed. The commercial blend proved to be attractive to I. sexdentatus adults, both when used alone and together with pine volatiles. Pheromone attractiveness, however, was lessened by the addition of the volatiles. The pheromone blend proved to be attractive to Thanasimus formicarius, as well as to other predator species. Overall, although during our study, traps baited only with (?)‐α‐pinene and ethanol attracted some predator specimens, I. sexdentatus pheromone traps were more attractive. Our study confirms that calendar differences in flight activity between the bark beetle and its predators are substantial; therefore, they should be taken into account when planning control measures. According to our data, the commercial blend of I. sexdentatus pheromone seems to be the most effective, among the baits used, in catching I. sexdentatus adults, while reducing the impact on T. formicarius.  相似文献   

7.
Abstract We evaluated the attraction of Monochamus alternatus Hope (Coleoptera: Cerambycidae), Dryocoetes luteus Blandford and Orthotomicus erosus Wollaston (Coleoptera: Curculionidae: Scolytinae) to multiple-funnel traps baited with the pine volatiles, ethanol and (+)-α-pinene and the bark beetle pheromones, ipsenol and ipsdienol. M. alternatus were attracted to traps baited with ethanol and (+)-α-pinene but not those baited with ipsdienol and ipsenol. Ipsdienol and ipsenol decreased catches of M. alternatus in traps baited with ethanol and (+)-α-pinene. Traps baited with either binary combinations of ethanol and (+)-α-pinene or ipsdienol and ipsenol were attractive to D. luteus and O. erosus. The addition of ipsenol and ipsdienol to traps baited with ethanol and (+)-α-pinene synergized attraction of O. erosus but not D. luteus.  相似文献   

8.
  • 1 Bark beetles are significant mortality agents of conifers. Four beetle species, the pine engraver Ips pini, the six‐spined pine engraver Ips calligraphus sub. ponderosae, the southern pine beetle Dendroctonus frontalis, and the western pine beetle Dendroctonus brevicomis, cohabitate pines in Arizona.
  • 2 A pheromone trapping study in ponderosa forests of Arizona determined the attraction of beetles to conspecific and heterospecific pheromone components in the presence and absence of host volatiles, and tested whether predators differ in their attraction to combinations of pheromone components and tree monoterpenes.
  • 3 All four bark beetle species differed in their responses to heterospecific lures and monoterpenes. Ips calligraphus was the only species that increased in trap catches when heterospecific lures were added. Heterospecific lures did not inhibit the attraction of either Dendroctonus or Ips species. The replacement of myrcene with α‐pinene increased the attraction of Dendroctonus, whereas the addition of α‐pinene had mixed results for Ips. The prominent predators Temnochila chlorodia and Enoclerus lecontei were more attracted to the I. pini lure than the D. brevicomis lure, and the combination of the two lures with α‐pinene was most attractive to both predator species.
  • 4 Cross attraction and limited inhibition of bark beetles to heterospecific pheromones suggest that some of these species might use heterospecific compounds to increase successful location and colonization of trees. Predator responses to treatments suggest that tree volatiles are used to locate potential prey and predators are more responsive to Ips than to Dendroctonus pheromone components in Arizona.
  相似文献   

9.
Abstract:  The pine sawyer Monochamus galloprovincialis is the European vector of the recently introduced pine wood nematode. This nematode is the causal organism of pine wilt disease, a serious tree killer in East Asia. Efficacious baits and traps to monitor and control this beetle are now required. The effect of bark beetle ( Ips spp.) pheromone components, released individually (ipsenol) or in blends (ipsenol, ipsdienol, cis -verbenol and methyl-butenol), together with host volatiles (turpentine or α -pinene and ethanol) on M. galloprovincialis trap catches has been studied in Spain. A kairomonal response by male and female of M. galloprovincialis to Ips semiochemicals was found. Beetles were more attracted to host blends supplemented with bark beetle pheromones than to host volatiles alone. Ipsenol alone was attractive to pine sawyers, and was synergistic with α -pinene and ethanol. The full blend of the four Ips semiochemicals and the host compounds was highly attractive. Multiple-funnel traps were as effective as black cross-vane traps in capturing this insect when the escape of trapped beetles was prevented. Trapping of non-target bark beetle predators was also evaluated. The trogossitid Temnochila coerulea and clerid Thanasimus formicarius were kairomonally attracted to and killed in traps baited with bark beetle pheromones. These results suggest that effective monitoring of M. galloprovincialis would be possible by baiting any of these traps with host volatiles and Ips semiochemicals, but reduction of the lure components and trap modification to minimize impact on predators should be considered.  相似文献   

10.
The pine wood nematode (Bursaphelenchus xylophilus), which causes the symptoms of pine wilt disease, is recognized worldwide as a major forest pest. It was introduced into Portugal in 1999. It is transmitted between trees almost exclusively by longhorn beetles of the genus Monochamus, including, in particular, M. galloprovincialis (Coleoptera: Cerambycidae) in maritime pine forests. Accurate estimates of the flight capacity of this insect vector are required if we are to understand and predict the spread of pine wilt disease in Europe. Using computer‐linked flight mills, we evaluated the distance flown, the flight probability and speed of M. galloprovincialis throughout adulthood and investigated the effects of age, sex and body weight on these flight performances, which are proxies for dispersal capacity. The within‐population variability of flight performance in M. galloprovincialis was high, with a mean distance of 16 km flown over the lifetime of the beetle. Age and body weight had a significant positive effect on flight capacity, but there was no difference in performance between males and females. These findings have important implications for managing the spread of the pine wood nematode in European forests.  相似文献   

11.
The beetle Monochamus alternatus Hope (Coleoptera: Cerambycidae) is an efficient vector of pine wood nematode, the causal pathogen of pine wilt disease, that has resulted in devastating losses of pines in much of Asia. We assessed the response of adult M. alternatus to 2-(undecyloxy)-ethanol, the male-produced pheromone of the congeneric M. galloprovincialis Dejean, in field experiments in Fujian Province, People's Republic of China. Both sexes of M. alternatus were attracted to lures consisting of 2-(undecyloxy)-ethanol combined with the host plant volatiles alpha-pinene and ethanol. A follow-up experiment showed that 2-(undecyloxy)-ethanol was synergized by both ethanol and alpha-pinene. Coupled gas-chromatography mass-spectrometry analyses of volatiles sampled from field-collected beetles of both sexes revealed that 2-(undecyloxy)-ethanol was a sex-specific pheromone component produced only by males. The combination of 2- (undecyloxy) -ethanol with ethanol and/or alpha-pinene will provide a valuable and badly needed tool for quarantine detection, monitoring, and management of M. alternatus.  相似文献   

12.
Herbivorous insects exploit multiple plant cues to detect and orient toward suitable hosts and, accordingly, hosts have evolved complex constitutive and inducible defenses in response. In China, the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae), an invasive bark beetle from North America, attacks mainly Pinus tabuliformis Carrière (Pinaceae), which contains many monoterpenes. In this study, we explored how the monoterpene α‐pinene affects the feeding performance and pheromone production of D. valens. First, the composition and quantities of monoterpenes of both P. tabuliformis healthy trees and fresh stumps were determined and the infestation of D. valens in healthy trees and fresh stumps was investigated, linking the amount of monoterpenes and D. valens infestation. Gas chromatography–mass spectrometry (GC‐MS) analysis showed that P. tabuliformis mainly contained α‐pinene, with concentrations of 0.1 and 0.5 mg g?1 in healthy pine phloem and stump phloem, respectively. Second, the monoterpene's influence on feeding performance was tested using phloem media with α‐pinene concentrations ranging from 0 to 30 mg g?1. The results showed that the percentages of beetles boring and the gallery lengths of both adult females and larvae were negatively correlated with the α‐pinene concentration although body weight changes did not correlate with α‐pinene concentration. Finally, pheromone analysis showed that the production of all pheromones increased with increasing α‐pinene concentrations. This study showed the dual effects of α‐pinene on D. valens: α‐pinene inhibited the bark beetle's feeding activities and in turn the bark beetle made use of it to produce pheromones. Our study indicated the importance of promptly removing fresh stumps in the field for the management of the bark beetle.  相似文献   

13.
14.
Field-collected adults of the southern pine sawyer, Monochamus titillator (F.) (Coleoptera: Cerambycidae), naturally infested with fourth-stage juveniles (dauerlarvae) of the pinewood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer, 1934) Nickle, 1970, were maturation fed on excised shoots of typical slash pine, Pinus elliottii Engelm. var elliottii, for 21 days. During August 1981, a male and female adult beetle were held in a sleeve cage placed on the terminal of a side branch of each of seven replicate, healthy 10-year-old slash pine trees. All seven branch terminals showed evidence of beetle feeding on the bark after 1 week, and pinewood nematodes were present in wood samples taken near these feeding sites. Four of the seven trees showed wilt symptoms in 4-6 weeks and died about 9 weeks after beetle feeding. Pinewood nematodes were recovered from the roots and trunks of the dead trees. Each of seven replicate slash pine log bolts was enclosed in a jar with a pair of the same beetles used in the sleeve cages. After 1 week, wood underlying beetle oviposition sites in the bark of all replicate log bolts was infested with the pinewood nematode.  相似文献   

15.
1 The mountain pine beetle Dendroctonus ponderosae is a major tree‐killing bark beetle in North America. We evaluated how the subsequent arrival of a competing bark beetle Ips pini influences the arrival of predators and their impact on both species. 2 The predators Temnochila chlorodia and Enoclerus sphegeus were strongly attracted to pheromones of D. ponderosae. By contrast, Enoclerus lecontei was mostly attracted to I. pini pheromones. The host compound myrcene synergized attraction of both D. ponderosae and E. sphegeus to the pheromone of D. ponderosae. However, it inhibited attraction of both I. pini and E. lecontei to I. pini’s pheromone. 3 Dendroctonus ponderosae were more attracted to trees than logs treated with its pheromones, whereas I. pini were more attracted to logs than trees treated with its pheromones. Some 78% of T. chlorodia were captured at hosts baited with D. ponderosae pheromones, whereas 83% of E. lecontei were captured at hosts baited with I. pini pheromones. We characterized the sequence of arrival to live trees baited with pheromones of D. ponderosae as: D. ponderosae, T. chlorodia, E. sphegeus, I. pini, E. lecontei. 4 Various combinations of I. pini and predators were added to logs colonized by D. ponderosae in the above sequence of arrival observed in live trees baited with D. ponderosae aggregation pheromones. Ips pini reduced D. ponderosae adult brood production. However, the combination of I. pini and E. lecontei did not raise D. ponderosae brood production above that observed with only I. pini present. Similarly, the combination of I. pini and T. chlorodia did not reduce D. ponderosae brood production below that observed with I. pini alone. By contrast, the combination of I. pini, T. chlorodia and E. lecontei caused more brood loss to D. ponderosae than I. pini alone. 5 Enoclerus lecontei did not reduce brood production by T. chlorodia, whereas T. chlorodia substantially reduced brood production by E. lecontei. 6 Secondary bark beetles that exploit the resource created by primary tree‐killing species exert negative effects through both competition and increased predator load. Implications to the population dynamics, ecology and evolution of tree‐killing bark beetles are discussed.  相似文献   

16.
We conducted experiments in Jilin, China, in 2011 and 2014 in forest stands dominated by mature Quercus mongolica Fisch. ex Ledeb. (Fagaceae) to test the effects of longhorn beetle pheromones, plant volatiles, and trap height on catch of Neocerambyx raddei (Blessig & Solsky) (formerly Massicus raddei) (Coleoptera: Cerambycidae) in traps. Traps captured 276 specimens of N. raddei in 2011 and 379 specimens in 2014 (384 females, 271 males). Ethanol was attractive to female but not male N. raddei. However, N. raddei was not attracted to any of the longhorn beetle pheromones tested, which included racemic 3‐hydroxyhexan‐2‐one, racemic 3‐hydroxyoctan‐2‐one, syn‐2,3‐hexanediols, anti‐2,3‐hexanediols, racemic E,Z‐fuscumol, racemic E,Z‐fuscumol acetate, and monochamol, nor was it attracted to 2‐methyl‐3‐buten‐2‐ol. Traps placed in the tree canopy captured significantly more beetles than did traps in the understorey. Our results suggest that surveys for N. raddei should use ethanol‐baited traps placed in the tree canopy. If sex or aggregation pheromones are identified for N. raddei in the future, we predict that attraction to them will be enhanced by the presence of ethanol.  相似文献   

17.
The Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera: Cerambycidae), is known to be the primary vector of pinewood nematode Bursaphelenchus xylophilus (Steiner & Buhrer) Nickle that causes pine wilt disease. Adult activity of M. alternatus caught in a pheromone trap on Jeju Island of Korea showed a bimodal form with the first peak in mid to late June and the second peak in mid to late September. The two peaks were separated between mid and late August, showing a valley. Accumulated degree‐days predicted that the emergence of the second generation adults could be possible just before the second peak. But actually no adults of the second generation occurred in the field development experiments of M. alternatus in 2016 and 2017. Pine trees without oleoresin flow (namely dying trees by the infection of pinewood nematode) were abundant during early July to early August. The bimodal adult activity pattern of M. alternatus could be partially explained by the competitive attractiveness of dying trees against pheromone traps, when we accepted the assumption that dying pine trees attract strongly M. alternatus.  相似文献   

18.
  1. Ips acuminatus (the sharp-toothed bark beetle, STBB) is currently considered to be one of the most serious pests of Scots pine in many European countries. STBB management is among the most challenging tasks in pine forests; the development of methods for monitoring, predicting and managing outbreaks of this bark beetle is therefore crucial.
  2. Pheromone-baited traps have been widely recommended as a valuable tool for the monitoring and mass trapping of bark beetles. Although different suppliers offer a variety of STBB lures, their effectiveness has rarely, if ever, been evaluated under natural conditions.
  3. We evaluated the attractiveness of three commercially available and five experimental synthetic lures by comparing the numbers of STBBs captured in white, six-funnel traps. The studies were conducted in 2017–2019 in Poland, in Scots pine-dominated forests affected by STBB outbreaks.
  4. Our study demonstrated significant differences in the effectiveness of the lures. The experimental lure produced by the Witasek company (Austria) and the recently marketed lure Acumodor Micro from Chemipan (Poland) were the most attractive to STBB. Among the least effective were two commercial lures (Acuwit and Acumodor), hitherto used in Central Europe.
  5. The results will be useful in developing methods for the monitoring and management of STBB populations.
  相似文献   

19.
20.
Fungal volatile compounds can mediate fungal-insect interactions. Whether fungi can emit insect pheromones and how volatile chemicals change in response to chemicals the fungi naturally encounter is poorly understood. We analyzed volatiles emitted by Grosmannia clavigera (symbiont of the mountain pine beetle) and Ophiostoma ips (symbiont of the pine engraver beetle) growing in liquid media amended with compounds that the fungi naturally encounter: (−)-α-pinene, (+)-α-pinene, (−)-trans-verbenol, verbenone, or ipsdienol. Nine volatile compounds were identified among the fungal and amendment treatments. Volatiles qualitatively and quantitatively differed between fungal species and among amendment treatments. The bark beetle anti-aggregation pheromone (−)-verbenone was detected from both fungi growing in (−)-trans-verbenol-amended media. G. clavigera and O. ips can emit beetle pheromones and other beetle semiochemicals, suggesting that ophiostomatoid fungi could contribute to the chemical ecology of bark beetles. However, such contributions could be modulated by the presence of other environmental chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号