首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.

Background

Validation of digital whole slide images is crucial to ensure that diagnostic performance is at least equivalent to that of glass slides and light microscopy. The College of American Pathologists Pathology and Laboratory Quality Center recently developed recommendations for internal digital pathology system validation. Following these guidelines we sought to validate the performance of a digital approach for routine diagnosis by using an iPad and digital control widescreen-assisted workstation through a pilot study.

Methods

From January 2014, 61 histopathological slides were scanned by ScanScope Digital Slides Scanner (Aperio, Vista, CA). Two independent pathologists performed diagnosis on virtual slides in front of a widescreen by using two computer devices (ImageScope viewing software) located to different Health Institutions (AOUI Verona) connected by local network and a remote image server using an iPad tablet (Aperio, Vista, CA), after uploading the Citrix receiver for iPad. Quality indicators related to image characters and work-flow of the e-health cockpit enterprise system were scored based on subjective (high vs poor) perception. The images were re-evaluated two weeks apart.

Results

The whole glass slides encountered 10 liver: hepatocarcinoma, 10 renal carcinoma, 10 gastric carcinoma and 10 prostate biopsies: adenocarcinoma, 5 excisional skin biopsies: melanoma, 5 lymph-nodes: lymphoma. 6 immuno- and 5 special stains were available for intra- and internet remote viewing. Scan times averaged two minutes and 54 seconds per slide (standard deviation 2 minutes 34 seconds). Megabytes ranged from 256 to 680 (mean 390) per slide storage. Reliance on glass slide, image quality (resolution and color fidelity), slide navigation time, simultaneous viewers in geographically remote locations were considered of high performance score. Side by side comparisons between diagnosis performed on tissue glass slides versus widescreen were excellent showing an almost perfect concordance (0.81, kappa index).

Conclusions

We validated our institutional digital pathology system for routine diagnostic facing with whole slide images in a cockpit enterprise digital system or iPad tablet. Computer widescreens are better for diagnosing scanned glass slide that iPad. For urgent requests, iPad may be used. Legal aspects have to be soon faced with to permit the clinical use of this technology in a manner that does not compromise patient care.
  相似文献   

2.

Background

There are many scanners of glass slides on the market now. Quality of digital images produced by them may be different and pathologists who examine virtual slides on a monitor may subjectively evaluate it. However, objective comparison of quality of digital slides captured by various devices requires assessment algorithms, which will be automatically executed.

Methods

In this work such an algorithm is proposed and implemented. It is dedicated for comparing quality of virtual slides which show the same glass slide captured by two or more scanners. In the first step this method looks for the largest corresponding areas in the slides. This task is realized by defining boundaries of tissues and providing the relative scale factor. Then, a certain number of smaller areas, which show the same fragments of both slides, is selected. The chosen fragments are analyzed using Gray Level Co-occurrence Matrix (GLCM). For GLCM matrices some of the Haralick features are calculated, like contrast or entropy. Basing on results for some sample images, features appropriate for quality assessment are chosen. Aggregation of values from all selected fragments allows to compare the quality of images captured by tested devices.

Results

Described method was tested on two sets of ten virtual slides, acquired by scanning the same set of ten glass slides by two different devices. First set was scanned and digitized using the robotic microscope Axioscope2 (Zeiss) equipped with AxioCam Hrc CCD camera. Second set was scanned by DeskScan (Zeiss) with standard equipment. Before analyzing captured virtual slides, images were stitched and converted using software which utilizes advances in aerial and satellite imaging.The results of the experiment show that calculated quality factors are higher for virtual slides acquired using first mentioned device (Axioscope2 with AxioCam).

Conclusions

Results of the tests are consistent with opinion of the pathologists who assessed quality of virtual slides captured by these devices. This shows that the method has potential in automatic evaluation of virtual slides’ quality.
  相似文献   

3.

Background

Automated image analysis, measurements of virtual slides, and open access electronic measurement user systems require standardized image quality assessment in tissue-based diagnosis.

Aims

To describe the theoretical background and the practical experiences in automated image quality estimation of colour images acquired from histological slides.

Theory, material and measurements

Digital images acquired from histological slides should present with textures and objects that permit automated image information analysis. The quality of digitized images can be estimated by spatial independent and local filter operations that investigate in homogenous brightness, low peak to noise ratio (full range of available grey values), maximum gradients, equalized grey value distribution, and existence of grey value thresholds. Transformation of the red-green-blue (RGB) space into the hue-saturation-intensity (HSI) space permits the detection of colour and intensity maxima/minima. The feature distance of the original image to its standardized counterpart is an appropriate measure to quantify the actual image quality. These measures have been applied to a series of H&;E stained, fluorescent (DAPI, Texas Red, FITC), and immunohistochemically stained (PAP, DAB) slides. More than 5,000 slides have been measured and partly analyzed in a time series.

Results

Analysis of H&;E stained slides revealed low shading corrections (10%) and moderate grey value standardization (10 – 20%) in the majority of cases. Immunohistochemically stained slides displayed greater shading and grey value correction. Fluorescent stained slides are often revealed to high brightness. Images requiring only low standardization corrections possess at least 5 different statistically significant thresholds, which are useful for object segmentation. Fluorescent images of good quality only posses one singular intensity maximum in contrast to good images obtained from H&;E stained slides that present with 2 – 3 intensity maxima.

Conclusion

Evaluation of image quality and creation of formally standardized images should be performed prior to automatic analysis of digital images acquired from histological slides. Spatial dependent and local filter operations as well as analysis of the RGB and HSI spaces are appropriate methods to reproduce evaluated formal image quality.
  相似文献   

4.

Introduction

Standardization and validation of the color displayed by digital slides is an important aspect of digital pathology implementation. While the most common reason for color variation is the variance in the protocols and practices in the histology lab, the color displayed can also be affected by variation in capture parameters (for example, illumination and filters), image processing and display factors in the digital systems themselves.

Method

We have been developing techniques for color validation and optimization along two paths. The first was based on two standard slides that are scanned and displayed by the imaging system in question. In this approach, one slide is embedded with nine filters with colors selected especially for H&;E stained slides (looking like tiny Macbeth color chart); the specific color of the nine filters were determined in our previous study and modified for whole slide imaging (WSI). The other slide is an H&;E stained mouse embryo. Both of these slides were scanned and the displayed images were compared to a standard. The second approach was based on our previous multispectral imaging research.

Discussion

As a first step, the two slide method (above) was used to identify inaccurate display of color and its cause, and to understand the importance of accurate color in digital pathology. We have also improved the multispectral-based algorithm for more consistent results in stain standardization. In near future, the results of the two slide and multispectral techniques can be combined and will be widely available.We have been conducting a series of researches and developing projects to improve image quality to establish Image Quality Standardization. This paper discusses one of most important aspects of image quality – color.
  相似文献   

5.

Background

Automated image analysis on virtual slides is evolving rapidly and will play an important role in the future of digital pathology. Due to the image size, the computational cost of processing whole slide images (WSIs) in full resolution is immense. Moreover, image analysis requires well focused images in high magnification.

Methods

We present a system that merges virtual microscopy techniques, open source image analysis software, and distributed parallel processing. We have integrated the parallel processing framework JPPF, so batch processing can be performed distributed and in parallel. All resulting meta data and image data are collected and merged. As an example the system is applied to the specific task of image sharpness assessment. ImageJ is an open source image editing and processing framework developed at the NIH having a large user community that contributes image processing algorithms wrapped as plug-ins in a wide field of life science applications. We developed an ImageJ plug-in that supports both basic interactive virtual microscope and batch processing functionality. For the application of sharpness inspection we employ an approach with non-overlapping tiles. Compute nodes retrieve image tiles of moderate size from the streaming server and compute the focus measure. Each tile is divided into small sub images to calculate an edge based sharpness criterion which is used for classification. The results are aggregated in a sharpness map.

Results

Based on the system we calculate a sharpness measure and classify virtual slides into one of the following categories - excellent, okay, review and defective. Generating a scaled sharpness map enables the user to evaluate sharpness of WSIs and shows overall quality at a glance thus reducing tedious assessment work.

Conclusions

Using sharpness assessment as an example, the introduced system can be used to process, analyze and parallelize analysis of whole slide images based on open source software.
  相似文献   

6.

Background

Comprehensive spatial assessment of hormone receptor immunohistochemistry staining in digital whole slide images of breast cancer requires accurate detection of positive nuclei within biologically relevant regions of interest. Herein, we propose a combination of automated region labeling at low resolution and subsequent detailed tissue evaluation of subcellular structures in lobular structures adjacent to breast cancer, as a proof of concept for the approach to analyze estrogen and progesterone receptor expression in the spatial context of surrounding tissue.

Methods

Routinely processed paraffin sections of hormone receptor-negative ductal invasive breast cancer were stained for estrogen and progesterone receptor by immunohistochemistry. Digital whole slides were analyzed using commercially available image analysis software for advanced object-based analysis, applying textural, relational, and geometrical features. Mammary gland lobules were targeted as regions of interest for analysis at subcellular level in relation to their distance from coherent tumor as neighboring relevant tissue compartment. Lobule detection quality was evaluated visually by a pathologist.

Results

After rule set optimization in an estrogen receptor-stained training set, independent test sets (progesterone and estrogen receptor) showed acceptable detection quality in 33% of cases. Presence of disrupted lobular structures, either by brisk inflammatory infiltrate, or diffuse tumor infiltration, was common in cases with lower detection accuracy. Hormone receptor detection tended towards higher percentage of positively stained nuclei in lobules distant from the tumor border as compared to areas adjacent to the tumor. After adaptations of image analysis, corresponding evaluations were also feasible in hormone receptor positive breast cancer, with some limitations of automated separation of mammary epithelial cells from hormone receptor-positive tumor cells.

Conclusions

As a proof of concept for object-oriented detection of steroid hormone receptors in their spatial context, we show that lobular structures can be classified based on texture-based image features, unless brisk inflammatory infiltration disrupts the normal morphological structure of the tubular gland epithelium. We consider this approach as prototypic for detection and spatial analysis of nuclear markers in defined regions of interest. We conclude that advanced image analysis at this level of complexity requires adaptation to the individual tumor phenotypes and morphological characteristics of the tumor environment.
  相似文献   

7.

Introduction

Developments in technology, web-based teaching and whole slide imaging have broadened the teaching horizon in anatomic pathology. Creating online learning material including many types of media such as radiologic images, whole slides, videos, clinical and macroscopic photographs, is now accessible to most universities. Unfortunately, a major limiting factor to maintain and update the learning material is the amount of resources needed. In this perspective, a French-national university network was initiated in 2011 to build joint online teaching modules consisting of clinical cases and tests. The network has since expanded internationally to Québec, Switzerland and Ivory Coast.

Method

One of the first steps of the project was to build a learning module on inflammatory skin pathology for interns and residents in pathology and dermatology. A pathology resident from Québec spent 6 weeks in France and Switzerland to develop the contents and build the module on an e-learning Moodle platform under the supervision of two dermatopathologists. The learning module contains text, interactive clinical cases, tests with feedback, virtual slides, images and clinical photographs. For that module, the virtual slides are decentralized in 2 universities (Bordeaux and Paris 7). Each university is responsible of its own slide scanning, image storage and online display with virtual slide viewers.

Results

The module on inflammatory skin pathology includes more than 50 web pages with French original content, tests and clinical cases, links to over 45 virtual images and more than 50 microscopic and clinical photographs. The whole learning module is being revised by four dermatopathologists and two senior pathologists. It will be accessible to interns and residents in the spring of 2014. The experience and knowledge gained from that work will be transferred to the next international resident whose work will be aimed at creating lung and breast pathology learning modules.

Conclusion

The challenges of sustaining a project of this scope are numerous. The technical aspect of whole-slide imaging and storage needs to be developed by each university or group. The content needs to be regularly updated and its accuracy reviewed by experts in each individual domain. The learning modules also need to be promoted within the academic community to ensure maximal benefit for trainees. A collateral benefit of the project was the establishment of international partnerships between French-speaking universities and pathologists with the common goal of promoting pathology education through the use of multi-media technology including whole slide imaging.
  相似文献   

8.

Introduction

Mass spectrometry imaging (MSI) experiments result in complex multi-dimensional datasets, which require specialist data analysis tools.

Objectives

We have developed massPix—an R package for analysing and interpreting data from MSI of lipids in tissue.

Methods

massPix produces single ion images, performs multivariate statistics and provides putative lipid annotations based on accurate mass matching against generated lipid libraries.

Results

Classification of tissue regions with high spectral similarly can be carried out by principal components analysis (PCA) or k-means clustering.

Conclusion

massPix is an open-source tool for the analysis and statistical interpretation of MSI data, and is particularly useful for lipidomics applications.
  相似文献   

9.

Background

Immune cell infiltrates (ICI) of tumors are scored by pathologists around tumor glands. To obtain a better understanding of the immune infiltrate, individual immune cell types, their activation states and location relative to tumor cells need to be determined. This process requires precise identification of the tumor area and enumeration of immune cell subtypes separately in the stroma and inside tumor nests. Such measurements can be accomplished by a multiplex format using immunohistochemistry (IHC).

Method

We developed a pipeline that combines immunohistochemistry (IHC) and digital image analysis. One slide was stained with pan-cytokeratin and CD45 and the other slide with CD8, CD4 and CD68. The tumor mask generated through pan-cytokeratin staining was transferred from one slide to the other using affine image co-registration. Bland-Altman plots and Pearson correlation were used to investigate differences between densities and counts of immune cell underneath the transferred versus manually annotated tumor masks. One-way ANOVA was used to compare the mask transfer error for tissues with solid and glandular tumor architecture.

Results

The overlap between manual and transferred tumor masks ranged from 20%–90% across all cases. The error of transferring the mask was 2- to 4-fold greater in tumor regions with glandular compared to solid growth pattern (p < 10?6). Analyzing data from a single slide, the Pearson correlation coefficients of cell type densities outside and inside tumor regions were highest for CD4 + T-cells (r = 0.8), CD8 + T-cells (r = 0.68) or CD68+ macrophages (r = 0.79). The correlation coefficient for CD45+ T- and B-cells was only 0.45. The transfer of the mask generated an error in the measurement of intra- and extra- tumoral CD68+, CD8+ or CD4+ counts (p < 10?10).

Conclusions

In summary, we developed a general method to integrate data from IHC stained slides into a single dataset. Because of the transfer error between slides, we recommend applying the antibody for demarcation of the tumor on the same slide as the ICI antibodies.
  相似文献   

10.

Background

Formalin fixed paraffin embedded (FFPE) tumor samples are a major source of DNA from patients in cancer research. However, FFPE is a challenging material to work with due to macromolecular fragmentation and nucleic acid crosslinking. FFPE tissue particularly possesses challenges for methylation analysis and for preparing sequencing-based libraries relying on bisulfite conversion. Successful bisulfite conversion is a key requirement for sequencing-based methylation analysis.

Methods

Here we describe a complete and streamlined workflow for preparing next generation sequencing libraries for methylation analysis from FFPE tissues. This includes, counting cells from FFPE blocks and extracting DNA from FFPE slides, testing bisulfite conversion efficiency with a polymerase chain reaction (PCR) based test, preparing reduced representation bisulfite sequencing libraries and massively parallel sequencing.

Results

The main features and advantages of this protocol are:
  • An optimized method for extracting good quality DNA from FFPE tissues.
  • An efficient bisulfite conversion and next generation sequencing library preparation protocol that uses 50 ng DNA from FFPE tissue.
  • Incorporation of a PCR-based test to assess bisulfite conversion efficiency prior to sequencing.

Conclusions

We provide a complete workflow and an integrated protocol for performing DNA methylation analysis at the genome-scale and we believe this will facilitate clinical epigenetic research that involves the use of FFPE tissue.
  相似文献   

11.

Background

Digital pathology, i.e., applications of digital information technologies to pathology practice, has been expanding in the recent decades and the mode of pathology diagnostic practice is changing with enhanced precision. In the present study the changing processes of digital pathology in Japan were investigated and trends to future were discussed.

Methods

The changing status of digital pathology was investigated through reviewing the records of annual meetings of the Japanese Research Society of Telepathology and Pathology Informatics (JRST-PI) and of the Japanese pathology related medical and informatics journals. The results of the Japanese questionnaire survey conducted in 2008-2009 on telepathology and virtual slide were also reviewed. In addition effectiveness of an experimental automatic pathology diagnostic aid system using computer artificial intelligence was investigated by checking its rate of correct diagnosis for given prostate carcinoma digital images.

Results

Telepathology played a central role in the development of digital pathology in Japan. Both macroscopic and microscopic pathology digital images were routinely generated and used for diagnostic purposes in major hospitals. Virtual slide (VS) digital images were used first for education then for conference, consultation and also gradually for routine diagnosis and telepathology. The experimental automatic diagnostic aid system achieved the rate of correct diagnosis around 95% for prostate carcinoma and its use for automatic mapping of cancerous areas in a given tissue image was successful.

Conclusions

Advance in the digital information technologies gave revolutionary impacts on pathology education, conference, consultation, diagnosis, telepathology and also on pathology diagnostic procedures in Japan. The future will be bright for pathologists by the advanced digital pathology but we should pay attention to make the technologies and their effects under our control.
  相似文献   

12.

Background

Experimental autoimmune neuritis (EAN) is a well-known animal model of human demyelinating polyneuropathies and is characterized by inflammation and demyelination in the peripheral nervous system. Fascin is an evolutionarily highly conserved cytoskeletal protein of 55 kDa containing two actin binding domains that cross-link filamentous actin to hexagonal bundles.

Methods

Here we have studied by immunohistochemistry the spatiotemporal accumulation of Fascin?+?cells in sciatic nerves of EAN rats.

Results

A robust accumulation of Fascin?+?cell was observed in the peripheral nervous system of EAN which was correlated with the severity of neurological signs in EAN.

Conclusion

Our results suggest a pathological role of Fascin in EAN.

Virtual slides

The virtual slides for this article can be found here: http://www.diagnosticphatology.diagnomx.eu/vs/6734593451114811
  相似文献   

13.

Background

It is difficult for neurosurgeons to perceive the complex three-dimensional anatomical relationships in the sellar region.

Methods

To investigate the value of using a virtual reality system for planning resection of sellar region tumors. The study included 60 patients with sellar tumors. All patients underwent computed tomography angiography, MRI-T1W1, and contrast enhanced MRI-T1W1 image sequence scanning. The CT and MRI scanning data were collected and then imported into a Dextroscope imaging workstation, a virtual reality system that allows structures to be viewed stereoscopically. During preoperative assessment, typical images for each patient were chosen and printed out for use by the surgeons as references during surgery.

Results

All sellar tumor models clearly displayed bone, the internal carotid artery, circle of Willis and its branches, the optic nerve and chiasm, ventricular system, tumor, brain, soft tissue and adjacent structures. Depending on the location of the tumors, we simulated the transmononasal sphenoid sinus approach, transpterional approach, and other approaches. Eleven surgeons who used virtual reality models completed a survey questionnaire. Nine of the participants said that the virtual reality images were superior to other images but that other images needed to be used in combination with the virtual reality images.

Conclusions

The three-dimensional virtual reality models were helpful for individualized planning of surgery in the sellar region. Virtual reality appears to be promising as a valuable tool for sellar region surgery in the future.
  相似文献   

14.

Introduction

Since their introduction in 1999, fully automated, high speed, high-resolution whole slide imaging devices have become increasing more reliable, fast and capable. While by no means perfect, these devices have evolved to a point where one can consider placing them in a pre-diagnostic role in a clinical histology lab.

Methods

At the Massachusetts General Hospital, we are running a pilot study placing high end WSI devices in our main clinical histology lab (after the cover slipper and before slides are sent to the pathologist) to examine the requirement for both the machine and the laboratory.

Results

Placing WSI systems in the clinical lab stresses the system in terms of reliability and throughput. Significantly however, success requires significant modification to the lab workflow. It is likely laboratories need to move from manual, large batch processes to increasingly automated, continuous flow (or mini-batch) processes orchestrated by the LIS using bar coding to track and direct slides, and incorporating the decision to image into the specimen type and the histology orders. Furthermore, image quality, capture speed and reliability are functions of the quality of the histology presented to the WSI devices.

Conclusion

Imaging in pathology does not begin in a WSI robot but in the grossing room and in the histology lab. As more and more imaging devices are placed in histology lab, the inter-relationships histology and pathology imaging will become increasing understood.
  相似文献   

15.

Background

Application of virtual slides (VS), the digitalization of complete glass slides, is in its infancy to be implemented in routine diagnostic surgical pathology and to issues that are related to tissue-based diagnosis, such as education and scientific publication.

Approach

Electronic publication in Pathology offers new features of scientific communication in pathology that cannot be obtained by conventional paper based journals. Most of these features are based upon completely open or partly directed interaction between the reader and the system that distributes the article. One of these interactions can be applied to microscopic images allowing the reader to navigate and magnify the presented images. VS and interactive Virtual Microscopy (VM) are a tool to increase the scientific value of microscopic images.

Technology and Performance

The open access journal Diagnostic Pathology http://www.diagnosticpathology.org has existed for about five years. It is a peer reviewed journal that publishes all types of scientific contributions, including original scientific work, case reports and review articles. In addition to digitized still images the authors of appropriate articles are requested to submit the underlying glass slides to an institution (DiagnomX.eu, and Leica.com) for digitalization and documentation. The images are stored in a separate image data bank which is adequately linked to the article. The normal review process is not involved. Both processes (peer review and VS acquisition) are performed contemporaneously in order to minimize a potential publication delay. VS are not provided with a DOI index (digital object identifier). The first articles that include VS were published in March 2011.

Results and Perspectives

Several logistic constraints had to be overcome until the first articles including VS could be published. Step by step an automated acquisition and distribution system had to be implemented to the corresponding article. The acceptance of VS by the reader is high as well as by the authors. Of specific value are the increased confidence to and reputation of authors as well as the presented information to the reader. Additional associated functions such as access to author-owned related image collections, reader-controlled automated image measurements and image transformations are in preparation.

Virtual Slides

The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1232133347629819.
  相似文献   

16.
17.

Background

We describe development and evaluation of the user-friendly web based virtual microscopy - WebMicroscope for teaching and learning dental students basic and oral pathology. Traditional students microscopes were replaced by computer workstations.

Methods

The transition of the basic and oral pathology courses from light to virtual microscopy has been completed gradually over a five-year period. A pilot study was conducted in academic year 2005/2006 to estimate the feasibility of integrating virtual microscopy into a traditional light microscopy-based pathology course. The entire training set of glass slides was subsequently converted to virtual slides and placed on the WebMicroscope server. Giving access to fully digitized slides on the web with a browser and a viewer plug-in, the computer has become a perfect companion of the student.

Results

The study material consists now of over 400 fully digitized slides which covering 15 entities in basic and systemic pathology and 15 entities in oral pathology. Digitized slides are linked with still macro- and microscopic images, organized with clinical information into virtual cases and supplemented with text files, syllabus, PowerPoint presentations and animations on the web, serving additionally as material for individual studies. After their examinations, the students rated the use of the software, quality of the images, the ease of handling the images, and the effective use of virtual slides during the laboratory practicals. Responses were evaluated on a standardized scale. Because of the positive opinions and support from the students, the satisfaction surveys had shown a progressive improvement over the past 5 years. The WebMicroscope as a didactic tool for laboratory practicals was rated over 8 on a 1-10 scale for basic and systemic pathology and 9/10 for oral pathology especially as various students’ suggestions were implemented. Overall, the quality of the images was rated as very good.

Conclusions

An overwhelming majority of our students regarded a possibility of using virtual slides at their convenience as highly desirable. Our students and faculty consider the use of the virtual microscope for the study of basic as well as oral pathology as a significant improvement over the light microscope.
  相似文献   

18.

Background

Non-proliferative diabetic retinopathy is the early stage of diabetic retinopathy. Automatic detection of non-proliferative diabetic retinopathy is significant for clinical diagnosis, early screening and course progression of patients.

Methods

This paper introduces the design and implementation of an automatic system for screening non-proliferative diabetic retinopathy based on color fundus images. Firstly, the fundus structures, including blood vessels, optic disc and macula, are extracted and located, respectively. In particular, a new optic disc localization method using parabolic fitting is proposed based on the physiological structure characteristics of optic disc and blood vessels. Then, early lesions, such as microaneurysms, hemorrhages and hard exudates, are detected based on their respective characteristics. An equivalent optical model simulating human eyes is designed based on the anatomical structure of retina. Main structures and early lesions are reconstructed in the 3D space for better visualization. Finally, the severity of each image is evaluated based on the international criteria of diabetic retinopathy.

Results

The system has been tested on public databases and images from hospitals. Experimental results demonstrate that the proposed system achieves high accuracy for main structures and early lesions detection. The results of severity classification for non-proliferative diabetic retinopathy are also accurate and suitable.

Conclusions

Our system can assist ophthalmologists for clinical diagnosis, automatic screening and course progression of patients.
  相似文献   

19.

Background

Metastasis is the primary cause of mortality in cancer patients. Therefore, elucidating the genetics and epigenetics of metastatic tumor cells and the mechanisms by which tumor cells acquire metastatic properties constitute significant challenges in cancer research.

Objective

To summarize the current understandings of the specific genotype and phenotype of the metastatic tumor cells.

Method and Result

In-depth genetic analysis of tumor cells, especially with advances in the next-generation sequencing, have revealed insights of the genotypes of metastatic tumor cells. Also, studies have shown that the cancer stem cell (CSC) and epithelial to mesenchymal transition (EMT) phenotypes are associated with the metastatic cascade.

Conclusion

In this review, we will discuss recent advances in the field by focusing on the genomic instability and phenotypic dynamics of metastatic tumor cells.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号