首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pathogenic mycobacteria have the ability to persist in phagocytic cells and to suppress the immune system. The glycolipid lipoarabinomannan (LAM), in particular its mannose cap, has been shown to inhibit phagolysosome fusion and to induce immunosuppressive IL−10 production via interaction with the mannose receptor or DC-SIGN. Hence, the current paradigm is that the mannose cap of LAM is a crucial factor in mycobacterial virulence. However, the above studies were performed with purified LAM, never with live bacteria. Here we evaluate the biological properties of capless mutants of Mycobacterium marinum and M. bovis BCG, made by inactivating homologues of Rv1635c. We show that its gene product is an undecaprenyl phosphomannose-dependent mannosyltransferase. Compared with parent strain, capless M. marinum induced slightly less uptake by and slightly more phagolysosome fusion in infected macrophages but this did not lead to decreased survival of the bacteria in vitro , nor in vivo in zebra fish. Loss of caps in M. bovis BCG resulted in a sometimes decreased binding to human dendritic cells or DC-SIGN-transfected Raji cells, but no differences in IL-10 induction were observed. In mice, capless M. bovis BCG did not survive less well in lung, spleen or liver and induced a similar cytokine profile. Our data contradict the current paradigm and demonstrate that mannose-capped LAM does not dominate the Mycobacterium –host interaction.  相似文献   

2.
The causative agent of tuberculosis (TB), Mycobacterium tuberculosis, remains an important worldwide health threat. Although TB is one of the oldest infectious diseases of man, a detailed understanding of the mycobacterial mechanisms underlying pathogenesis remains elusive. Here, we studied the role of the α(1→2) mannosyltransferase MptC in mycobacterial virulence, using the Mycobacterium marinum zebrafish infection model. Like its M. tuberculosis orthologue, disruption of M. marinum mptC (mmar_3225) results in defective elongation of mannose caps of lipoarabinomannan (LAM) and absence of α(1→2)mannose branches on the lipomannan (LM) and LAM mannan core, as determined by biochemical analysis (NMR and GC‐MS) and immunoblotting. We found that the M. marinum mptC mutant is strongly attenuated in embryonic zebrafish, which rely solely on innate immunity, whereas minor virulence defects were observed in adult zebrafish. Strikingly, complementation with the Mycobacterium smegmatis mptC orthologue, which restored mannan core branching but not cap elongation, was sufficient to fully complement the virulence defect of the mptC mutant in embryos. Altogether our data demonstrate that not LAM capping, but mannan core branching of LM/LAM plays an important role in mycobacterial pathogenesis in the context of innate immunity.  相似文献   

3.
Mycobacterium tuberculosis (M. tb) pathogenesis involves the interaction between the mycobacterial cell envelope and host macrophage, a process mediated, in part, by binding of the mannose caps of M. tb lipoarabinomannan (ManLAM) to the macrophage mannose receptor (MR). A presumed critical step in the biosynthesis of ManLAM, and other mannose-containing glycoconjugates, is the conversion of mannose-6-phosphate to mannose-1-phosphate, by a phosphomannomutase (PMM), to produce GDP-mannose, the primary mannose-donor in mycobacteria. We have identified four M. tb H37Rv genes with similarity to known PMMs. Using in vivo complementation of PMM and phosphoglucomutase (PGM) deficient strains of Pseudomonas aeruginosa, and an in vitro enzyme assay, we have identified both PMM and PGM activity from one of these genes, Rv3257c (MtmanB). MtmanB overexpression in M. smegmatis produced increased levels of LAM, lipomannan, and phosphatidylinositol mannosides (PIMs) compared with control strains and led to a 13.3 +/- 3.9-fold greater association of mycobacteria with human macrophages, in a mannan-inhibitable fashion. This increased association was mediated by the overproduction of higher order PIMs that possess mannose cap structures. We conclude that MtmanB encodes a functional PMM involved in the biosynthesis of mannosylated lipoglycans that participate in the association of mycobacteria with macrophage phagocytic receptors.  相似文献   

4.
Interactions between dendritic cells (DCs) and Mycobacterium tuberculosis, the etiological agent of tuberculosis, most likely play a key role in anti-mycobacterial immunity. We have recently shown that M. tuberculosis binds to and infects DCs through ligation of the DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and that M. tuberculosis mannose-capped lipoarabinomannan (ManLAM) inhibits binding of the bacilli to the lectin, suggesting that ManLAM might be a key DC-SIGN ligand. In the present study, we investigated the molecular basis of DC-SIGN ligation by LAM. Contrary to what was found for slow growing mycobacteria, such as M. tuberculosis and the vaccine strain Mycobacterium bovis bacillus Calmette-Guérin, our data demonstrate that the fast growing saprophytic species Mycobacterium smegmatis hardly binds to DC-SIGN. Consistent with the former finding, we show that M. smegmatis-derived lipoarabinomannan, which is capped by phosphoinositide residues (PILAM), exhibits a limited ability to inhibit M. tuberculosis binding to DC-SIGN. Moreover, using enzymatically demannosylated and chemically deacylated ManLAM molecules, we demonstrate that both the acyl chains on the ManLAM mannosylphosphatidylinositol anchor and the mannooligosaccharide caps play a critical role in DC-SIGN-ManLAM interaction. Finally, we report that DC-SIGN binds poorly to the PILAM and uncapped AraLAM-containing species Mycobacterium fortuitum and Mycobacterium chelonae, respectively. Interestingly, smooth colony-forming Mycobacterium avium, in which ManLAM is capped with single mannose residues, was also poorly recognized by the lectin. Altogether, our results provide molecular insight into the mechanisms of mycobacteria-DC-SIGN interaction, and suggest that DC-SIGN may act as a pattern recognition receptor and discriminate between Mycobacterium species through selective recognition of the mannose caps on LAM molecules.  相似文献   

5.
The mycobacterial cell wall component lipoarabinomannan (LAM) has been described as one of the key virulence factors of Mycobacterium tuberculosis. Modification of the terminal arabinan residues of this lipoglycan with mannose caps in M. tuberculosis or with phosphoinositol caps in Mycobacterium smegmatis results in distinct host immune responses. Given that M. tuberculosis typically persists in the phagosomal vacuole after being phagocytosed by macrophages, we performed a proteomic analysis of that organelle after treatment of macrophages with LAMs purified from the two mycobacterial species. The quantitative changes in phagosomal proteins suggested a distinct role for mannose-capped LAM in modulating protein trafficking pathways that contribute to the arrest of phagosome maturation. Enlightened by our proteomic data, we performed further experiments to show that only the LAM from M. tuberculosis inhibits accumulation of autophagic vacuoles in the macrophage, suggesting a new function for this virulence-associated lipid.  相似文献   

6.
Macrophages act as a reservoir for Mycobacterium tuberculosis, producing latent infection in approximately 90% of infected people. In this study, J774A.1 mouse macrophage cell line response and microRNA (miRNA) expression during infection with the most relevant mycobacterial strains for humans (M. tuberculosis, M. bovis and M. bovis BCG) was explored. No significant differences in bacillary loads were observed between activate and naive macrophages infected with M. tuberculosis and M. bovis. Nitrite production inhibition and infection control were in accordance with the virulence of the strain. Expression of let‐7e, miR‐21, miR‐155, miR‐210 and miR‐223 was opposite in the two species and miR‐146b* and miR‐1224 expression seemed to be part of the general response to infection.  相似文献   

7.
Mycobacterium tuberculosis employs various virulence strategies to subvert host immune responses in order to persist and cause disease. Interaction of M. tuberculosis with mannose receptor on macrophages via surface-exposed lipoarabinomannan (LAM) is believed to be critical for cell entry, inhibition of phagosome-lysosome fusion, and intracellular survival, but in vivo evidence is lacking. LprG, a cell envelope lipoprotein that is essential for virulence of M. tuberculosis, has been shown to bind to the acyl groups of lipoglycans but the role of LprG in LAM biosynthesis and localization remains unknown. Using an M. tuberculosis lprG mutant, we show that LprG is essential for normal surface expression of LAM and virulence of M. tuberculosis attributed to LAM. The lprG mutant had a normal quantity of LAM in the cell envelope, but its surface was altered and showed reduced expression of surface-exposed LAM. Functionally, the lprG mutant was defective for macrophage entry and inhibition of phagosome-lysosome fusion, was attenuated in macrophages, and was killed in the mouse lung with the onset of adaptive immunity. This study identifies the role of LprG in surface-exposed LAM expression and provides in vivo evidence for the essential role surface LAM plays in M. tuberculosis virulence. Findings have translational implications for therapy and vaccine development.  相似文献   

8.
The Rv0679c gene in Mycobacterium tuberculosis H37Rv encodes a protein with a predicted molecular mass of 16,586 Da consisting of 165 amino acids which contains a putative N-terminal signal sequence and a consensus lipoprotein-processing motif. Globomycin treatment, Triton X-114 separation and mass spectrometry analyses clarified a property of the Rv0679c protein as a lipoprotein. In addition, trifluoromethanesulphonic acid treatment of the lysate revealed an association of the recombinant Rv0679c protein with carbohydrates. The Rv0679c protein homolog of Mycobacterium bovis BCG was also expressed as the protein associated with lipids and carbohydrates. In Western blot analysis, each of the protein homolog and Lipoarabinomannan (LAM) was detected as a similar pattern by anti-Rv0679c and anti-LAM antibodies, respectively. Interestingly, the Rv0679c protein was detected in commercially available LAM purified from M. tuberculosis. Inhibition assay of LAM synthesis in M. bovis BCG by ethambutol showed an altered migration pattern of the Rv0679c protein to low molecular mass similar to that of LAM. The results suggest that the Rv0679c protein exists as a tight complex with LAM in M. tuberculosis/M. bovis BCG.  相似文献   

9.
10.
It has recently been shown that the anti‐mycobacterial pro‐drug thiacetazone (TAC) inhibits the conversion of double bonds of mycolic acid precursors into cyclopropyl rings in Mycobacterium bovis var BCG, M. marimum and M. chelonae by affecting the cyclopropyl mycolic acid synthases (CMASs) as judged by the build‐up of unsaturated mycolate precursors. In our hands, TAC inhibits mycolic acid biosynthesis in Mycobacterium tuberculosis and M. kansasii with almost negligible accumulation of those precursors. Our observations that ‘de novo’ biosynthesis of all the mycolic acid families decreased upon TAC treatment prompted us to analyse the role of each one of the Type II Fatty Acid Synthase (FASII) enzymes. Overexpression of the hadABC operon, encoding the essential FASII dehydratase complex, but not of any of the remaining FASII genes acting on the elongation of fatty acyl chains leading to the synthesis of meromycolic acids, resulted in high level of resistance to TAC in M. tuberculosis. Spontaneous M. tuberculosis and M. kansasii TAC‐resistant mutants isolated during this work revealed mutations in the hadABC genes strongly supporting our proposal that these enzymes are new players in the resistance to this anti‐mycobacterial compound.  相似文献   

11.
The human pulmonary surfactant protein A (hSP-A) has been implicated in the early capture and phagocytosis of the pathogenic Mycobacterium tuberculosis by alveolar macrophages. In this report, we examined the interaction of alveolar proteinosis patient hSP-A with Mycobacterium bovis BCG, the vaccinating strain, as a model of pathogenic mycobacteria, and Mycobacterium smegmatis, a nonpathogenic strain. We found that hSP-A binds to the surface of M. bovis BCG, but also to a slightly lesser extent, to M. smegmatis, indicating that hSP-A does not discriminate between virulent and nonpathogenic strains. Among the various glycoconjugates isolated from the mycobacterial envelope, we found that the best ligands are the two major lipoglycans: the mannosylated lipoarabinomannan (ManLAM) and the lipomannan. In contrast, the mannose-capped arabinomannan, structurally close to the ManLAM, as well as the LAMs from the non pathogenic M. smegmatis are poorly recognized by hSP-A. These results clearly show that the presence of both the terminal mannose residues and the phophatidyl-myo-inositol anchor are necessary to achieve the highest binding affinity. Selective removal of either the terminal mannose or the acyl residues esterifying the glycerol moiety of the ManLAM abrogates the interaction with hSP-A, further supporting the notion that the hSP-A recognition of the carbohydrate epitopes of the lipoglycans is dependent of the presence of the fatty acids.  相似文献   

12.
Mannose‐capped lipoarabinomannan (ManLAM) is an immunomodulatory epitope of Mycobacterium tuberculosis (Mtb). An aptamer (ZXL1) that specifically binds to ManLAM from the virulent Mtb H37Rv strain was previously generated and it was found that ZXL1 functions as an antagonist, inhibiting the ManLAM‐induced immunosuppression of DCs. In the present study, it was found that ZXL1 inhibits Mtb entry into murine macrophages and that ZXL1 enhances IL‐1β and IL‐12 mRNA expression and cytokine production in ManLAM‐treated macrophages but decreases IL‐10 production. Inducible nitric oxide synthase expression in macrophages was upregulated in the presence of ZXL1 after stimulation with ManLAM. ZXL1 was also found to inhibit expression of lipid‐sensing nuclear receptor peroxisome proliferator‐activated receptor γ (PPAR‐γ). These results suggest that ZXL1 promotes anti‐tuberculosis activity through downregulation of PPAR‐γ expression, which may contribute to M1 macrophage polarization and Mtb killing by macrophages.  相似文献   

13.
Screening live mycobacterial vaccine candidates is the important strategy to develop new vaccines against adult tuberculosis (TB). In this study, the immunogenicity and protective efficacy of several avirulent mycobacterial strains including Mycobacterium smegmatis, M. vaccae, M. terrae, M. phlei, M. trivial, and M. tuberculosis H37Ra were compared with M. bovis BCG in BALB/c mice. Our results demonstrated that differential immune responses were induced in different mycobacterial species vaccinated mice. As BCG-vaccinated mice did, M. terrae immunization resulted in Th1-type responses in the lung, as well as splenocytes secreting IFN-γ against a highly conserved mycobacterial antigen Ag85A. M. smegmatis also induced the same splenocytes secreting IFN-γ as BCG and M. terrae did. In addition, M. terrae and M. smegmatis-immunized mice predominantly increased expression of IL-10 and TGF-β in the lung. Most importantly, mice vaccinated with H37Ra and M. vaccae could provide the same protection in the lung against virulent M. tuberculosis challenge as BCG. The result may have important implications in developing adult TB vaccine.  相似文献   

14.
Mycobacterium tuberculosis (Mtb) cell wall glycolipid mannose‐capped lipoarabinomannan (ManLAM) inhibits CD4+ T‐cell activation by inhibiting proximal T‐cell receptor (TCR) signaling when activated by anti‐CD3. To understand the impact of ManLAM on CD4+ T‐cell function when both the TCR–CD3 complex and major costimulator CD28 are engaged, we performed label‐free quantitative MS and network analysis. Mixed‐effect model analysis of peptide intensity identified 149 unique peptides representing 131 proteins that were differentially regulated by ManLAM in anti‐CD3‐ and anti‐CD28‐activated CD4+ T cells. Crosstalker, a novel network analysis tool identified dysregulated translation, TCA cycle, and RNA metabolism network modules. PCNA, Akt, mTOR, and UBC were found to be bridge node proteins connecting these modules of dysregulated proteins. Altered PCNA expression and cell cycle analysis showed arrest at the G2M phase. Western blot confirmed that ManLAM inhibited Akt and mTOR phosphorylation, and decreased expression of deubiquitinating enzymes Usp9x and Otub1. Decreased NF‐κB phosphorylation suggested interference with CD28 signaling through inhibition of the Usp9x‐Akt‐mTOR pathway. Thus, ManLAM induced global changes in the CD4+ T‐cell proteome by affecting Akt‐mTOR signaling, resulting in broad functional impairment of CD4+ T‐cell activation beyond inhibition of proximal TCR–CD3 signaling.  相似文献   

15.
Nigou J  Gilleron M  Puzo G 《Biochimie》2003,85(1-2):153-166
Mycobacterium tuberculosis, the causative agent of tuberculosis, is one of the most effective human pathogens and the molecular basis of its virulence remains poorly understood. Here, we review our current knowledge about the structure and biosynthesis of the mycobacterial cell-wall lipoglycans, lipoarabinomannans (LAM). LAM are ubiquitous of mycobacteria and appear as the most potent non-peptidic molecules to modulate the host immune response. Nevertheless, LAM structure differs according to the mycobacterial species and three types of LAM have been described: mannose-capped LAM (ManLAM), phospho-myo-inositol-capped LAM (PILAM) and non-capped LAM (AraLAM). The type of capping is a major structural feature determining the ability of LAM to modulate the immune response. ManLAM, found in slow-growing mycobacteria, such as M. tuberculosis, have been demonstrated to be powerful anti-inflammatory molecules and emerge as key virulence factors that may be relevant drug targets. LAM-like molecules are not only confined to mycobacteria but are also present in actinomycetes (including the genera Rhodococcus, Corynebacterium or Gordonia). This offers the possibility of comparative studies that should help in deciphering the structure-function relationships and biosynthesis of these complex molecules in the future.  相似文献   

16.
PE_PGRS proteins are unique to the Mycobacterium tuberculosis complex and a number of other pathogenic mycobacteria. PE_PGRS30, which is required for the full virulence of M. tuberculosis (Mtb), has three main domains, i.e. an N-terminal PE domain, repetitive PGRS domain and the unique C-terminal domain. To investigate the role of these domains, we expressed a GFP-tagged PE_PGRS30 protein and a series of its functional deletion mutants in different mycobacterial species (Mtb, Mycobacterium bovis BCG and Mycobacterium smegmatis) and analysed protein localization by confocal microscopy. We show that PE_PGRS30 localizes at the mycobacterial cell poles in Mtb and M. bovis BCG but not in M. smegmatis and that the PGRS domain of the protein strongly contributes to protein cellular localization in Mtb. Immunofluorescence studies further showed that the unique C-terminal domain of PE_PGRS30 is not available on the surface, except when the PGRS domain is missing. Immunoblot demonstrated that the PGRS domain is required to maintain the protein strongly associated with the non-soluble cellular fraction. These results suggest that the repetitive GGA-GGN repeats of the PGRS domain contain specific sequences that contribute to protein cellular localization and that polar localization might be a key step in the PE_PGRS30-dependent virulence mechanism.  相似文献   

17.
Mycobacterium tuberculosis, the infectious agent of human tuberculosis is a master player in circumventing the defense mechanisms of the host immune system. The host‐pathogen interaction in the case of an infection with M. tuberculosis is highly complex, involving dedicated mycobacterial virulence factors as well as the action of the innate and adapted immune systems, which determine the outcome of infection. Macrophages play a key role in this process through internalizing the bacterium in a phagosomal vacuole. While this action has normally the function of eliminating invading bacteria, M. tuberculosis employs efficient strategies to prevent its extermination. The question on how‐and‐where the bacterium succeeds in doing so has interested generations of scientists and still remains a fascinating and important research subject focused on mycobacterial lipids, secretion systems and other contributing factors. This topic is also central to the longstanding and partially controversial discussion on mycobacterial phagosomal rupture and vacuole‐to‐cytosol translocation, to be reviewed here in more detail.  相似文献   

18.
Although phthiocerol dimycocerosates (DIM) are major virulence factors of Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, little is known about their mechanism of action. Localized in the outer membrane of mycobacterial pathogens, DIM are predicted to interact with host cell membranes. Interaction with eukaryotic membranes is a property shared with another virulence factor of Mtb, the early secretory antigenic target EsxA (also known as ESAT‐6). This small protein, which is secreted by the type VII secretion system ESX‐1 (T7SS/ESX‐1), is involved in phagosomal rupture and cell death induced by virulent mycobacteria inside host phagocytes. In this work, by the use of several knock‐out or knock‐in mutants of Mtb or Mycobacterium bovis BCG strains and different cell biological assays, we present conclusive evidence that ESX‐1 and DIM act in concert to induce phagosomal membrane damage and rupture in infected macrophages, ultimately leading to host cell apoptosis. These results identify an as yet unknown function for DIM in the infection process and open up a new research field for the study of the interaction of lipid and protein virulence factors of Mtb.  相似文献   

19.
Monocyte chemotactic protein-3 (MCP-3) is a C–C chemokine which interacts with the CCR1, CCR2 (MCP-1) and CCR3 receptors and has a distinct spectrum of action. The present study was designed to assess whether mycobacterial components were able to induce expression and production of MCP-3 in human monocytes. Mycobacterial lipoarabinomannan (LAM) induced expression of MCP-3 mRNA in human peripheral blood mononuclear cells. The non-mannose-capped version of lipoarabinomannan (AraLAM) was considerably more potent than the mannose-capped version ManLAM or the simpler version phosphatidylinositol mannoside (PLM). Among mononuclear cells, monocytes were responsible for LAM-induced MCP-3 mRNA expression. Whole mycobacteria (Mycobacterium bovisBCG) strongly induced MCP-3 expression. Pretreatment with actinomycin D abolished LAM-induced MCP-3 expression, whereas cycloheximide only partially reduced the expression. LAM-induced MCP-3 expression was associated with the production of immunoreactive PTX3. Interleukin 10 (IL-10) and IL-13 inhibited the induction of MCP-3 by LAM. Thus mycobacterial cell wall components induced expression of MCP-3 in human monocytes. MCP-3, a chemokine active on mononuclear phagocytes, NK cells, T cells and dendritic cells, may be relevant to the induction and expression of immunity against mycobacteria.  相似文献   

20.
The biosynthesis of mycobacterial mannose-containing lipoglycans, such as lipomannan (LM) and the immunomodulator lipoarabinomanan (LAM), is carried out by the GT-C superfamily of glycosyltransferases that require polyprenylphosphate-based mannose (PPM) as a sugar donor. The essentiality of lipoglycan synthesis for growth makes the glycosyltransferase that synthesizes PPM, a potential drug target in Mycobacterium tuberculosis, the causative agent of tuberculosis. In M. tuberculosis, PPM has been shown to be synthesized by Ppm1 in enzymatic assays. However, genetic evidence for its essentiality and in vivo role in LM/LAM and PPM biosynthesis is lacking. In this study, we demonstrate that MSMEG3859, a Mycobacterium smegmatis gene encoding the homologue of the catalytic domain of M. tuberculosis Ppm1, is essential for survival. Depletion of MSMEG3859 in a conditional mutant of M. smegmatis resulted in the loss of higher order phosphatidyl-myo-inositol mannosides (PIMs) and lipomannan. We were also able to demonstrate that two other M. tuberculosis genes encoding glycosyltransferases that either had been shown to possess PPM synthase activity (Rv3779), or were involved in synthesizing similar polyprenol-linked donors (ppgS), were unable to compensate for the loss of MSMEG3859 in the conditional mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号