首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During gonorrhoeal infection, there is a heterogeneous population of Neisseria gonorrhoeae (Gc) varied in their expression of opacity‐associated (Opa) proteins. While Opa proteins are important for bacterial attachment and invasion of epithelial cells, Opa+ Gc has a survival defect after exposure to neutrophils. Here, we use constitutively Opa? and OpaD+ Gc in strain background FA1090 to show that Opa+ Gc is more sensitive to killing inside adherent, chemokine‐treated primary human neutrophils due to increased bacterial residence in mature, degradative phagolysosomes that contain primary and secondary granule antimicrobial contents. Although Opa+ Gc stimulates a potent oxidative burst, neutrophil killing of Opa+ Gc was instead attributable to non‐oxidative components, particularly neutrophil proteases and the bactericidal/permeability‐increasing protein. Blocking interaction of Opa+ Gc with carcinoembryonic antigen‐related cell adhesion molecules (CEACAMs) or inhibiting Src family kinase signalling, which is downstream of CEACAM activation, enhanced the survival of Opa+ Gc in neutrophils. Src family kinase signalling was required for fusion of Gc phagosomes with primary granules to generate mature phagolysosomes. Conversely, ectopic activation of Src family kinases or coinfection with Opa+ Gc resulted in decreased survival of Opa? Gc in neutrophils. From these results, we conclude that Opa protein expression is an important modulator of Gc survival characteristics in neutrophils by influencing phagosome dynamics and thus bacterial exposure to neutrophils’ full antimicrobial arsenal.  相似文献   

2.
3.
Symptomatic infection by Neisseria gonorrhoeae (Gc) produces a potent inflammatory response, resulting in a neutrophil‐rich exudate. A population of Gc can survive the killing activities of neutrophils for reasons not completely understood. Unlike other Gram‐negative bacteria, Gc releases monomeric peptidoglycan (PG) extracellularly, dependent on two nonessential, nonredundant lytic transglycosylases (LTs), LtgA and LtgD. PG released by LtgA and LtgD can stimulate host immune responses. We report that ΔltgAΔltgD Gc were decreased in survival in the presence of primary human neutrophils but otherwise grew equally to wild‐type Gc. Adding PG monomer failed to alter ΔltgAΔltgD Gc survival. Thus, LTs protect Gc from neutrophils independently of monomer release. We found two reasons to explain decreased survival of the double LT mutant. First, ΔltgAΔltgD Gc was more sensitive to the neutrophil antimicrobial proteins lysozyme and neutrophil elastase, but not others. Sensitivity to lysozyme correlated with decreased Gc envelope integrity. Second, exposure of neutrophils to ΔltgAΔltgD Gc increased the release of neutrophil granule contents extracellularly and into Gc phagosomes. We conclude that LtgA and LtgD protect Gc from neutrophils by contributing to envelope integrity and limiting bacterial exposure to select granule‐localized antimicrobial proteins. These observations are the first to link bacterial degradation by lysozyme to increased neutrophil activation.  相似文献   

4.
We recently reported that the human pathogen Streptococcus pyogenes of the M1 serotype survives and replicates intracellularly after being phagocytosed by human neutrophils. These data raised the possibility that the generation of reactive oxygen metabolites by neutrophils, and the release of microbicidal molecules from their azurophilic and specific granules into phagosomes, can be modulated by S. pyogenes bacteria expressing surface-associated M and/or M-like proteins. We now demonstrate, using flow cytometry, immunofluorescence microscopy and transmission electron microscopy, that live wild-type S. pyogenes, after internalization by human neutrophils, inhibits the fusion of azurophilic granules with phagosomes. In contrast, azurophilic granule-content is efficiently delivered to phagosomes containing bacteria not expressing M and/or M-like proteins. Also, when heat-killed wild-type bacteria are used as the phagocytic prey, fusion of azurophilic granules with phagosomes is observed. The inhibition caused by live wild-type S. pyogenes is specific for azurophilic granule-phagosome fusion, because the mobilization of specific granules and the production of reactive oxygen species are induced to a similar extent by all strains tested. In conclusion, our results demonstrate that viable S. pyogenes bacteria expressing M and M-like proteins selectively prevent the fusion of azurophilic granules with phagosomes.  相似文献   

5.
Infection of the endometrium by Neisseria gonorrhoeae is a pivotal stage in the development of pelvic inflammatory disease in women. An ex vivo model of cultures of primary human endometrial cells was developed to study gonococcal-host cell interactions. To facilitate these studies, gonococci were transformed with a hybrid shuttle vector containing the gfp gene from Aequoria victoria, encoding the green fluorescent protein (GFP), to produce intrinsically fluorescent bacteria. The model demonstrated that both pili and Opa proteins were important for both mediating gonococcal interactions with endometrial cells and inducing the secretion of pro-inflammatory cytokines and chemokines. Pil+ gonococci showed high levels of adherence and invasion, regardless of Opa expression, which was associated with increased secretion of IL-8 chemokine and reduced secretion of IL-6 cytokine. Gonococcal challenge also caused increased secretion of TNF-alpha cytokine, but this did not correlate with expression of pili or Opa, suggesting that release of components from non-adherent bacteria may be involved in TNF-alpha induction. Thus, the use of cultured primary endometrial cells, together with gonococci expressing green fluorescent protein, has the potential to extend significantly our knowledge, at the molecular level, of the role of this important human pathogen in the immunobiology of pelvic inflammatory disease.  相似文献   

6.
Dynamic reorganization of the actin cytoskeleton dictates plasma membrane morphogenesis and is frequently subverted by bacterial pathogens for entry and colonization of host cells. The human-adapted bacterial pathogen Neisseria gonorrhoeae can colonize and replicate when cultured with human macrophages, however the basic understanding of how this process occurs is incomplete. N. gonorrhoeae is the etiological agent of the sexually transmitted disease gonorrhea and tissue resident macrophages are present in the urogenital mucosa, which is colonized by the bacteria. We uncovered that when gonococci colonize macrophages, they can establish an intracellular or a cell surface-associated niche that support bacterial replication independently. Unlike other intracellular bacterial pathogens, which enter host cells as single bacterium, establish an intracellular niche and then replicate, gonococci invade human macrophages as a colony. Individual diplococci are rapidly phagocytosed by macrophages and transported to lysosomes for degradation. However, we found that surface-associated gonococcal colonies of various sizes can invade macrophages by triggering actin skeleton rearrangement resulting in plasma membrane invaginations that slowly engulf the colony. The resulting intracellular membrane-bound organelle supports robust bacterial replication. The gonococci-occupied vacuoles evaded fusion with the endosomal compartment and were enveloped by a network of actin filaments. We demonstrate that gonococcal colonies invade macrophages via a process mechanistically distinct from phagocytosis that is regulated by the actin nucleating factor FMNL3 and is independent of the Arp2/3 complex. Our work provides insights into the gonococci life-cycle in association with human macrophages and defines key host determinants for macrophage colonization.  相似文献   

7.
8.
Phagocytosis of opsonized particles by neutrophils involves highly localized alterations in the actin cytoskeleton that result in the formation of prominent pseudopodia and the phagocytic cup. Immunofluorescence microscopy was employed to monitor the distribution of several proteins that can regulate the cytoskeleton in human neutrophils undergoing phagocytosis of opsonized Candida albicans. The small GTPase Cdc42, its inhibitory subunit Rho-GDI, the adapter protein Nck, gamma-p21-activated protein kinase (gamma-Pak), and cofilin were found to undergo rapid association with the developing phagosomes in these cells. In contrast, these signaling proteins were either diffusely distributed in the cytoplasm or enriched in focal points at the base of the cell when optical sections were obtained from regions of the cell not involved in phagocytosis. These results are consistent with Cdc42 being critically involved in initiating the early events in phagocytosis by its ability to activate Pak and the Wiskott-Aldrich Syndrome protein that triggers the localized polymerization of actin. These data provide insights into the molecular mechanisms that trigger changes in the actin cytoskeleton during phagocytosis.  相似文献   

9.
Ultrastructural and functional studies of degranulation responses by human neutrophils have suggested that microtubules (MTs) have a role in the intracellular transport of neutrophil granules. We have found that granule-MT complexes can be isolated from disrupted taxol-treated (1.0 microM) neutrophils, visualized by electron microscopy, and quantified in terms of granules per MT length. After incubation of neutrophils with the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP), granule-MT complex formation was found to be increased two- to threefold. Enhanced binding of granules to MTs was detectable within 30 s of fMLP stimulation and was dependent on the concentration of fMLP. Incubation of cells with dibutyryl cAMP inhibited this fMLP-stimulated granule-MT complex formation in a dose-responsive fashion. These granule-MT interactions could be reproduced in a cell-free system with neutrophil granules isolated by density gradient centrifugation and MTs polymerized from phosphocellulose-purified tubulin. Furthermore, reconstituted granule-MT interactions were found to be modulated by ATPase inhibitors. Sodium orthovanadate increased granule-MT interactions in a concentration-dependent manner, while AMP-PNP, a nonhydrolyzable ATP analogue, and N-ethylmaleimide decreased or eliminated these interactions. In addition, we found that a MT-activated ATPase could be recovered from intact neutrophil granules by salt extraction, and that extracts enriched in this ATPase contained a polypeptide of between 115 and 120 kD which binds ATP and is immunologically related to kinesin. These studies demonstrate that cytoplasmic granules interact with MTs in human neutrophils in a regulated stimulus-responsive manner, and they suggest that such interactions may involve an MT-based, ATPase-dependent, vesicle translocation system as has been demonstrated in other types of cells.  相似文献   

10.
Lactobacilli are normal inhabitants of our microbiota and are known to protect against pathogens. Neisseria gonorrhoeae is a human specific pathogenic bacterium that colonises the urogenital tract where it causes gonorrhoea. In this study we analysed early interactions between lactobacilli and gonococci and investigated how they compete for adherence to human epithelial cervical cells. We show that lactobacilli adhere at various levels and that the number of adherent bacteria does not correlate to the level of protection against gonococcal infection. Protection against gonococcal adhesion varied between Lactobacillus species. Lactobacillus crispatus, Lactobacillus gasseri and Lactobacillus reuteri were capable of reducing gonococcal adherence while Lactobacillus rhamnosus was not. Lactobacillus strains of vaginal origin had the best capacity to remain attached to the host cell during gonococcal adherence. Further, we show that gonococci and lactobacilli interact with each other with resultant lactobacilli incorporation into the gonococcal microcolony. Hence, gonococci bind to colonised lactobacilli and this complex frequently detaches from the epithelial cell surface, resulting in reduced bacterial colonisation. Also, purified gonococcal pili are capable of removing adherent lactobacilli from the cell surface. Taken together, we reveal novel data regarding gonococcal and lactobacilli competition for adherence that will benefit future gonococcal prevention and treatments.  相似文献   

11.
Neisseria gonorrhoeae secrets a phospholipase D (NgPLD), which augments complement receptor 3 (CR3)-mediated invasion of cervical epithelial cells. To elucidate the signalling pathways triggered with gonococcus CR3-engagement and the putative function of NgPLD in these events, we analysed the contribution of the phosphoinositide-Akt pathway to cervical infection. Our data indicated that Akt plays a critical role in cervical infection. Inhibition of myosin light chain kinase, PtdIns(4,5)P2, and Akt functions resulted in decreased gonococcus invasion of primary, human, cervical epithelial cells as well as Akt kinase activity. Akt activity was similarly impaired when cervical cells were challenged with NgPLD-mutant gonococci. Conversely, the PI3-kinase inhibitor, LY294002, enhanced gonococcal invasion of, and Akt activity within, primary cervical cells. We demonstrated that NgPLD directly binds to the Akt PH domain and can compete with a natural Akt ligand, PtdIns(3,4,5)P3, for Akt binding. Collectively, our data suggested that NgPLD augments gonococcus invasion of cervical epithelia by interacting with Akt kinase in a PI3-kinase-independent manner, which results in subversion of normal cervical cell signalling.  相似文献   

12.
Symptomatic infection with Neisseria gonorrhoeae (Gc) is characterized by abundant neutrophil (PMN, polymorphonuclear leucocyte) influx, but PMNs cannot clear initial infection, indicating that Gc possess defences against PMN challenge. In this study, survival of liquid-grown Gc was monitored after synchronous infection of adherent, interleukin 8-treated human PMNs. 40–70% of FA1090 Gc survived 1 h of PMN exposure, after which bacterial numbers increased. Assays with bacterial viability dyes along with soybean lectin to detect extracellular Gc revealed that a subset of both intracellular and extracellular PMN-associated Gc were viable. Gc survival was unaffected in PMNs chemically or genetically deficient for producing reactive oxygen species (ROS). This result held true even for OpaB+ Gc, which stimulate neutrophil ROS production. Catalase- and RecA-deficient Gc, which are more sensitive to ROS in vitro , had no PMN survival defect. recN and ngo1686 mutant Gc also exhibit increased sensitivity to ROS and PMNs, but survival of these mutants was not rescued in ROS-deficient cells. The ngo1686 mutant showed increased sensitivity to extracellular but not intracellular PMN killing. We conclude that Gc are remarkably resistant to PMN killing, killing occurs independently of neutrophil ROS production and Ngo1686 and RecN defend Gc from non-oxidative PMN antimicrobial factors.  相似文献   

13.
Mycobacterium tuberculosis successfully parasitizes macrophages by disrupting the maturation of its phagosome, creating an intracellular compartment with endosomal rather than lysosomal characteristics. We have recently demonstrated that live M. tuberculosis infect human macrophages in the absence of an increase in cytosolic Ca(2+) ([Ca(2+)](c)), which correlates with inhibition of phagosome-lysosome fusion and intracellular viability. In contrast, killed M. tuberculosis induces an elevation in [Ca(2+)](c) that is coupled to phagosome-lysosome fusion. We tested the hypothesis that defective activation of the Ca(2+)-dependent effector proteins calmodulin (CaM) and CaM-dependent protein kinase II (CaMKII) contributes to the intracellular pathogenesis of tuberculosis. Phagosomes containing live M. tuberculosis exhibited decreased levels of CaM and the activated form of CaMKII compared with phagosomes encompassing killed tubercle bacilli. Furthermore, ionophore-induced elevations in [Ca(2+)](c) resulted in recruitment of CaM and activation of CaMKII on phagosomes containing live M. tuberculosis. Specific inhibitors of CaM or CaMKII blocked Ca(2+) ionophore-induced phagosomal maturation and enhanced the bacilli's intracellular viability. These results demonstrate a novel role for CaM and CaMKII in the regulation of phagosome-lysosome fusion and suggest that defective activation of these Ca(2+)-activated signaling components contributes to the successful parasitism of human macrophages by M. tuberculosis.  相似文献   

14.
15.
The bactericidal activity of human sera for Neisseria gonorhoeae was studied. Sera were obtained from a group of patients with gonococcal infections who had acute urethritis, acute pelvic inflammatory disease, disseminated gonococcal infection, or who were asymptomatic carriers. The homologous and heterologous strains were tested with these sera. The development of serum bactericidal antibodies was not a universal event. With few exceptions, the susceptibility of a particular strain to human antibody and complement appeared to be largely independent of the particular person from whom the serum was obtained and was due instead to antigenic properties intrinsic to each individual strain. Lipopolysaccharide appeared to be the predominant antigen against which bactericidal antibodies were directed. The principal bactericidal antibody class was IgM. Blocking antibodies were not found to account for the lack of lytic activity. A correlation of bactericidal antibodies with protection from developing gonococcal infection could not be demonstrated in three pateints.  相似文献   

16.
On SDS-PAGE, solubilized and proteinase K treated preparations of Neisseria gonorrhoeae strain BS4 (agar) showed differences in silver stained lipopolysaccharide (LPS) patterns, before and after induction to resistance to serum killing by incubation for 3 h at 37 degrees C with low Mr fractions from lysates of guinea pig red blood cells. Preparations from the original serum susceptible gonococci and LPS purified from such bacteria showed two components, but the preparations from the serum resistant gonococci were deficient in the higher Mr component. Furthermore, on immunoblotting with fresh human serum (FHS), the two LPS components of the susceptible gonococci reacted strongly with IgM. With preparations from the serum resistant gonococci there was no reaction in the area corresponding to the higher Mr component and a weaker reaction with the component of low Mr. Purified LPS from the susceptible gonococci neutralized the bactericidal activity of FHS against N. gonorrhoeae strain BS4 (agar) probably by reacting with the relevant antibody, since heated FHS was no longer bactericidal when mixed with a source of complement (human placental serum) after prior reaction with the LPS. These neutralization tests coupled with the results of immunoblotting strongly suggest that increased serum resistance is due to the lack of the high Mr LPS moiety.  相似文献   

17.
Neisseria gonorrhoeae were exposed to extracts of human neutrophil granules and effects on gonococcal growth and membranes were determined. Enumeration of gonococci by phase-contrast microscopy at 0 and 60 min revealed that they underwent very limited cell division after exposure to granule extract. At 60 min, treated gonococci tended to clump, and some lost their refractivity under phase-contrast optics, indicating membrane damage. Treated and untreated gonococci utilized oxygen at similar rates at time 0; treated gonococci utilized oxygen at a relatively constant rate for 60 min, even though colony-forming ability (i.e. viability) decreased by 90%, whereas untreated gonococci showed a steadily increasing rate of oxygen consumption over the same period, which essentially paralleled increase in colony-forming ability. Membrane ultrastructure of untreated and treated gonococci was compared in thin section by transmission electron microscopy. Extract treatment resulted in a time-related increase in disruption of the bacterial outer membrane, which became apparent almost immediately after treatment. This was accompanied by increasingly aberrant septum structure. Extract treatment also increased the resolution of peptidoglycan by electron microscopy, as early as 10 min after treatment. These data suggest that extract treatment of gonococci caused a rapid loss of the ability to form colonies on agar concomitant with alteration of gonococcal peptidoglycan and outer-membrane structure, but with little alteration of inner-membrane function.  相似文献   

18.
19.
Two pilus receptors are identified for the pathogenic Neisseria, CD46 and complement receptor 3. An intimate association between the asialoglycoprotein receptor and gonococcal lipooligosaccharide mediates invasion of primary, male urethral epithelial cells (UECs); however, studies to identify pilus receptors on these cells have not been performed. Based on our previous studies we reasoned that the I-domain-containing (IDC), alpha(1)- and alpha(2)-integrins might serve as pilus receptors on UECs and on urethral tissue. Confocal microscopy revealed colocalization of pilus with alpha(1) and alpha(2) integrins on UECs and tissue. We found that recombinant I-domain and antibodies directed against the alpha(1)- and alpha(2)-integrins inhibited gonococcal association with UECs and with immortal cell lines of variable origin. Gonococcus-integrin colocalization occurred at early time points post infection, but this interaction dissociated with extended infection. Similarly, Western Blot analyses revealed that gonococcal pilin coimmunoprecipitates with alpha(1)- and alpha(2)-integrins. However, studies performed in parallel and that were designed to capture CD46-pilus immune complexes indicated that a CD46-pilus interaction did not occur. Collectively, these data suggest that while CD46 might be able to bind gonococcal pilus, IDC integrins are preferentially used as the initial docking site for gonococci on UECs, on urethral tissue and on some immortal cell lines.  相似文献   

20.
Serum-susceptible (SS) Neisseria gonorrhoeae were induced to resistance (SR) to complement-mediated killing by fresh human serum (FHS) by a small-Mr factor(s) from guinea-pig blood in 3 h at 37 degrees C, but not in the presence of bacteriostatic concentrations of chloramphenicol or neomycin, indicating that proteins mediated the acquisition of resistance. SDS-PAGE protein profiles of lysates of equal numbers of gonococci showed only two qualitative differences between SR and SS organisms, both in minor components (a protein A of about 205 kDa in the former and not the latter and vice versa for a protein B of about 16 kDa). Many proteins, however, including the three principal outer-membrane proteins, were present in larger amounts in SR gonococci. The lack of major changes in proteins when resistance is acquired was confirmed by immunoblotting the two protein profiles with the IgG of hyper-immune rabbit anti-SR and anti-SS sera, of rabbit anti-SR serum after absorption by SS organisms and of FHS used alone and after absorption with SS organisms. The IgM of FHS, which is responsible for most of the bactericidal activity, showed only faint reactions with a few proteins common to both SS and SR gonococci and no reactions when the FHS was absorbed with SS gonococci. This is in contrast to the strong and different reactions given with lipopolysaccharide (LPS) components of SS and SR organisms, which, prepared from the former organisms, neutralize the bactericidal activity of FHS. Hence, the relatively small protein changes accompanying induction are less likely to be directly responsible for serum resistance than the more profound LPS changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号