首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Fire is widely used for conservation management in the savannah landscapes of northern Australia, yet there is considerable uncertainty over the ecological effects of different fire regimes. The responses of insects and other arthropods to fire are especially poorly known, despite their dominant roles in the functioning of savannah ecosystems. Fire often appears to have little long‐term effect on ordinal‐level abundance of arthropods in temperate woodlands and open forests of southern Australia, and this paper addresses the extent to which such ordinal‐level resilience also occurs in Australia’s tropical savannahs. The data are from a multidisciplinary, landscape‐scale fire experiment at Kapalga in Kakadu National Park. Arthropods were sampled in the two major savannah habitats (woodland and open forest) using pitfall traps and sweep nets, in 15–20 km2 compartments subjected to one of three fire regimes, each with three replicates: ‘early’ (annual fires lit early in the dry season), ‘late’ (annual fires lit late in the dry season), and ‘unburnt’ (fires absent during the five‐year experimental period 1990–94). Floristic cover, richness and composition were also measured in each sampling plot, using point quadrats. There were substantial habitat differences in floristic composition, but fire had no measured effect on plant richness, overall composition, or cover of three of the four dominant species. Of the 11 ordinal arthropod taxa considered from pitfall traps, only four were significantly affected by fire according to repeated‐measures ANOVA . There was a marked reduction in ant abundance in the absence of fire, and declines in spiders, homopterans and silverfish under late fires. Similarly, the abundances of only four of the 10 ordinal taxa from sweep catches were affected by fire, with crickets and beetles declining in the absence of fire, and caterpillars declining under late fires. Therefore, most of the ordinal taxa from the ground and grass‐layer were unaffected by the fire treatments, despite the treatments representing the most extreme fire regimes possible in the region. This indicates that the considerable ordinal‐level resilience to fire of arthropod assemblages that has previously been demonstrated in temperate woodlands and open forests of southern Australia, also occurs in tropical savannah woodlands and open forests of northern Australia.  相似文献   

2.
Terrestrial arthropods are diverse, and quantifying their availability to consumers is important for understanding both consumer and insect distribution, abundance, and communities. However, characterizing arthropod communities in complex forest ecosystems is challenging. We compared arthropod communities in a wet‐limestone forest in Jamaica during the dry season sampled by four methods: branch clips, sweep netting, and sticky traps applied to tree trunks and hanging free of vegetation. We found no effect of relative height in the canopy for the two methods that could be used at different heights, i.e., hanging sticky traps and branch clips. In addition, the arthropod community sampled changed over time (season) for sweep nets and branch clips. We also found that branch clips and sweep nets sampled more arthropod taxa than the two sticky‐trap methods. In addition, branch clips and sweep nets sampled more ants and spiders than the two sticky‐trap methods, whereas collar sticky traps on tree trunks sampled more bark lice (Psocoptera), and hanging sticky traps more flies (Diptera) than the other methods. Percentages of flying insects and strong‐flying insects sampled did not differ between sweep netting and branch clipping, but a higher percentage of both groups were captured with collar and hanging sticky traps. Because we found that the different methods sampled different subsets of the arthropod community, both taxonomically and in terms of aerial versus non‐aerial taxa, investigators should choose the arthropod sampling methods that most closely align with their focal species and study questions. For example, investigators might use collar traps for studies of bark gleaners, hanging sticky traps for aerial foragers, and branch clips or sweep nets for foliage gleaners. Alternatively, if a focal species is known to prefer certain prey items, investigators may instead select a method that effectively samples those prey taxa. Finally, for some studies, using multiple sampling methods may be the best option.  相似文献   

3.
ABSTRACT With numerous invertebrate sampling techniques available, deciding which technique to use under certain circumstances may be difficult. Many researchers interested in invertebrate abundance and availability relative to the foraging ecology of birds may use a technique (e.g., vacuum sampling or sweep‐netting) without understanding the impacts their choice may have on the samples collected and the ability of the method to meet research objectives. We compared the characteristics, including overall biomass, morphospecies richness, average size, diversity, and body length categories, of invertebrates collected using a sweep‐net and a Dietrick vacuum sampler along paired transects in Woodward County, Oklahoma, from May to July 2007 and 2008. These sampling techniques differed in the taxa collected, with the orders Diptera, Homoptera, and Hymenoptera dominating vacuum samples and the orders Homoptera, Orthoptera, and Araneae dominating sweep‐net samples. Although morphospecies richness was similar for the two techniques, the mean size of invertebrates collected and overall invertebrate biomass were greater for sweep‐netting than vacuum sampling. Vacuum sampling was more effective at collecting small (e.g., <5 cm) invertebrates, whereas sweep‐netting captured large (>5 cm) Orthopteran and Lepidopteran larvae at higher rates. Thus, our results indicate that neither sampling method effectively sampled all invertebrate families and investigators should be aware of the potential biases of different sampling techniques and be certain that the technique selected will allow study objectives to be met.  相似文献   

4.
Common methods to assess diversity and abundance of Orthoptera are sweep netting, transect counts and box-quadrat sampling. Pitfall trapping, by contrast, is rarely used, and the value of this method is still being questioned. In 2008, we studied Orthoptera species richness and abundance in five vegetation types along a gradient of dune succession on the Baltic Sea island of Hiddensee (NE Germany) by comparing transect-count and pitfall-trapping data. Using transect counts, 12 species were detected in the study area. With pitfall traps, three chorto- and thamnobiont Ensifera species (C. dorsalis, M. roeselii and T. viridissima) were not caught at all, and it was only in low-growing and sparsely-vegetated grey dunes that all present species were detected. With pitfall traps, the proportion of present species recorded strongly declined with increasing height and density of the vegetation type. Assuming that transect counts are a good proxy for relative Orthoptera densities, densities ascertained by pitfall traps are strongly biased by vegetation structure and locomotive behaviour of the species. More than 80% of all individuals were caught in sparsely-vegetated grey dunes. Frequency patterns of the species also differed. Using pitfall traps, especially chortobiont species were significantly underrepresented. Qualitative and quantitative sampling of Orthoptera using pitfall traps seems only reasonable in habitats with low and sparse vegetation and a high proportion of geobiont species.  相似文献   

5.
The abundance, richness and trophic structure of beetle assemblages (Insecta: Coleoptera) from remnant eucalypt woodlands of the Northern Plains, Victoria, is documented. Three sampling methods (pitfall trapping, direct searching, sweep netting) were used to sample beetles in four seasons over a year. A total of 4487 beetles were sorted into 342 morphospecies from 46 families. Pitfall trapping alone caught the greatest number of families (72%), morphospecies (56%) and specimens (50%). However, direct searching and sweep netting yielded a large number of morphospecies not caught by pitfall trapping. Sampling in summer yielded the greatest number of families (78%) and morphospecies (55%) but the most specimens (31%) were caught during winter. The proportions of different trophic groups varied little across different seasons but greatly for sampling methods. Pitfall trapping caught a higher proportion of predators and a lower proportion of herbivores than other sampling methods. Direct searching caught mostly herbivores, whilst sweep netting captured a large number of fungivores. The results have implications for the design of sampling sets for inventory surveys of invertebrate groups.  相似文献   

6.
Understanding how biodiversity responds to environmental changes is essential to provide the evidence-base that underpins conservation initiatives. The present study provides a standardized comparison between unbaited flight intercept traps (FIT) and baited pitfall traps (BPT) for sampling dung beetles. We examine the effectiveness of the two to assess fire disturbance effects and how trap performance is affected by seasonality. The study was carried out in a transitional forest between Cerrado (Brazilian Savanna) and Amazon Forest. Dung beetles were collected during one wet and one dry sampling season. The two methods sampled different portions of the local beetle assemblage. Both FIT and BPT were sensitive to fire disturbance during the wet season, but only BPT detected community differences during the dry season. Both traps showed similar correlation with environmental factors. Our results indicate that seasonality had a stronger effect than trap type, with BPT more effective and robust under low population numbers, and FIT more sensitive to fine scale heterogeneity patterns. This study shows the strengths and weaknesses of two commonly used methodologies for sampling dung beetles in tropical forests, as well as highlighting the importance of seasonality in shaping the results obtained by both sampling strategies.  相似文献   

7.
8.
To discuss the challenge of monitoring multi-species responses of tropical arthropods to disturbance, we considered a large dataset (4 × 105 individuals; 1,682 morphospecies representing 22 focal taxa) based on the work of parataxonomists to examine the effects of anthropogenic disturbance on arthropods at Gamba, Gabon. Replication included three sites in each of four different stages of forest succession and land use after logging, surveyed during a whole year with four sampling methods: pitfall, Malaise, flight-interception and yellow pan traps. We compared the suitability of each sampling method for biological monitoring and evaluated statistically their reliability for 118 arthropod families. Our results suggest that a range of sampling methods yields more diverse material than any single method operated with high replication. Multivariate analyses indicated that morphospecies composition in trap catches was more strongly influenced by habitat type than by sampling methods. This implies that for multi-species monitoring, differences in trap efficiency between habitats may be neglected, as far as habitat types remain well contrasted. We conclude that for the purpose of monitoring large arthropod assemblages in the long-term, a protocol based on operating a set of different and non-disruptive traps appears superior in design than summing a series of taxa-specific protocols.  相似文献   

9.
An understanding of species turnover at different spatial scales and the influence of environmental variables including distance are important for conservation planning and management. Ground dwelling, flightless invertebrates have poor dispersal abilities and other taxa may not be effective as surrogates. This is an important consideration for biodiversity conservation in Afrotemperate forests of the Drakensberg Mountains, South Africa, where flightless invertebrates are geographically isolated by the naturally fragmented state of forests. Seventeen Afrotemperate forests in four reserves across the Drakensberg were sampled using soil and leaf litter sampling, pitfall traps, active search quadrats and tree beats. Seventy-two species were recorded, comprising 31 mollusc, nine earthworm, one onychophoran, six centipede, twelve millipede and thirteen ant species. Canonical correspondence analysis indicated that latitude (distance); fire history (disturbance) and mean annual precipitation were the most important factors governing invertebrate assemblage composition. βsim measurements detected change in species at all spatial scales investigated, but no clear trends were evident. Distance or spatial scale alone does not explain species turnover and community composition. Effective selection of target areas, therefore, requires species level information to identify species of special concern.  相似文献   

10.
Bees are the predominant pollinating taxa, providing a critical ecosystem service upon which many angiosperms rely for successful reproduction. Available data suggests that bee populations worldwide are declining, but scarce data in tropical regions precludes assessing their status and distribution, impact on ecological services, and response to management actions. Herein, we reviewed >150 papers that used six common sampling methods (pan traps, baits, Malaise traps, sweep nets, timed observations and aspirators) to better understand their strengths and weaknesses, and help guide method selection to meet research objectives and development of multi-species monitoring approaches. Several studies evaluated the effectiveness of sweep nets, pan traps, and malaise traps, but only one evaluated timed observations, and none evaluated aspirators. Only five studies compared two or more of the remaining four sampling methods to each other. There was little consensus regarding which method would be most reliable for sampling multiple species. However, we recommend that if the objective of the study is to estimate abundance or species richness, malaise traps, pan traps and sweep nets are the most effective sampling protocols in open tropical systems; conversely, malaise traps, nets and baits may be the most effective in forests. Declining bee populations emphasize the critical need in method standardization and reporting precision. Moreover, we recommend reporting a catchability coefficient, a measure of the interaction between the resource (bee) abundance and catching effort. Melittologists could also consider existing methods, such as occupancy models, to quantify changes in distribution and abundance after modeling heterogeneity in trapping probability, and consider the possibility of developing monitoring frameworks that draw from multiple sources of data.  相似文献   

11.
12.
Assessing the richness of invertebrate taxa to aid conservation and management requires a better understanding of the potential sources of error. Patterns of richness for heathland spiders at the species and family levels were compared across three sampling methods, four spatial scales, and monthly intervals (for 16 months). A total of 33 families and 130 species was collected: pitfall traps collected 94% of species, sweep net, 25%, and visual search, 41%. The sampling methods produced variable results. Pitfall trap and sweep net techniques identified significant, yet contrasting spatial differences in the number of families and species at one spatial scale. Pitfall trap data reflected strong temporal variation that influenced spatial patterns in richness (across one spatial scale for families and two for species). The use of broader temporal scales introduced a potential failure to detect significant differences in the richness of ground active spiders, and this risk varied spatially. The sweep net is not recommended for this habitat, although a method that targets the foliage is required for a more complete faunal assessment. Visual searches detected no significant patterns in richness, yet given its potential and increasing use for rapid biodiversity surveys, ways to improve sampling efficiency are suggested.  相似文献   

13.
Aim To examine the extent to which succession from tropical savanna to rain forest in the long‐term absence of fire is matched by successional changes in ant communities. This is done by describing ant community responses to 23 years of fire exclusion in a northern Australian tropical savanna, with a particular focus on the extent of colonization by specialist rain forest taxa. Location Solar Village, near Darwin in Australia's Northern Territory. Methods Ants were sampled within 12 plots located inside (‘unburnt’– protected from fire for 23 years) and outside (burnt every 1–2 years) Solar Village in ridge and slope habitat dominated by Eucalyptus spp. The litter, ground‐foraging and arboreal faunas were sampled separately, using Berlese funnels, unbaited pitfall traps and baited pitfall traps attached to tree trunks, respectively. Each species was assigned a forest‐association score ranging from 0 (open savanna species) to 3 (specialist forest species) based on their known habitat preferences in the region. Results A total of 85 ant species from 35 genera were recorded, with multivariate analysis demonstrating distinct litter, ground and arboreal communities. Ant communities also varied substantially with topographic position, which interacted strongly with fire exclusion. A total of 72 species were recorded in burnt habitat, compared with only 45 in unburnt, and the number of ant species records was also about twice as high in burnt compared with unburnt habitat. Fire exclusion has resulted in a dramatic increase in forest‐associated taxa (those occurring in forest and denser, but rarely open, savanna), with such species representing 51% of species records in unburnt habitat compared with 19% in burnt. However, only five specialist forest species were recorded, representing < 1% of total ant records. Main conclusions Fire exclusion at Solar Village has markedly increased the prevalence of forest‐associated ant species, but has led to only very minor incursions by specialist rain forest ant taxa. These responses match very closely those of the vegetation.  相似文献   

14.
Studies of environmental gradients like edge effects commonly employ designs where samples are collected at unequal distances within transects. This approach risks confounding species patterns caused by the environmental gradient with patterns resulting from the spatial arrangement of the sampling scheme. Spatial autocorrelation and depletion (reduced catch) have the potential to influence pitfall-trap collections of invertebrates. Readily available control data from a study of edge and riparian effects on forest litter beetles was used to assess autocorrelation and depletion effects. Data from control transects distant from the treatment transects located at habitat edges and streams were screened to determine whether the study design (pitfall traps at varying distances within transects) was imposing patterns on the data attributable to differential autocorrelation or depletion. Autocorrelation in species composition and assemblage structure was not detected within the 99 m transects. The abundance and species richness of beetles were not lower where traps were in closer proximity, indicating that the transect design was not causing measurable depletion or resulting in differential trap catch. These findings indicate that spatial autocorrelation and depletion are unlikely to impair further analyses of edge and riparian effects on litter beetles.  相似文献   

15.
1 Herbicides are commonly applied under grapevines in Australia to remove weeds and thereby to avoid water loss through transpiration. 2 Interest in sustainability promotes a reduction in chemical inputs, including herbicides, leading to trials with surface mulches to suppress weeds. 3 Surface mulches may also influence the abundance of a range of invertebrates. Potentially, an increase in natural enemies will contribute to pest control and encourage a reduction in pesticide application. 4 We used three trapping methods and direct soil sampling to assess invertebrates at ground level, in the canopy and in the soil to determine the influence of mulch on natural enemies, potential pests and soil macroinvertebrates, including earthworms. 5 Collections sorted to family demonstrated that the addition of straw or compost mulches increased natural enemies collected with pitfall traps and soil organisms. However, there was no clear indication of the overall superiority of either mulch. 6 Abundance of ground beetles, parasitoid Hymenoptera and spiders collected with pitfall traps were increased by the addition of mulches. In the canopy, predatory and parasitic Diptera and predatory Hemiptera increased after mulching. 7 Earthworms collected by hand sorting soil increased with straw mulching. 8 No influence on pests was detected. Although Lepidoptera and Sigmurethra, collected in pitfall traps, increased with straw mulching, neither included pest species. 9 The results are discussed with reference to the potential economic impact of mulches.  相似文献   

16.
The distribution and ecological roles of ground-dwelling invertebrates colonizing dry beds of temporary rivers are poorly known, due in part to the lack of tested sampling methods. Sampling efficiency and completeness and detection biases associated with pitfall-trap and quadrat samples were compared at six sites in the dry beds of two New Zealand rivers. On average, pitfall-trap samples contained 3.5 times more taxa than quadrat samples, and pitfall traps required less time to collect as many taxa as quadrats. Among all taxa collected, 80% were exclusive to pitfall traps and 4% to quadrat samples. Among-sites differences in invertebrate composition were greater in pitfall-trap samples than in quadrat samples. Rarefaction curves indicated that eight to eleven pitfall traps/100 m2 were necessary to collect most of the common taxa in the study sites. Differences in the performance of pitfall traps and quadrats in dry riverbeds may be due to the absence of vegetation, to the large range of taxa considered, and to diel movements of some taxa. The large number of samples required at our study sites to reach a high level of sampling completeness suggests that the diversity of ground-dwelling invertebrates in dry riverbeds has probably been underestimated in previous studies.  相似文献   

17.
Malaise traps are typically used to sample a range of flying insect groups; however non-target taxa such as spiders may also be collected in large numbers. In this study, spiders were sampled in peatlands and wet grasslands and catches in Malaise and pitfall traps were compared in order to determine the adequacy of Malaise traps for use in spider biodiversity assessment. Overall, the number of species and individuals caught in Malaise and pitfall traps were comparable, although more species were sampled in Malaise traps in locations with a greater structural diversity of the vegetation. The spider fauna sampled by the Malaise traps differed from that of the pitfall traps, but both methods consistently separated the species assemblages by biotope. These results demonstrate that Malaise traps are effective at sampling spiders and indicate that they can be used in biodiversity assessment. In addition the complementary species sampled by each method mean that employing both techniques will be useful where a full inventory of the species is required. The authors do not suggest that Malaise traps should be used solely to sample spiders; however, if traps are set to collect insects, identification of the spiders sampled may reduce the need to employ additional sampling techniques.  相似文献   

18.
A comparison of pitfall traps with bait traps for sampling leaf litter ants was studied in oak-dominated mixed forests during 1995-1997. A total of 31,732 ants were collected from pitfall traps and 54,694 ants were collected from bait traps. They belonged to four subfamilies, 17 genera, and 32 species. Bait traps caught 29 species, whereas pitfall traps caught 31 species. Bait traps attracted one species not found in pitfall traps, but missed three of the species collected with pitfall traps. Collections from the two sampling methods showed differences in species richness, relative abundance, diversity, and species accumulation curves. Pitfall traps caught significantly more ant species per plot than did bait traps. The ant species diversity obtained from pitfall traps was higher than that from bait traps. Bait traps took a much longer time to complete an estimate of species richness than did pitfall traps. Little information was added to pitfall trapping results by the bait trapping method. The results suggested that the pitfall trapping method is superior to the bait trapping method for leaf litter ant studies. Species accumulation curves showed that sampling of 2,192+/-532 ants from six plots by pitfall traps provided a good estimation of ant species richness under the conditions of this study.  相似文献   

19.
Ground-dwelling invertebrates were sampled by pitfall traps over a 14 week period in parent eucalypt forest and three stages of exotic Pinus radiata plantations established after forest clearance in central Victoria. The four treatments each yielded numerous beetle morphospecies, and the assemblages corresponded only partially with the understorey vegetation. More than 200 beetle morphospecies were captured during this short survey, with 30 found in all four treatments; few morphospecies were abundant (only five with >100 individuals in a total of 3382 beetles). Each treatment had unique morphospecies, but all were rich, with the lowest diversity being 91 morphospecies (young pines). These data confirm that beetle diversity can remain substantial in exotic softwood plantations, but considerable care is needed to interpret this apparent diversity in relation to forest management and the effect of replacement of native forests by exotic taxa.  相似文献   

20.
Ants are a dominant group in tropical savannas and here we examined the responses of the arboreal and ground‐dwelling ant fauna to a fire in a Neotropical savanna (cerrado) reserve in Central Brazil. Ants were collected using pitfall traps and baits placed in trees and on the ground beneath each tree. Of the 36 trees marked along two transects, half (from each transect) were burned and half not. The same trees were sampled 1 wk before and again 3 and 12 mo after the fire. Rarefaction curves and ordination analyses using data from all trees from each side of each transect indicated that overall ant species richness and composition did not change after fire. Fire, however, reduced the mean number of ant species per tree, and increased the mean number of species on the ground. Fire increased the average abundance of specialist predators, Camponotini, and opportunistic species, and decreased that of arboreal specialists. Changes in the ground‐dwelling fauna were only detected 12 mo after the fire, while those in the arboreal fauna occurred earlier and were no longer apparent 12 mo after the fire. We suggest that these contrasting results represent mainly an indirect response of the ant communities to fire‐induced changes in vegetation. Given the temporary and small scale nature of the effects detected and the overall resilience of the ant fauna, our results indicate that a single fire in the cerrado vegetation does not greatly impact the structure of ant communities in the short term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号