首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the distribution of cell bodies and fibers containing neurotensin in the brainstem of the cat using an indirect immunoperoxidase technique. A high or moderate density of immunoreactive perikarya was found in the interpeduncular nucleus, inferior colliculus, nucleus of the brachium of the inferior colliculus and in the lateral tegmental field. Moreover, a high density of neurotensin-immunoreactive fibers was observed in the periaqueductal gray, locus coeruleus and in the marginal nucleus of the brachium conjunctivum. The interpeduncular nucleus, nucleus of the solitary tract and the dorsal motor nucleus of the vagus contained a moderate density of immunoreactive fibers.  相似文献   

2.
本研究用免疫细胞化学技术观察了大鼠脑内参与兴奋性突触传递的代谢型谷氨酸受体5亚型(mGluR5)的精确定位分布.mGluR5阳性浓染的神经元胞体和纤维密集地分布于大脑皮质浅层、嗅球、伏核、尾壳核、前脑基底部、隔区、苍白球、腹侧苍白球、海马CA1和CA2区、下丘中央核、被盖背侧核和三叉神经脊束核尾侧亚核浅层;淡染而稀疏的mGluR5阳性神经元胞体和纤维见于屏状核、终纹床核、杏仁中央核、丘脑部分核团、上丘浅灰质层、外侧丘系背侧核和延髓中央灰质.  相似文献   

3.
Summary The distribution of serotonin in the hypothalamus and the mesencephalon of guinea-pigs pretreated with both pargyline and L-tryptophan was investigated immunohistochemically using monoclonal antibodies to 5-HT. 5-HT-positive fibers and varicosities appeared distributed throughout the hypothalamus. Some areas showed a greater density of immunoreactivity: the suprachiasmatic nucleus, the region of the supraoptic crest, the area of the medial forebrain bundle, the ventral part of the nucleus ventromedialis, the median eminence and the ventral part of the mammillary bodies. 5-HT nerve fibers were also scattered in the posterior lobe of the pituitary. An extensive supraependymal plexus of immunoreactive axons was observed in most ventricular regions. No 5-HT positive cell bodies were present in the hypothalamus of the guinea-pig under our experimental conditions, whereas an intense serotonin immunoreactivity was detected in perikarya of the brain stem. 5-HT cell bodies were found predominantly in the raphe region including the nucleus raphe dorsalis and raphe medianus, nucleus interpeduncularis, reticular formation and dorsal area of the medial lemniscus.  相似文献   

4.
With the use of an antiserum generated in rabbits against synthetic human calcitonin gene-related peptide (CGRP) the distribution of CGRP-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system. A detailed stereotaxic atlas of CGRP-like neurons was prepared. CGRP-like immunoreactivity was widely distributed in the rat central nervous system. CGRP positive cell bodies were observed in the preoptic area and hypothalamus (medial preoptic, periventricular, anterior hypothalamic nuclei, perifornical area, medial forebrain bundle), premamillary nucleus, amygdala medialis, hippocampus and dentate gyrus, central gray and the ventromedial nucleus of the thalamus. In the midbrain a large cluster of cells was contained in the peripeduncular area ventral to the medial geniculate body. In the hindbrain cholinergic motor nuclei (III, IV, V, VI, VII XII) contained CGRP-immunoreactivity. Cell bodies were also observed in the ventral tegmental nucleus, the parabrachial nuclei, superior olive and nucleus ambiguus. The ventral horn cells of the spinal cord, the trigeminal and dorsal root ganglia also contained CGRP-immunoreactivity. Dense accumulations of fibers were observed in the amydala centralis, caudal portion of the caudate putamen, sensory trigeminal area, substantia gelatinosa, dorsal horn of the spinal cord (laminae I and II). Other areas containing CGRP-immunoreactive fibers are the septal area, nucleus of the stria terminalis, preoptic and hypothalamic nuclei (e.g., medial preoptic, periventricular, dorsomedial, median eminence), medial forebrain bundle, central gray, medial geniculate body, peripeduncular area, interpeduncular nucleus, cochlear nucleus, parabrachial nuclei, superior olive, nucleus tractus solitarii, and in the confines of clusters of cell bodies. Some fibers were also noted in the anterior and posterior pituitary and the sensory ganglia. As with other newly described brain neuropeptides it can only be conjectured that CGRP has a neuroregulatory action on a variety of functions throughout the brain and spinal cord.  相似文献   

5.
The distribution of thiamine-immunoreactive structures was studied in the brain of the monkey using an indirect immunoperoxidase technique. Fibers containing thiamine, but no thiamine-immunoreactive cell bodies, were found. The highest density of fibers containing thiamine was observed in the pulvinar nucleus and in the region extending from the pulvinar nucleus to the caudate nucleus. In the mesencephalon, immunoreactive fibers containing thiamine were only found at rostral level close to the medial lemniscus (at the mesencephalic-diencephalic junction). In the thalamus, the distribution of thiamine-immunoreactive structures was more widespread. Thus, immunoreactive fibers were found in nuclei close to the midline (centrum medianum/parafascicular complex), in the ventrolateral thalamus (medial geniculate nucleus, inferior pulvinar nucleus), and in the dorsolateral thalamus (lateral posterior nucleus, pulvinar nucleus). Finally, in the anterior commissure and in the cerebral cortex a low density immunoreactive fibers was visualized. Thus, in the brainstem, no immunoreactive structures were visualized in the medulla oblongata, pons, or in the medial-caudal mesencephalon, and no immunoreactive fibers were observed in the cerebellum, hypothalamus and in the basal ganglia. The present report describes the first visualization and the morphological characteristics (thick, smooth and short, medium or long in length) of the thiamine-immunoreactive fibers in the primate central nervous system using an antiserum directed against this vitamin. The distribution of thiamine-immunoreactive structures in the monkey brain suggests that this vitamin could be involved in several physiological mechanisms.  相似文献   

6.
Distribution of gastrin and CCK-like peptides in rat brain   总被引:2,自引:0,他引:2  
Summary The distribution of gastrin and CCK-like peptides in the rat brain was studied by immunocytochemistry using an antiserum reacting equally well with both groups of peptides. Immunoreactive nerve cell bodies were detected in all cortical areas, in the hippocampus where they were particularly numerous, in the mesencephalic central gray and in the medulla oblongata. After colchicine treatment immunoreactive material appeared also in cell bodies of the magnocellular hypothalamic system. Immunoreactive nerve fibers were widely distributed in the brain. Particularly dense accumulations were seen in the hippocampus near the ventral surface of the brain, in the caudate nucleus, in the interpeduncular nucleus, the parabrachial nucleus, the dorsal part of the medulla oblongata and in the dorsal horn of the spinal cord. In the hypothalamus immunoreactive nerve fibers were observed in all nuclei, being most frequent in the ventromedial, dorsal and lateral hypothalamic nuclei. A rich supply of nerve fibers was seen in the outer zone of the median eminence and in the neurohypophysis. From previous immunochemical analysis it appears that the peptide demonstrated in most parts of the brain is identical with CCK-8. In the neurosecretory cell bodies of the hypothalamus, the median eminence and the neurohypophysis, however, the immunoreactive material is probably identical with gastrin.  相似文献   

7.
The distribution of neuropeptide K (NPK), a 36-residue amidated peptide originally isolated from porcine brain, is described in the rat CNS by immunohistochemical methods. Antibodies were generated in rabbits to N-terminus and C-terminus regions of the peptide and the distribution of immunoreactive cell bodies and fibers was mapped in colchicine-treated and normal rat brains. Major areas of cell body staining included the medial habenular nucleus, the ventromedial nucleus of the hypothalamus, the interpeduncular nucleus, the lateral dorsal tegmental nucleus, the nucleus raphe pallidus, and the nucleus of the solitary tract. Some of the areas of dense NPK-fiber immunoreactivity included the ventral pallidum, the caudate-putamen, certain areas of the hypothalamus, the central and medial amygdaloid nuclei, the entopeduncular nucleus, the habenular nuclei, the substantia nigra pars reticulata, the caudal part of the spinal nucleus of the trigeminal nerve, the nucleus of the solitary tract and the dorsal horn of the spinal cord. A striking similarity exists between this pattern of immunoreactive staining and that described for substance P, suggesting that the tachykinin systems do not exist independently in the brain. The possible roles for multiple tachykinins in the brain are discussed.  相似文献   

8.
Aminopeptidase A (APA) generated brain angiotensin III, one of the main effector peptides of the brain renin angiotensin system, exerting a tonic stimulatory effect on the control of blood pressure in hypertensive rats. The distribution of APA in human brain has not been yet studied. We first biochemically characterized human brain APA (apparent molecular mass of 165 and 130 kDa) and we showed that the human enzyme exhibited similar enzymatic characteristics to recombinant mouse APA. Both enzymes had similar sensitivity to Ca(2+). Kinetic studies showed that the K(m) (190 mumol/L) of the human enzyme for the synthetic substrate-l-glutamyl-beta-naphthylamide was close from that of the mouse enzyme (256 mumol/L). Moreover, various classes of inhibitors including the specific and selective APA inhibitor, (S)-3-amino-4-mercapto-butyl sulfonic acid, had similar inhibitory potencies toward both enzymes. Using (S)-3-amino-4-mercapto-butyl sulfonic acid, we then specifically measured the activity of APA in 40 microdissected areas of the adult human brain. Significant heterogeneity was found in the activity of APA in the various analyzed regions. The highest activity was measured in the choroids plexus and the pineal gland. High activity was also detected in the dorsomedial medulla oblongata, in the septum, the prefrontal cortex, the olfactory bulb, the nucleus accumbens, and the hypothalamus, especially in the paraventricular and supraoptic nuclei. Immunostaining of human brain sections at the level of the medulla oblongata strengthened these data, showing for the first time a high density of immunoreactive neuronal cell bodies and fibers in the motor hypoglossal nucleus, the dorsal motor nucleus of the vagus, the nucleus of the solitary tract, the Roller nucleus, the ambiguus nucleus, the inferior olivary complex, and in the external cuneate nucleus. APA immunoreactivity was also visualized in vessels and capillaries in the dorsal motor nucleus of the vagus and the inferior olivary complex. The presence of APA in several human brain nuclei sensitive to angiotensins and involved in blood pressure regulation suggests that APA in humans is an integral component of the brain renin angiotensin system and strengthens the idea that APA inhibitors could be clinically tested as an additional therapy for the treatment of certain forms of hypertension.  相似文献   

9.
The distribution of immunoreactive alpha-melanocyte-stimulating hormone (alpha-MSH) in the central nervous system and pituitary of the elasmobranch fish Scyliorhinus canicula was determined by the indirect immunofluorescence and the peroxidase-antiperoxidase methods using a highly specific antiserum. Perikarya containing alpha-MSH-like immunoreactivity were localized in the dorsal portion of the posterior hypothalamus, mainly in the tuberculus posterioris and sacci vasculosus nuclei. Immunoreactive alpha-MSH cell bodies were found in the dorsal wall and ventral region of the caudal part of the tuberculum posterioris. These structures were densely innervated by fine beaded immunoreactive fibers. Some alpha-MSH immunoreactive cells were occasionally detected in the ventral part of the nucleus periventricularis. Scattered cell bodies and fibers were also observed in the dorsal wall of the posterior recess. Outside the hypothalamus very few fibers were detected in the dorsal thalamus and mesencephalon. No immunoreactivity was found in any other parts of the brain. The alpha-MSH immunoreactive material localized in the brain was characterized by combining high-performance liquid chromatography (HPLC) analysis and radioimmunological detection. Brain and pituitary extracts exhibited displacement curves which were parallel to that obtained with synthetic alpha-MSH. The concentrations of alpha-MSH immunoreactive material were determined in 5 different regions of the brain. The highest concentration was found in the hypothalamus. HPLC analysis resolved two major forms of immunoreactive alpha-MSH in the hypothalamus, which had been same retention times as des-N alpha-acetyl-alpha-MSH and its sulfoxide derivative. These results provide the first evidence for the presence of alpha-MSH-like peptides in the fish brain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Using an indirect immunoperoxidase technique, the location of cell bodies and fibers containing substance P, neurokinin A and neurokinin B was studied in the cat spinal cord. The former two neuropeptides showed a widespread distribution throughout the whole spinal cord, whereas the distribution of neurokinin B was more restricted. Neurokinin A-immunoreactive structures showed a more widespread distribution and a higher density than the immunoreactive structures observed to contain substance P. In the cat spinal cord, we observed cell bodies containing neurokinin A, but no cell bodies containing neurokinin B or substance P were found. These cell bodies were located in laminae V (sacral 1 and 2 levels), VI (sacral 1 and 3), VII (lumbar 7, sacral 1 and 3, caudal 1) and X (sacral 1). Laminae I and II showed the highest density of immunoreactive fibers for each of the three tachykinins studied, being in general lamina IV who showed the lowest number of immunoreactive fibers containing substance P, neurokinin A or B. The anatomical distribution of the three tachykinins studied in the cat spinal cord indicates that the neuropeptides could be involved in the neurotransmission and/or in the neuromodulation of nociceptive information, as well as in autonomic and affective responses to pain. Moreover, the involvement of substance P, neurokinin A or B in other functions unrelated to the transmission of pain is also possible (autonomic and motor functions). The distribution of the neuropeptides studied in the cat is compared with the location of the same neuropeptides in the spinal cord of other species. The possible origin of the tachykinergic fibers in the cat spinal cord is also discussed.  相似文献   

11.
The distribution of alpha-melanocyte-stimulating hormone-like immunoreactive structures was studied in the brainstem of the cat using an indirect immunoperoxidase technique. Immunoreactivity was observed in several brainstem nuclei of the cat in which no immunoreactivity had been previously reported. Immunoreactive fibres were observed in the following; the inferior central nucleus; the pontine gray nuclei; the K?lliker-Fuse nucleus; the motor trigeminal nucleus, the anteroventral cochlear nucleus; the abducens nucleus; the retrofacial nucleus; the superior, lateral, inferior, and medial vestibular nuclei; the lateral nucleus of the superior olive; the external cuneate nucleus; the nucleus of the trapezoid body; the postpyramidal nucleus of the raphe; the medial accessory inferior olive; the dorsal accessory nucleus of the inferior olive; the nucleus ambiguus; the principal nucleus of the inferior olive; the preolivary nucleus; the nucleus ruber; the substantia nigra; and in the area postrema. Our results point to a more widespread distribution of alpha-melanocyte-stimulating hormone-like immunoreactive structures in the cat brainstem than that reported in previous studies carried out in the same region of the cat, rat and humans.  相似文献   

12.
Summary The distribution of gamma-aminobutyric acid (GABA) immunoreactivity was studied in the forebrain (tel-and diencephalon) of the goldfish by means of immunocytochemistry on Vibratome sections using antibodies against GABA. Positive perikarya were detected in the olfactory bulbs and in all divisions of the telencephalon, the highest density being found along the midline. In the diencephalon, GABA-containing cell bodies were found in the hypothalamus, in particular in the preoptic and tuberal regions. The inferior lobes, the nucleus recessus lateralis, and more laterodorsal regions, such as the nucleus glomerulosus and surrounding structures, also exhibited numerous GABA-positive perikarya. Cell bodies were also noted in the thalamus, in particular in the dorsomedial, dorsolateral and ventromedial nuclei. The relative density of immunoreactive fibers was evaluated for each brain nucleus and classified into five categories. This ubiquitous distribution indicates that, as in higher vertebrates, GABA most probably represents one of the major neurotransmitters in the brain of teleosts.  相似文献   

13.
The localization of atrial natriuretic factor (ANF)-like immunoreactivity in the central nervous system of the frog Rana ridibunda was examined by the indirect immunofluorescence technique, using an antiserum against synthetic ANF (Arg101-Tyr126). Immunoreactive cell bodies were principally found in the dorsal and medial pallium, the medial septal nucleus, the ventrolateral and anteroventral areas of the thalamus, the lateral forebrain bundle, the posterolateral thalamic nuclei, the preoptic nucleus, the dorsal infundibular nucleus, and the anteroventral tegmentum nucleus of the mesencephalon. Numerous cell bodies and a very dense fiber bundle were visualized in the interpeduncular nucleus. All the areas mentioned above contained a high density of immunoreactive fibers. In addition, the amygdala, the infundibular nucleus, the median eminence, and most of the areas of the mesencephalon contained a moderate number of ANF-positive nerve processes. In the frog pituitary, fibers and nerve terminals were found in the peripheral zone of the neural lobe. The intermediate and anterior lobes of the frog pituitary were totally devoid of ANF immunoreactivity. These results indicate that ANF-like material is widely distributed in the frog brain and that ANF may be involved in various brain functions including neuroendocrine regulations.  相似文献   

14.
After microinjections of horseradish peroxidase into the central tegmental area of the midbrain and centrum medianum thalami in cats, labeled neurons were found in the nucleus of the tractus solitarius, gracile and cuneate nuclei, spinal nuclei of the trigeminal nerve, the external nucleus and nucleus of the brachium of the inferior colliculus, the medial pretectal region, nucleus of the posterior commissure and stratum intermediale of the superior colliculus, and reticular structures of the medulla and pons. Comparison of the location of the sources of ascending afferent projections in the central tegmental area of the midbrain and centrum medianum thalami showed that the reticular formation receives mainly visceral projections through the nucleus of the tractus solitarius, whereas the centrum medianum thalami is innervated mainly by the system of sensory somatic nuclei.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 172–178, March–April, 1982.  相似文献   

15.
An immunohistochemical method, using glutaraldehyde fixation and a highly specific monoclonal antibody recently synthetized against dopamine (DA)-glutaraldehyde protein conjugate, permitted direct visualization of DA structures in the brainstem and spinal cord of a reptile (Chameleon). DA-immunoreactive cell bodies occurred in some contiguous areas of the midbrain tegmentum. The first one was located in the ventral tegmental area. Some somata intermingled with the oculomotor nucleus. The second group was the large round or oval DA-Immunostained neurons located in the substantia nigra. More caudally, a third group of round or fusiform DA-cell bodies was seen in an homologous area of so called mammalian A8 and were continuous with the substantia nigra group. In the medulla oblongata, the DA-containing cells were shown in the nucleus of solitary tract and in the dorsal lateral part of the dorsal motor nucleus of the vagus. The density of this DA-Immunoreactive neurons decreased more caudally. At the medullo-spinal level and upper cervical spinal cord, a few labelled cells were distinguished near the central canal. In the spinal cord DA-immunopositive cell bodies were observed in the vicinity of the central canal and formed a continuous column that extended throughout the rostral spinal cord. The apical processes of these neurons seemed to be in contact with the lumen of the central canal. This study constitute the first visualization of the immunoreactive DA-cell bodies at the medullo-spinal level which were already described, as TH immunoreactive in other species of reptiles.  相似文献   

16.
The influence of neonatal deafness on cochlear electrically evoked Fos expression in the auditory brainstem was examined. Newborn rats were deafened by systemic injection of kanamycin, 1 mg/g daily for 12 days. At 4, 5, 6 or 8 weeks of age, these animals received cochlear electrical stimulation with a basal monopolar electrode for 90 minutes. Age-matched untreated control animals received similar stimulation. Experimental and control animals were assessed for spiral ganglion cell densities and Fos immunoreactive staining in the central nucleus of the inferior colliculus. Spiral ganglion cell assessments showed significant decreases in spiral ganglion cell densities in deafened rats compared to age-matched controls, at 5 weeks of age in lower turns and 6 and 8 weeks in all turns. Cochlear electrical stimulation induced Fos immunoreactive staining in the nucleus of auditory brain stem neurons in treatment and control groups. A significantly greater number of Fos immunoreactive neurons was found in the contralateral central nucleus of inferior colliculus in 5, 6 and 8 week old deafened animals compared to age-matched controls. The increases were larger with a longer duration of deafness. These results suggest that there are changes in auditory processing as a consequence of neonatal deafness.  相似文献   

17.
采用免疫组织化学SABC法,研究白介素-1α、干扰素-γ、神经生长因子-β和肿瘤坏死因子-α在成体中华蟾蜍脑中的表达和分布特点。结果发现,白介素-1α阳性细胞数量很多,分布于脑的各个区域。白介素-1α多在细胞的胞体中,而原始海马锥体细胞,中脑的背前侧被盖核和腹后侧被盖核中的细胞可见阳性的突起。干扰素-γ阳性细胞数量较多,分布在端脑的原始海马和隔区,丘脑腹外侧核,下丘脑的视前区、视交叉上核和腹侧漏斗核,中脑被盖的背前侧被盖核、腹前侧被盖核、背后侧被盖核和腹后侧被盖核中,小脑的Purkinje细胞层和延髓的网状核,其中原始海马,背前侧被盖核和背后侧被盖核,视交叉上核,Purkinje细胞层和网状核中的细胞中可见阳性突起。神经生长因子-β阳性细胞数量较少,主要存在于下丘脑的视前区和视交叉上核,中脑被盖的腹前侧被盖核,小脑的Purkinje细胞层和延髓的网状核中,其中视前区、Purkinje细胞层和网状核中细胞可见阳性突起。肿瘤坏死因子-α阳性细胞数量最少,分布范围仅限于中脑被盖背前侧区和延髓的网状核及中缝核,但细胞具有阳性突起。因此,白介素-1α和干扰素-γ在成体动物脑中分布较为广泛,可能是神经细胞生命活动所必需的;而神经生长因子-β和肿瘤坏死因子-α在成体动物脑中分布范围狭窄,其作用可能仅限于脑中的某些特殊区域。  相似文献   

18.
The distribution of calbindin D-28K (CaBP28K) cell bodies and fibers in the nucleus pretectalis superficialis parvicellularis of the rainbow trout was studied using a monoclonal antibody and the avidin-biotin-peroxidase method. In this diencephalic nucleus a very high density of CaBP28K immunoreactive fibers was found. In addition, a high density of CaBP28K positive neurons was also observed. These neurons were small, showing one, two or three short and non-branching dendritic trunks. The distribution and orientation of the immunoreactive cell bodies in the nucleus pretectalis superficialis parvicellularis suggests that the neurons might be interneurons and/or projecting neurons.  相似文献   

19.
A monoclonal antibody recently synthesized against dopamine (DA) was tested in rat and mouse brain sections after further treatment by PAP immunocytochemistry at the light and electron microscopic levels. Distribution of DA-immunoreactive cell bodies was examined in the substantia nigra (sn), the ventral tegmental area (vta), and the raphe nuclei. DA-immunoreactive fibers were investigated in two DA projection systems, the striatum and the septum. Many dopaminergic cell bodies were found in the sn and the vta. Some scattered DA neurons were encountered in the pars reticulata of the sn. The dorsal raphe and linearis raphe nuclei displayed sparse immunoreactive neurons and a dense plexus of DA fibers. Immunoreactive fibers were observed in the entire striatum, more dense in the ventral part. In the septum, immunonegative neurons were outlined by thin DA fibers in synaptic contact with their somata or dendrites. According to our observations, this DA monoclonal antibody seems to be a selective and sensitive tool for studying the dopaminergic neuronal circuitry at both histological and ultrastructural level.  相似文献   

20.
Using an indirect immunoperoxidase technique, the localization of somatostatin-28 (1-12)-like immunoreactive fibers and cell bodies in the auditory cortex of the cat (anterior, primary, secondary, temporal, ventral, ventroposterior, posterior and dorsoposterior auditory fields) was studied. In general, the distribution of SOM-ir structures is widespread in the auditory cortex of the feline. A high density of immunoreactive fibers as well as a low density of cell bodies containing somatostatin were observed in all the layers of the eight above-mentioned auditory fields. These data indicate that somatostatin-28 (1-12) could act as a neurotransmitter and/or a neuromodulator in the auditory cortex of the cat. The origin of the SOM-ir fibers in the auditory cortex of the cat, as well as the issue of whether the cell bodies containing somatostatin-28 (1-12) are local or projecting neurons is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号