首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The catalytic cycle intermediates of heme peroxidases, known as compounds I and II, have been of long standing interest as models for intermediates of heme proteins, such as the terminal oxidases and cytochrome P450 enzymes, and for non-heme iron enzymes as well. Reports of resonance Raman signals for compound I intermediates of the oxo-iron(IV) porphyrin pi-cation radical type have been sometimes contradictory due to complications arising from photolability, causing compound I signals to appear similar to those of compound II or other forms. However, studies of synthetic systems indicated that protein based compound I intermediates of the oxoiron(IV) porphyrin pi-cation radical type should exhibit vibrational signatures that are different from the non-radical forms. The compound I intermediates of horseradish peroxidase (HRP), and chloroperoxidase (CPO) from Caldariomyces fumago do in fact exhibit unique and characteristic vibrational spectra. The nature of the putative oxoiron(IV) bond in peroxidase intermediates has been under discussion in the recent literature, with suggestions that the Fe(IV)O unit might be better described as Fe(IV)-OH. The generally low Fe(IV)O stretching frequencies observed for proteins have been difficult to mimic in synthetic ferryl porphyrins via electron donation from trans axial ligands alone. Resonance Raman studies of iron-oxygen vibrations within protein species that are sensitive to pH, deuteration, and solvent oxygen exchange, indicate that hydrogen bonding to the oxoiron(IV) group within the protein environment contributes to substantial lowering of Fe(IV)O frequencies relative to those of synthetic model compounds.  相似文献   

2.
Resonance Raman enhancement of derivatives and intermediates of horseradish peroxidase in the near ultraviolet (N-band excitation) results in intensity and enhancement patterns that are different from those normally observed within the porphyrin Soret (B-band) and alpha-beta (Q-band) absorptions. In particular it allows the resolution of resonance Raman spectra of horseradish peroxidase compound I. The bands above 1300 cm-1 can be assigned to porphyrin vibrational modes that are characteristically shifted in frequency due to removal of an electron from the porphyrin ring. The resonance Raman frequency shifts follow normal mode compositions. Relative to resonance Raman spectra of compound II, the v4 frequency (primarily Ca-N) exhibits a 20 cm-1 downshift. The v2, v11, and v37 vibrational frequencies whose mode compositions are primarily porphyrin Cb-Cb, exhibit 10-20 cm-1 upshifts. The v3, v10, and v28 frequencies, whose mode compositions are primarily Ca-Cm, exhibit downshifts. The downshifts for v3 and v10 are small, 3-5 cm-1; however, the downshift for v28 is 14 cm-1. These frequency shifts are consistent with those of previously published resonance Raman studies of model compounds. In contrast to reports from other laboratories, the data presented here for horseradish peroxidase compound I can be attributed unambiguously to resonance Raman scattering from a porphyrin pi-cation radical.  相似文献   

3.
The assignment of resolved hyperfine-shifted resonances in high-spin resting state horseradish peroxidase (HRP) and its double-oxidized reactive form, compound I (HRP-I), has been carried out by using the nuclear Overhauser effect (NOE) starting with the known heme methyl assignments in each species. In spite of the efficient spin-lattice relaxation and very broad resonances, significant NOEs were observed for all neighboring pyrrole substituents, which allowed the assignment of the elusive propionate alpha-methylene protons. In the resting state HRP, this leads directly to the identity of the proximal His-170 H beta peaks. The determination that one of the most strongly contact-shifted single proton resonances in HRP-I does not arise from the porphyrin dictates that the cation radical must be delocalized to some amino acid residue. The relaxation properties of the non-heme contact-shifted signal in HRP-I support the identity of this contributing residue as the proximal His-170. Detailed analysis of changes in both contact shift pattern and NOEs indicates that compound I formation is accompanied by a approximately 5 degree rotation of the 6-propionate group. The implication of a porphyrin cation radical delocalized over the proximal histidine for the proposed location of the solely amino acid centered radical in compound I of related cytochrome c peroxidase is discussed.  相似文献   

4.
The magnetic circular dichroism spectrum of the compound I species of horseradish peroxidase, which contains an iron (IV) porphyrin pi-cation radical complex, has been measured between 273 K and 4.2 K. The spectrum is temperature independent between 273 K and 30 K. However, very strong temperature dependence is observed below 30 K. These data do not appear to fit the temperature dependence expected for the presence of a simple MCD C term, or combination of C terms, but suggest that an increase in the coupling between the S = 1 iron (IV), and the S = 1/2 porphyrin pi-cation radical occurs forming a degenerate ground state. This increase in coupling below 30 K may be the result of a phase change in the protein which in turn affects the electronic structure of the heme group.  相似文献   

5.
Barrows TP  Poulos TL 《Biochemistry》2005,44(43):14062-14068
Cytochrome c (CcP) and ascorbate peroxidase (APX) are heme peroxidases which have very similar active site structures yet differ substantially in the properties of compound I, the intermediate formed upon reaction with peroxides. Although both peroxidases have a tryptophan in the proximal heme pocket, Trp191 in CcP and Trp179 in APX, only Trp191 in CcP forms a stable cation radical while APX forms the more traditional porphyrin pi-cation radical. Previous work [Barrows, T. P., et al. (2004)Biochemistry 43, 8826-8834] has shown that converting three methionine residues in the cytochrome c peroxidase (CcP) proximal heme pocket to the corresponding residues in APX dramatically decreased the stability of the Trp191 radical in CcP compound I. On the basis of these results, we reasoned that replacing the analogous residues at positions 160, 203, and 204 in APX with methionine should stabilize a Trp179 radical in APX compound I. Steady- and transient-state kinetics of this mutant (designated APX3M) show a significant destabilization of the native porphyrin pi-radical, while electron paramagnetic resonance (EPR) studies show an increase in the intensity of the signal at g = 2.006 with characteristics consistent with formation of a Trp radical. This hypothesis was tested by replacing Trp179 with Phe in the APX3M background. The EPR spectrum of this mutant was very similar to that of the CcP W191G mutant which is known to form a tyrosine radical. Previously published theoretical studies [Guallar, V., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 6998-7002] suggest that electrostatic shielding of the heme propionates also plays a role in the stability of the porphyrin radical. Arg172 in APX hydrogen bonds with one of the heme propionates. Replacing Arg172 with an asparagine residue in the APX3M background generates a mutant which no longer forms the full complement of the compound I porphyrin pi-radical. These results suggest that the electrostatics of the proximal pocket and the shielding of propionate groups by salt bridges are critical factors controlling the location of a stable compound I radical in heme peroxidases.  相似文献   

6.
Using radiolytic reduction of the oxy-ferrous horseradish peroxidase (HRP) at 77 K, we observed the formation and decay of the putative intermediate, the hydroperoxo-ferric heme complex, often called "Compound 0." This intermediate is common for several different enzyme systems as the precursor of the Compound I (ferryl-oxo pi-cation radical) intermediate. EPR and UV-visible absorption spectra show that protonation of the primary intermediate of radiolytic reduction, the peroxo-ferric complex, to form the hydroperoxo-ferric complex is completed only after annealing at temperatures 150-180 K. After further annealing at 195-205 K, this complex directly transforms to ferric HRP without any observable intervening species. The lack of Compound I formation is explained by inability of the enzyme to deliver the second proton to the distal oxygen atom of hydroperoxide ligand, shown to be necessary for dioxygen bond heterolysis on the "oxidase pathway," which is non-physiological for HRP. Alternatively, the physiological substrate H2O2 brings both protons to the active site of HRP, and Compound I is subsequently formed via rearrangement of the proton from the proximal to the distal oxygen atom of the bound peroxide.  相似文献   

7.
Upon photoirradiation under aerobic conditions, the porphyrin prosthetic group in Mg-substituted horseradish peroxidase was oxidized to a mixture of its pi-cation radical and an oxidized product with an absorption band at 448 nm. The 448 nm compound was then converted to a 489 nm compound in the dark and the activation energy for the conversion was 19.3 kcal/mol. About 1 mol of O2 was consumed per mol of the 448 nm compound formed and no O2 consumption was seen in the dark reaction. The substitution of ethyl groups (meso) and hydroxyethyl groups (hemato) for the vinyl groups in protoporphyrin IX did not have an effect on the result. Under anaerobic conditions and in the presence of a suitable electron acceptor, the only photooxidation product of porphyrin was its pi-cation radical. The formation of hydroxyl radicals during irradiation under aerobic conditions was confirmed by the spin-trapping method. The formation of the above two radicals could be followed by ESR spectroscopy separately at a fixed magnetic field which was set to maximize each ESR signal. The rate of hydroxyl radical formation depended linearly on the concentration of Mg peroxidase. The photooxidation of porphyrin was slow and gave nonspecific product(s) when Mg protoporphyrin IX was present in the heme crevice of apomyoglobin or free in solution.  相似文献   

8.
Resonance Raman spectra, obtained with 7 ns pulsed laser excitation, are reported for the photoproducts of the FeII-CO and FeIII-NO adducts of horseradish peroxidase. The porphyrin skeletal frequencies are the same as those observed for unligated FeII and FeIII (native) horseradish peroxidase, respectively. The absence of unrelaxed spectra is discussed in relation to the photoproduct frequency shifts and relaxations observed previously for hemoglobin. It is proposed that protein conformational changes which are likely to be associated with the hydrogen-bonding interactions in the horseradish peroxidase heme pocket may not produce detectable changes in the porphyrin skeletal mode frequencies.  相似文献   

9.
Ascorbate peroxidase from L. Major (LmAPX) is a functional hybrid between cytochrome c peroxidase (CCP) and ascorbate peroxidase (APX). We utilized point mutagenesis to investigate if a conserved proximal tryptophan residue (Trp208) among Class I peroxidase helps in controlling catalysis. The mutant W208F enzyme had no effect on both apparent dissociation constant of the enzyme-cytochrome c complex and K(m) value for cytochrome c indicating that cytochrome c binding affinity to the enzyme did not alter after mutation. Surprisingly, the mutant was 1000 times less active than the wild type in cytochrome c oxidation without affecting the second order rate constant of compound I formation. Our diode array stopped-flow spectral studies showed that the substrate unbound wild type enzyme reacts with H(2)O(2) to form compound I (compound II type spectrum), which was quite different from that of compound I in W208F mutant as well as horseradish peroxidase (HRP). The spectrum of the compound I in wild type LmAPX showed a red shift from 409 nm to 420 nm with equal intensity, which was broadly similar to those of known Trp radical. In case of compound I for W208F mutant, the peak in the Soret region was decreased in heme intensity at 409 nm and was not shifted to 420 nm suggesting this type of spectrum was similar to that of the known porphyrin pi-cation radical. In case of an enzyme-H(2)O(2)-ascorbate system, the kinetic for formation and decay of compound I and II of a mutant enzyme was almost identical to that of a wild type enzyme. Thus, the results of cytochrome c binding, compound I formation rate and activity assay suggested that Trp208 in LmAPX was essential for electron transfer from cytochrome c to heme ferryl but was not indispensable for ascorbate or guaiacol oxidation.  相似文献   

10.
I Morishima  S Ogawa 《Biochemistry》1978,17(21):4384-4388
Enzymatic reaction intermediates of horseradish peroxidase, compounds I and II, were studied by high-resolution nuclear magnetic resonance spectroscopy at 220 MHz. The heme peripheral proton peaks were successfully obtained in the downfield region of 50 to 80 ppm from 4,4-dimethyl-4-silapentane-5-sulfonate for compound I and of 10 to 20 ppm for compound II at pH 9.2. This indicates that no isoporphyrin appears in the catalytic cycle of the enzyme. Temperature dependences of the spectra also were determined for these compounds between 7 and 32 degrees C. With increasing temperature, all the peaks in the downfield region for compound I shifted upfield, obeying the Curie law. These results suggest that the Fe atoms in compounds I and II are in ferryl high- and low-spin states, respectively. The spectrum was also observed in solutions of horse metmyoglobin to which hydrogen peroxide (H2O2) was added. The electron formulations of the hemes in their spectra. Evidence was found against a pi-cation radical on the heme ring as a source of the oxidizing equivalent in compound I.  相似文献   

11.
The reactivity of recombinant pea cytosolic ascorbate peroxidase (rAPX) towards H2O2, the nature of the intermediates and the products of the reaction have been examined using UV/visible and EPR spectroscopies together with HPLC. Compound I of rAPX, generated by reaction of rAPX with 1 molar equivalent of H2O2, contains a porphyrin pi-cation radical. This species is unstable and, in the absence of reducing substrate, decays within 60 s to a second species, compound I*, that has a UV/visible spectrum [lambda(max) (nm) = 414, 527, 558 and 350 (sh)] similar, but not identical, to those of both horseradish peroxidase compound II and cytochrome c peroxidase compound I. Small but systematic differences were observed in the UV/visible spectra of compound I* and authentic rAPX compound II, generated by reaction of rAPX with 1 molar equivalent H2O2 in the presence of 1 molar equivalent of ascorbate [lambda(max) (nm) = 416, 527, 554, 350 (sh) and 628 (sh)]. Compound I* decays to give a 'ferric-like' species (lambda(max) = 406 nm) that is not spectroscopically identical to ferric rAPX (lambda(max) = 403 nm) with a first order rate constant, k(decay)' = (2.7 +/- 0.3) x 10(-4) s(-1). Authentic samples of compound II evolve to ferric rAPX [k(decay) = (1.1 +/- 0.2) x 10(-3) s(-1)]. Low temperature (10 K) EPR spectra are consistent with the formation of a protein-based radical, with g values for compound I* (g parallel = 2.038, g perpendicular = 2.008) close to those previously reported for the Trp191 radical in cytochrome c peroxidase (g parallel = 2.037, g perpendicular = 2.005). The EPR spectrum of rAPX compound II was essentially silent in the g = 2 region. Tryptic digestion of the 'ferric-like' rAPX followed by RP-HPLC revealed a fragment with a new absorption peak near 330 nm, consistent with the formation of a hydroxylated tryptophan residue. The results show, for the first time, that rAPX can, under certain conditions, form a protein-based radical analogous to that found in cytochrome c peroxidase. The implications of these data are discussed in the wider context of both APX catalysis and radical formation and stability in haem peroxidases.  相似文献   

12.
Horseradish peroxidase (HRP) compound I is photolabile at all temperatures between room temperature and 4 K. The photoredox reaction has been studied in frozen glassy solutions by using optical absorption and magnetic circular dichroism spectra following photolysis of HRP compound I with visible-wavelength light at 4.2 and 77 K. The photochemical process is characterized as a concerted two-electron transfer reaction which results in the conversion of the Fe(IV) heme pi-cation radical species of HRP compound I into a low-spin Fe(III) heme species. This reaction occurs even when photolysis is carried out at 4.2 K. Spectra recorded between 4.2 and 80 K for the low-spin ferric hydroxide complex of HRP closely resemble the data measured for the photochemical product. The proposed mechanism for the photoreaction is (formula; see text) No evidence is found for the formation of an Fe(II) heme at these temperatures.  相似文献   

13.
In the spectral region 350-800 nm at 4.2 K we measured magnetic circular dichroism (MCD) spectra of the pentacoordinated complex of protcheme with 2-methylimidazole, deoxyleghemoglobin, neutral and alkaline forms of reduced horseradish peroxidase in the equilibrium states, as well as in non-equilibrium states produced by low-temperature photolysis of their carbon monoxide derivatives. Earlier the corresponding results have been obtained for myoglobin, hemoglobin and cytochromes P-450 and P-420. The energies of Fe-N (proximal His) and Fe-N(pyrroles) bonds and their changes upon ligand binding in heme proteins and enzymes were compared with those in the model heme complex thus providing conformational contribution into stereochemistry of the active site. The examples of weak and strong conformational "pressure" on stereochemistry were analysed and observed. If conformational energy contribution into stereochemistry prevails the electronic one the heme stereochemistry remains unchanged on ligand binding as it was observed for leghemoglobin and alkaline horseradish peroxidase. The change of bond energies in myoglobin and hemoglobin on ligand binding are comparable with those in protein free pentacoordinated protoheme, giving an example of weak conformational contribution to heme stereochemistry. The role of protein conformation energy in the modulation of ligand binding properties of heme in leghemoglobin relative to those in myoglobins is discussed. The most striking result were obtained in the study of reduced horseradish peroxidase in the pH region of 6.0-10.2. It was found that such different perturbations as ligand binding and heme-linked ionization of the distal amino acid residue induce identical changes in heme stereochemistry. Neither heme-linked ionization in the carbon monoxide complex nor the geometry of Fe-Co bond affect the heme local structure of photoproducts. These and other findings suggest a very low conformation mobility of horseradish peroxidase whose protein constraints appear to allow only two preferable geometries of specific amino acid residues that form the heme pocket. The role of the two tertiary structure constraints on the heme in the mechanism of horseradish peroxidase function is discussed. It is supposed that one conformation produces a heme environment suitable for two-electron oxidation of the native enzyme to compound I by hydrogen peroxide while another conformation changes the heme stereochemistry in the direction favourable for back reduction of compound I by the substrate to the resting enzyme through two one-electron steps. The switch from one tertiary structure to another is expected to be induced by substrate bind  相似文献   

14.
For the first time, the enzymatic one-electron oxidation of several naturally occurring and synthetic water-soluble porphyrins by peroxidases was investigated by ESR and optical spectroscopy. The ESR spectra of the free radical metabolites of the porphyrins were singlets (g = 2.0024, delta H = 2-3 G), which we assigned to their respective porphyrin pi-cation free radicals. Several porphyrins were investigated and ranked by the intensity of their ESR spectra (coproporphyrin III greater than coproporphyrin I greater than deuteroporphyrin IX greater than mesoporphyrin IX greater than Photofrin II greater than protoporphyrin IX greater than uroporphyrin I greater than uroporphyrin III greater than hematoporphyrin IX). The porphyrins were oxidized by several peroxidases (horseradish peroxidase, lactoperoxidase, and myeloperoxidase), yielding the same type of ESR spectra. From these results, we conclude that porphyrins are substrates for peroxidases. The changes in the visible absorbance spectra of the porphyrins during enzymatic oxidation were monitored. The two-electron oxidation product, which was assigned to the dihydroxyporphyrin, was detected as an intermediate of the oxidation process. The optical spectrum of the porphyrin pi-cation free radical was not detected, probably due to its low steady-state concentration.  相似文献   

15.
By using pulsed and continuous wave laser irradiation in the 350-450-nm region, we have characterized Raman scattering from horseradish peroxidase (HRP) compounds I and II and from iron porphyrin pi-cation radical model compounds. For compound II we support the suggestion [Terner, J., Sitter, A. J., & Reczek, C. M. (1985) Biochim. Biophys. Acta 828, 73-80; Proniewicz, L. M., Bajdor, K., & Nakamoto, K. (1986) J. Phys. Chem. 90, 1760-1766] that resonance enhancement of the FeIV = O vibration proceeds by way of a charge-transfer state. Our excitation profile data locate this state at approximately 400 nm. Compound I was prepared at neutral pH by rapid mixing of the resting enzyme with hydrogen peroxide. Each sample aliquot was excited by a single, 10-ns laser pulse to generate the Raman spectrum; optical spectroscopy following the Raman measurement confirmed that HRP-I was the principal product during the time scale of the measurement. The Raman spectrum of this species, however, is not characteristic of that which we observe from metalloporphyrin pi-cation radicals [Oertling, W. A., Salehi, A., Chung, Y., Leroi, G. E., Chang, C. K., & Babcock, G. T. (1987) J. Phys. Chem. 91, 5887-5898], including the iron porphyrin cation radicals reported here. Instead, the spectrum recorded for HRP-I at neutral pH is suggestive of an oxoferryl heme with the same geometric and electronic structure as that of HRP-II at high pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The crystal structures of ascorbate peroxidase (APX) and cytochrome c peroxidase (CCP) show that the active site structures are nearly identical. Both enzymes contain a His-Asp-Trp catalytic triad in the proximal pocket. The proximal Asp residue hydrogen bonds with both the His proximal heme ligand and the indole ring nitrogen of the proximal Trp. The Trp is stacked parallel to and in contact with the proximal His ligand. This Trp is known to be the site of free radical formation in CCP compound I and also is essential for activity. However, APX forms a porphyrin radical and not a Trp-centered radical, even though the His-Asp-Trp triad structure is the same in both peroxidases. We found that conversion of the proximal Trp to Phe has no effect on APX enzyme activity and that the mutant crystal structure shows that changes in the structure are confined to the site of mutation. This indicates that the paths of electron transfer in CCP and APX are distinctly different. The Trp-to-Phe mutant does alter the stability of the APX compound I porphyrin radical, by a factor of two. Electrostatic calculations and modeling studies show that a potassium cation located about 8?Å from the proximal Trp in APX, but absent in CCP, makes a significant contribution to the stability of a cation Trp radical. This underscores the importance of long-range electrostatic effects in enzyme catalyzed reactions.  相似文献   

17.
The formation of compound I is the first step in the reaction mechanism of plant heme peroxidases. This intermediate stores two oxidizing equivalents from hydrogen peroxide as an oxyferryl iron center and a radical, either on the porphyrin ring or on a tryptophan residue. Site-directed mutagenesis has proved to be a most useful tool for the identification of the intermediates involved and the resulting nature of the compound I formed. Although there is no doubt that an acid-base mechanism operates in heme peroxidase during the formation of compound I, the roles of several distal pocket residues are currently the subject of intensive research. It is now generally accepted that the conserved distal histidine in the active site of heme peroxidases is the acid-base catalyst that promotes the heterolytic cleavage of hydrogen peroxide. Other residues, such as the distal arginine and asparagine, participate in a range of roles assisting catalysis by the distal histidine. Recent advances in the elucidation of the mechanism at the molecular level are discussed. Another aspect related to the nature of compound I is the location of the radical center. Novel radical species have been detected in the reactions of ascorbate peroxidase, lignin peroxidase and several mutants of horseradish peroxidase. Detailed kinetic and spectroscopic studies of these radical species have provided important insights about the factors that control porphyrin-protein radical exchange. The wide range of data being obtained on compound I will lead to an understanding of its vital function in peroxidase catalysis and the physiological roles played by these enzymes.  相似文献   

18.
Resonance Raman spectra of the heme protein chloroperoxidase in its native and reduced forms and complexed with various small ions are obtained by using laser excitation in the Soret region (350-450 nm). Additionally, Raman spectra of horseradish peroxidase, cytochrome P-450cam, and cytochrome c, taken with Soret excitation, are presented and discussed. The data support previous findings that indicate a strong analogy between the active site environments of chloroperoxidase and cytochrome P-450cam. The Raman spectra of native chloroperoxidase are found to be sensitive to temperature and imply that a high leads to low spin transition of the heme iron atom takes place as the temperature is lowered. Unusual peak positions are also found for native and reduced chloroperoxidase and indicate a weakening of porphyrin ring bond strengths due to the presence of a strongly electron-donating axial ligand. Enormous selective enhancements of vibrational modes at 1360 and 674 cm-1 are also observed in some low-spin ferrous forms of the enzyme. These vibrational frequencies are assigned to primary normal modes of expansion of the prophyrin macrocycle upon electronic excitation.  相似文献   

19.
J E Erman  L B Vitello  J M Mauro  J Kraut 《Biochemistry》1989,28(20):7992-7995
Peroxide oxidation of a mutant cytochrome c peroxidase, in which Trp-191 has been replaced by Phe through site-directed mutagenesis, produces an oxidized intermediate whose stable UV/visible absorption spectrum is very similar to that of compound I of the native yeast enzyme. This spectrum is characteristic of an oxyferryl, Fe(IV), heme. Stopped-flow studies reveal that the reaction between the mutant enzyme and hydrogen peroxide is biphasic with the transient formation of an intermediate whose absorption spectrum is quite distinct from that of either the native ferric enzyme or the final product. Rapid spectral scanning of the intermediate provides a spectrum characteristic of an oxyferryl porphyrin pi-cation-radical species. At pH 6, 100 mM ionic strength, and 25 degrees C, the rate constant for formation of the oxyferryl pi-cation radical has a lower limit of 6 X 10(7) M-1 s-1 and the rate of conversion of the transient intermediate to the final oxidized product is 51 +/- 4 s-1. Evidence is presented indicating that Trp-191 either is the site of the radical in CcP compound I or is intimately involved in formation of the radical.  相似文献   

20.
Resonance Raman spectra of native, overexpressed M. tuberculosis catalase-peroxidase (KatG), the enzyme responsible for activation of the antituberculosis antibiotic isoniazid (isonicotinic acid hydrazide), have confirmed that the heme iron in the resting (ferric) enzyme is high-spin five-coordinate. Difference Raman spectra did not reveal a change in coordination number upon binding of isoniazid to KatG. Stopped-flow spectrophotometric studies of the reaction of KatG with stoichiometric equivalents or small excesses of hydrogen peroxide revealed only the optical spectrum of the ferric enzyme with no hypervalent iron intermediates detected. Large excesses of hydrogen peroxide generated oxyferrous KatG, which was unstable and rapidly decayed to the ferric enzyme. Formation of a pseudo-stable intermediate sharing optical characteristics with the porphyrin pi-cation radical-ferryl iron species (Compound I) of horseradish peroxidase was observed upon reaction of KatG with excess 3-chloroperoxybenzoic acid, peroxyacetic acid, or tert-butylhydroperoxide (apparent second-order rate constants of 3.1 x 10(4), 1.2 x 10(4), and 25 M(-1) s(-1), respectively). Identification of the intermediate as KatG Compound I was confirmed using low-temperature electron paramagnetic resonance spectroscopy. Isoniazid, as well as ascorbate and potassium ferrocyanide, reduced KatG Compound I to the ferric enzyme without detectable formation of Compound II in stopped-flow measurements. This result differed from the reaction of horseradish peroxidase Compound I with isoniazid, during which Compound II was stably generated. These results demonstrate important mechanistic differences between a bacterial catalase-peroxidase and the homologous plant peroxidases and yeast cytochrome c peroxidase, in its reactions with peroxides as well as substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号