首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Calmodulin (CaM) binding sites were recently identified on the cytoplasmic loop (CL) of at least three α-subfamily connexins (Cx43, Cx44, Cx50), while Cx40 does not have this putative CaM binding domain. The purpose of this study was to examine the functional relevance of the putative Cx43 CaM binding site on the Ca(2+)-dependent regulation of gap junction proteins formed by Cx43 and Cx40. Dual whole cell patch-clamp experiments were performed on stable murine Neuro-2a cells expressing Cx43 or Cx40. Addition of ionomycin to increase external Ca(2+) influx reduced Cx43 gap junction conductance (G(j)) by 95%, while increasing cytosolic Ca(2+) concentration threefold. By contrast, Cx40 G(j) declined by <20%. The Ca(2+)-induced decline in Cx43 G(j) was prevented by pretreatment with calmidazolium or reversed by the addition of 10 mM EGTA to Ca(2+)-free extracellular solution, if Ca(2+) chelation was commenced before complete uncoupling, after which g(j) was only 60% recoverable. The Cx43 CL(136-158) mimetic peptide, but not the scrambled control peptide, or Ca(2+)/CaM-dependent kinase II 290-309 inhibitory peptide also prevented the Ca(2+)/CaM-dependent decline of Cx43 G(j). Cx43 gap junction channel open probability decreased to zero without reductions in the current amplitudes during external Ca(2+)/ionomycin perfusion. We conclude that Cx43 gap junctions are gated closed by a Ca(2+)/CaM-dependent mechanism involving the carboxyl-terminal quarter of the connexin CL domain. This study provides the first evidence of intrinsic differences in the Ca(2+) regulatory properties of Cx43 and Cx40.  相似文献   

2.
Calmodulin (CaM) is an essential eukaryotic calcium receptor that regulates many kinases, including CaMKII. Calcium‐depleted CaM does not bind to CaMKII under physiological conditions. However, binding of (Ca2+)4‐CaM to a basic amphipathic helix in CaMKII releases auto‐inhibition of the kinase. The crystal structure of CaM bound to CaMKIIp, a peptide representing the CaM‐binding domain (CaMBD) of CaMKII, shows an antiparallel interface: the C‐domain of CaM primarily contacts the N‐terminal half of the CaMBD. The two domains of calcium‐saturated CaM are believed to play distinct roles in releasing auto‐inhibition. To investigate the underlying mechanism of activation, calcium‐dependent titrations of isolated domains of CaM binding to CaMKIIp were monitored using fluorescence anisotropy. The binding affinity of CaMKIIp for the domains of CaM increased upon saturation with calcium, with the C‐domain having a 35‐fold greater affinity than the N‐domain. Because the interdomain linker of CaM regulates calcium‐binding affinity and contribute to conformational change, the role of each CaM domain was explored further by investigating effects of CaMKIIp on site‐knockout mutants affecting the calcium‐binding sites of a single domain. Investigation of the thermodynamic linkage between saturation of individual calcium‐binding sites and CaM‐domain binding to CaMKIIp showed that calcium binding to Sites III and IV was sufficient to recapitulate the behavior of (Ca2+)4‐CaM. The magnitude of favorable interdomain cooperativity varied depending on which of the four calcium‐binding sites were mutated, emphasizing differential regulatory roles for the domains of CaM, despite the high degree of homology among the four EF‐hands of CaM. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
A cDNA clone producing a protein that binds calmodulin has been isolated from a mouse macrophage library. The cDNA was sequenced and identified as coding for fodrin. By deleting part of the sequence, the calmodulin binding domain was located. The site is situated on repeat 11 of fodrin probably on its extra arm. This part of the sequence exhibits great similarity to other calmodulin binding proteins. Analysis of the sequence and spatial structure of calmodulin revealed a domain which is quite complementary to the sequence identified on fodrin. These results provide a new insight into the structure of fodrin and consequently into the structure of proteins of the spectrin family. A model for the general folding of these molecules is proposed, involving a simple three-layer folding. The structure was further corroborated by analysis of charge distribution in the vicinity of the calmodulin binding site. The folding we propose is in good agreement with digestion experiments and explains observations in diseases resulting from mutations of human spectrin.  相似文献   

4.
The C-terminal (CT) domain of connexin43 (Cx43) is thought to be important in the control of gap junction function via: a.) CT phosphorylation-dependent control of gap junction assembly and gating, b.) interactions of CT with key regulatory binding partners. To more closely examine CT-dependent regulation, we have expressed a hemagglutinin-Cx43CT (amino acids 235-382) fusion protein in Normal Rat Kidney (NRK) cells under a tetracycline-responsive inducible promoter. Western blot analysis shows that Cx43CT expression is markedly induced by at least 48 h oftreatment with the tetracycline analogue, doxycycline. Furthermore, Cx43CT is modified within the cell, as several treatments/conditions that increase endogenous Cx43 phosphorylation induced a mobility shift in Cx43CT. Treatment with kinase activators, including epidermal growth factor (EGF) and the tumor promoting phorbol ester 12-O-tetradecanylphorbol-13-acetate (TPA), caused a shift in the mobility of the Cx43CT in a manner consistent with the mobility shift observed upon increased phosphorylation of endogenous Cx43. Similarly, Cx43CT in mitotic cells is extensively shifted, consistent with reports which show that Cx43 is phosphorylated to a unique phosphoisoform in mitotic cells. These results indicate that the Cx43CT can interact with at least some of the kinases that phosphorylate endogenous Cx43 in cells and possibly modulate the effects of kinase activation on gap junctional communication.  相似文献   

5.
N-methyl-d-aspartate (NMDA) receptors are calcium-permeable ion channels assembled from four subunits that each have a common membrane topology. The intracellular carboxyl terminal domain (CTD) of each subunit varies in length, is least conserved between subunits, and binds multiple intracellular proteins. We defined a region of interest in the GluN2A CTD, downstream of well-characterized membrane-proximal motifs, that shares only 29% sequence similarity with the equivalent region of GluN2B. GluN2A (amino acids 875–1029) was fused to GST and used as a bait to identify proteins from mouse brain with the potential to bind GluN2A as a function of calcium. Using mass spectrometry we identified calmodulin as a calcium-dependent GluN2A binding partner. Equilibrium fluorescence spectroscopy experiments indicate that Ca2+/calmodulin binds GluN2A with high affinity (5.2 ± 2.4 nM) in vitro. Direct interaction of Ca2+/calmodulin with GluN2A was not affected by disruption of classic sequence motifs associated with Ca2+/calmodulin target recognition, but was critically dependent upon Trp-1014. These findings provide new insight into the potential of Ca2+/calmodulin, previously considered a GluN1-binding partner, to influence NMDA receptors by direct association.  相似文献   

6.
The recent finding of an interaction between calmodulin (CaM) and the tobacco mitogen-activated protein kinase phosphatase-1 (NtMKP1) establishes an important connection between Ca(2+) signaling and the MAPK cascade, two of the most important signaling pathways in plant cells. Here we have used different biophysical techniques, including fluorescence and NMR spectroscopy as well as microcalorimetry, to characterize the binding of soybean CaM isoforms, SCaM-1 and -4, to synthetic peptides derived from the CaM binding domain of NtMKP1. We find that the actual CaM binding region is shorter than what had previously been suggested. Moreover, the peptide binds to the SCaM C-terminal domain even in the absence of free Ca(2+) with the single Trp residue of the NtMKP1 peptides buried in a solvent-inaccessible hydrophobic region. In the presence of Ca(2+), the peptides bind first to the C-terminal lobe of the SCaMs with a nanomolar affinity, and at higher peptide concentrations, a second peptide binds to the N-terminal domain with lower affinity. Thermodynamic analysis demonstrates that the formation of the peptide-bound complex with the Ca(2+)-loaded SCaMs is driven by favorable binding enthalpy due to a combination of hydrophobic and electrostatic interactions. Experiments with CaM proteolytic fragments showed that the two domains bind the peptide in an independent manner. To our knowledge, this is the first report providing direct evidence for sequential binding of two identical peptides of a target protein to CaM. Discussion of the potential biological role of this interaction motif is also provided.  相似文献   

7.
We have studied the conformational transition of the calmodulin binding domains (CBD) in several calmodulin‐binding kinases, in which CBD changes from the disordered state to the ordered state when binding with calmodulin (CaM). Targeted molecular dynamics simulation was used to investigate the binding process of CaM and CBD of CaM‐dependent kinase I (CaMKI–CBD). The results show that CaMKI–CBD began to form an α‐helix and the interaction free energy between CaM and CaMKI–CBD increased once CaM fully encompassed CaMKI–CBD. Two series of CaM/CBD complex systems, including the complexes of CaM with the initially disordered and the final ordered CBD, were constructed to study the interaction using molecular dynamics simulations. Our analyses suggest that the VDW interaction plays a dominant role in CaM/CBD binding and is a key factor in the disorder–order transition of CBD. Additionally, the entropy effect is not in favor of the formation of the CaM/CBD complex, which is consistent with the experimental evidence. Based on the results, it appears that the CBD conformational change from a non‐compact extended structure to compact α‐helix is critical in gaining a favorable VDW interaction and interaction free energy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Connexins are structurally related transmembrane proteins that assemble to form gap junction channels involved in the mediation of intercellular communication. It has been shown that the intracellular tail of connexin43 (Cx43) interacts with tubulin and microtubules with putative impacts on its own intracellular trafficking, its activity in channel communication, and its interference with specific growth factor signal transduction cascades. We demonstrate here that the microtubule binding of Cx43 is mainly driven by a short region of 26 amino acid residues located within the intracellular tail of Cx43. The nuclear magnetic resonance structural analysis of a peptide (K26D) corresponding to this region shows that this peptide is unstructured when free in solution and adopts a helix conformation upon binding with tubulin. In addition, the resulting K26D-tubulin molecular complex defines a new structural organization that could be shared by other microtubule partners. Interestingly, the K26D-tubulin interaction is prevented by the phosphorylation of K26D at a src kinase specific site. Altogether, the results elucidate the mechanism of the interaction of Cx43 with the microtubule cytoskeleton and propose a pathway for understanding the microtubule-dependent regulation of Cx43 gap junctional communications and the involvement of Cx43 in TGF-β signal transduction.  相似文献   

9.
Gap junctions are formed by a family of transmembrane proteins, connexins. Connexin43 is a widely studied member of the family, being ubiquitously expressed in a variety of tissues and a target of a large number of disease mutations. The intracellular loop of connexin43 has been shown to include a calmodulin binding domain, but detailed 3-dimensional data on the structure of the complex are not available. In this study, we used a synthetic peptide from this domain to reveal the conformation of the calmodulin-peptide complex by small angle X-ray scattering. Upon peptide binding, calmodulin lost its dumbbell shape, adopting a more globular conformation. We also studied the energetics of the interaction using calorimetry and computational methods. All our data indicate that calmodulin binds to the peptide from cx43 in the classical ‘collapsed’ conformation.  相似文献   

10.
Exposure of the purified Ca2+ pump of human erythrocytes to chymotrypsin led to the rapid loss of calmodulin activation. A fragment of about 12 kDa was removed from the ATPase in 1-2 min. Blotting experiments with 125I-labeled calmodulin showed that this fragment contains the calmodulin binding region. The remainder of the ATPase molecule was degraded to a number of fragments ranging from 3 to 120 kDa; none of them bound calmodulin. To isolate the calmodulin binding domain, calmodulin which had been coupled to the Denny-Jaffe reagent (a cleavable radioactive photoaffinity cross-linker) was allowed to bind to the Ca2+ pump. After illumination to couple the cross-linker to the pump, the cleavable bond was split and the calmodulin removed, leaving the pump radioactively labeled. This pump was digested with chymotrypsin, and the products were separated by gel permeation chromatography. The only radioactive peak (migrating at about 12 kDa) was further purified on reverse-phase high pressure liquid chromatography (HPLC). Amino acid analysis showed the fragment to have a minimal molecular mass of 12.4 kDa and to contain a single methionine. After attempts to sequence the peptide directly failed. CNBr digestion was carried out on the labeled ATPase, producing both soluble and insoluble labeled material. After reverse-phase HPLC purification of the soluble material, a single radioactive peak was collected. Its sequence was (Formula: see text). A portion of this peak was passed through a microcalmodulin column; it bound in the presence of Ca2+ and was eluted by EDTA, and by a mixture of EDTA and urea. Staphylococcal V8 protease digestion of the eluted peak produced the same sequence as shown above, but starting at Leu-2 and ending at Glu-32. Structural analysis of this peptide showed that it shares features with the calmodulin binding domains of other enzymes which are regulated by calmodulin.  相似文献   

11.
The interactions between the abundant methionine residues of the calcium regulatory protein calmodulin (CaM) and several of its binding targets were probed using fluorescence spectroscopy. Tryptophan steady-state fluorescence from peptides encompassing the CaM-binding domains of the target proteins myosin light chain kinase (MLCK), cyclic nucleotide phosphodiesterase (PDE) and caldesmon site A and B (CaD A, CaD B), and the model peptide melittin showed Ca(2+)-dependent blue-shifts in their maximum emission wavelength when complexed with wild-type CaM. Blue-shifts were also observed for complexes in which the CaM methionine residues were replaced by selenomethionine, norleucine and ethionine, and when a quadruple methionine to leucine C-terminal mutant of CaM was studied. Quenching of the tryptophan fluorescence intensity was observed with selenomethionine, but not with norleucine or ethionine substituted protein. Fluorescence quenching studies with added potassium iodide (KI) demonstrate that the non-native proteins limit the solvent accessibility of the Trp in the MLCK peptide to levels close to that of the wild-type CaM-MLCK interaction. Our results show that the methionine residues from CaM are highly sensitive to the target peptide in question, confirming the importance of their role in binding interactions. In addition, we provide evidence that the nature of binding in the CaM-CaD B complex is unique compared with the other complexes studied, as the Trp residue of this peptide remains partially solvent exposed upon binding to CaM.  相似文献   

12.
Connexin oligomerization and trafficking are regulated processes. To identify proteins that control connexin 43 (Cx43), a screen was designed using HeLa cells expressing a Cx43 construct with di-lysine endoplasmic reticulum (ER)-retention/retrieval motif, Cx43-HKKSL. At moderate levels of expression, Cx43-HKKSL is retained in the ER as monomers; however, Cx43-HKKSL stably overexpressed by HeLa cells localizes to the perinuclear region and oligomerizes. HeLa/Cx43-HKKSL overexpressors were transiently transfected with pooled clones from a human kidney cDNA library and used immunofluorescence microscopy to identify cDNAs that enabled overexpressed Cx43-HKKSL to convert from a perinuclear to ER localization pattern. Using this approach, a small molecular weight GTPase, rab20, was identified as a candidate protein with the ability to regulate Cx43 trafficking. Enhanced green fluorescent protein (EGFP)-tagged rab20 showed a predominantly perinuclear and ER localization pattern and caused wild-type Cx43 to be retained inside the cell. By contrast, mutant EGFP-rab20T19N, which lacks the ability to bind GTP, had no effect on Cx43. These results suggest Cx43 is transported through an intracellular compartment regulated by rab20 along the secretory pathway.  相似文献   

13.
Antipeptide antibodies directed to residues 55 to 66 (NTQQPGCENVCY) of connexin43 (cx43) specifically recognize this protein on Western blots of intact and urea-split gap junctions isolated from rat heart. These antibodies detect a single protein of 43 kDa, corresponding to cx43, on Western blots of whole fractions of various vertebrate hearts. Immunogold labeling by electron microscopy shows that the epitopes recognized by these antibodies are not localized on the cytoplasmic surfaces of intact gap junctions but only at the edges of these junctions. In urea-split gap junctions the gold particles are seen in the junctional space, associated with the extracellular faces of junctional membranes. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analyses of rat heart gap junctions treated with trypsin show that they are constituted with either two polypeptides of Mr 12,000 and 14,000 or a single polypeptide of Mr 22,000 according to whether the analyses are performed under reducing or non-reducing conditions, respectively. The antibodies directed to residues 55 to 66 of cx43 cross-react with both the 12 and 22 kDa polypeptides. These results suggest that the two protected domains of 12 and 14 kDa which contain the first extracellular loop and a putative second extracellular loop, respectively, are linked by disulfide bonds. In adult rat heart sections analyzed by indirect immunofluorescence the intercalated discs are labeled with antibodies directed to a cytoplasmic carboxy-terminal domain of cx43 (El Aoumari et al., J. Membr. Biol. 115, 229-240 (1990)). The same intercalated discs are also labeled in adjacent sections incubated with the antibodies directed to residues 55 to 66. Two hypotheses might explain these results: either the antibodies have access to the extracellular domain of cx43 molecules localized at the edges of the gap junctions, or cx43 molecules are present in the non-junctional membranes of the intercalated discs.  相似文献   

14.
A calmodulin and alpha-subunit binding domain in human erythrocyte spectrin   总被引:3,自引:0,他引:3  
Human erythrocyte spectrin binds calmodulin weakly under native conditions. This binding is enhanced in the presence of urea. The site responsible for this enhanced binding in urea has now been shown to reside in a specific region of the spectrin beta-subunit. Cleavage of spectrin with trypsin, cyanogen bromide or 2-nitro-5-thiocyanobenzoic acid generates fragments of the molecule which retain the ability to bind calmodulin under denaturing conditions. The origin of these fragments, identified by two-dimensional peptide mapping, is the terminal region of the spectrin beta-IV domain. The smallest peptide active in calmodulin binding is a 10 000 Mr fragment generated by cyanogen bromide cleavage. Only the intact 74 000 Mr fragment generated by trypsin (the complete beta-IV domain) retains the capacity to reassociate with the isolated alpha-subunit of spectrin. The position of a putative calmodulin binding site near a site for subunit-subunit association and protein 4.1 and actin binding suggests a possible role in vivo for calmodulin regulation of the spectrin-actin membrane skeleton or for regulation of subunit-subunit associations. This beta-subunit binding site in erythrocyte spectrin is found in a region near the NH2-terminus at a position analogous to the alpha-subunit calmodulin binding site previously identified in a non-erythroid spectrin by ultrastructural studies.  相似文献   

15.
M Yazawa  T Vorherr  P James  E Carafoli  K Yagi 《Biochemistry》1992,31(12):3171-3176
The interaction between calmodulin and synthetic peptides corresponding to the calmodulin binding domain of the plasma membrane Ca2+ pump has been studied by measuring Ca2+ binding to calmodulin. The largest peptide (C28W) corresponding to the complete 28 amino acid calmodulin binding domain enhanced the Ca2+ affinity of calmodulin by more than 100 times, implying that the binding of Ca2+ increased the affinity of calmodulin for the peptide by more than 10(8) times. Deletion of the 8 C-terminal residues from peptide C28W did not decrease the affinity of Ca2+ for the high-affinity sites of calmodulin, but it decreased that for the low-affinity sites. A larger deletion (13 residues) decreased the affinity of Ca2+ for the high-affinity sites as well. The data suggest that the middle portion of peptide C28W interacts with the C-terminal half of calmodulin. Addition of the peptides to a mixture of tryptic fragments corresponding to the N- and C-terminal halves of calmodulin produced a biphasic Ca2+ binding curve, and the effect of peptides was different from that on calmodulin. The result shows that one molecule of peptide C28W binds both calmodulin fragments. Interaction of the two domains of calmodulin through the central helix is necessary for the high-affinity binding of four Ca2+ molecules.  相似文献   

16.
43Ca NMR experiments of Ca2+ binding to calmodulin (CaM) were performed in the presence and absence of the calmodulin antagonist trifluoperazine (TFP). By making use of the shift reagent Dy(PPP)(7-) (a 1:2 complex of DyCl3 and Na5P3O10) we have succeeded in separating the 43Ca resonances of protein-bound Ca2+ and free Ca2+ in the otherwise unresolved spectra. This experimental strategy has allowed us to demonstrate unequivocally that the affinity of CaM for Ca2+ is markedly increased in the presence of TFP. Thus Ca2+ is not liberated from the protein upon addition of TFP as had been suggested based on earlier 43Ca NMR experiments (Shimuzu, T., Hatano, M., Nagao, S. and Nozawa, Y. (1982), Biochem. Biophys. Res. Comm. 106, 1112-1118).  相似文献   

17.
Identification of the preprotein binding domain of SecA   总被引:1,自引:0,他引:1  
SecA, the preprotein translocase ATPase, has a helicase DEAD motor. To catalyze protein translocation, SecA possesses two additional flexible domains absent from other helicases. Here we demonstrate that one of these "specificity domains" is a preprotein binding domain (PBD). PBD is essential for viability and protein translocation. PBD mutations do not abrogate the basal enzymatic properties of SecA (nucleotide binding and hydrolysis), nor do they prevent SecA binding to the SecYEG protein conducting channel. However, SecA PBD mutants fail to load preproteins onto SecYEG, and their translocation ATPase activity does not become stimulated by preproteins. Bulb and Stem, the two sterically proximal PBD substructures, are physically separable and have distinct roles. Stem binds signal peptides, whereas the Bulb binds mature preprotein regions as short as 25 amino acids. Binding of signal or mature region peptides or full-length preproteins causes distinct conformational changes to PBD and to the DEAD motor. We propose that (a) PBD is a preprotein receptor and a physical bridge connecting bound preproteins to the DEAD motor, and (b) preproteins control the ATPase cycle via PBD.  相似文献   

18.
Abstract

CIP85 was previously identified as a connexin43 (Cx43)-interacting protein that is ubiquitously expressed in multiple mammalian tissues and cell types. The interaction between the SH3 domain of CIP85 and a proline-rich region of Cx43 has previously been associated with an increased rate of Cx43 turnover through lysosomal mechanisms. This report presents biochemical and immunofluorescence evidence that overexpression of CIP85 reduced the presence of Cx43 in gap junction plaques at the plasma membrane. Furthermore, this effect was dependent upon the interaction of CIP85 with Cx43 at the plasma membrane. These results indicate that CIP85 increases Cx43 turnover by accelerating the internalization of Cx43 from the plasma membrane. CIP85 was also observed to interact with clathrin, which suggested a role for CIP85 in the clathrin-mediated internalization of Cx43.  相似文献   

19.
Intracellular calcium regulation of connexin43   总被引:4,自引:0,他引:4  
The mechanism by which intracellular Ca(2+) concentration ([Ca(2+)](i)) regulates the permeability of gap junctions composed of connexin43 (Cx43) was investigated in HeLa cells stably transfected with this connexin. Extracellular addition of Ca(2+) in the presence of the Ca(2+) ionophore ionomycin produced a sustained elevation in [Ca(2+)](i) that resulted in an inhibition of the cell-to-cell transfer of the fluorescent dye Alexa fluor 594 (IC(50) of 360 nM Ca(2+)). The Ca(2+) dependency of this inhibition of Cx43 gap junctional permeability is very similar to that described in sheep lens epithelial cell cultures that express the three sheep lens connexins (Cx43, Cx44, and Cx49). The intracellular Ca(2+)-mediated decrease in cell-to-cell dye transfer was prevented by an inhibitor of calmodulin action but not by inhibitors of Ca(2+)/calmodulin-dependent protein kinase II or protein kinase C. In experiments that used HeLa cells transfected with a Cx43 COOH-terminus truncation mutant (Cx43(Delta257)), cell-to-cell coupling was similarly decreased by an elevation of [Ca(2+)](i) (IC(50) of 310 nM Ca(2+)) and similarly prevented by the addition of an inhibitor of calmodulin. These data indicate that physiological concentrations of [Ca(2+)](i) regulate the permeability of Cx43 in a calmodulin-dependent manner that does not require the major portion of the COOH terminus of Cx43.  相似文献   

20.
Oculodentodigital dysplasia, a rare condition displaying congenital craniofacial deformities and limb abnormalities, has been associated with over 20 known human connexin43 (Cx43) mutations. The localization of two of these mutants, G21R and G138R, was examined in Cx43-positive normal rat kidney cells (NRK) and Cx43-negative gap junctional intercellular communication-deficient HeLa cells. Green fluorescent protein-tagged and untagged Cx43 G21R and G138R mutants were transported to the plasma membrane and formed punctate structures reminiscent of gap junction plaques in both NRK and HeLa cells. Further localization studies revealed no significant trafficking defects as subpopulations of Cx43 mutants were found in both the Golgi apparatus and lysosomes, not unlike wild-type Cx43. Dual patch clamp functional analysis of the mutants expressed in gap junctional intercellular communication-deficient N2A cells revealed that neither G21R nor G138R formed functional gap junction channels, although they successfully reached cell-cell interfaces between cell pairs. Importantly, when either mutant was expressed in NRK cells, dye coupling experiments revealed that both mutants inhibited endogenous Cx43 function. These studies suggest that, although patients suffering from oculodentodigital dysplasia possess one wild-type Cx43 allele, it is likely that Cx43-mediated gap junctional intercellular communication is reduced below 50% because of a dominant-negative effect of mutant Cx43 on wild-type Cx43.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号