首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 663 毫秒
1.
The effects of enhanced UVB radiation and drought stress on willow secondary phenolics were studied using the leaves of 8‐week‐old micropropagated plantlets from interspecific hybrids (Salix myrsinites L. ×S. myrsinifolia Salisb.) and pure species (S. myrsinifolia). The plantlets were subjected for 4 weeks to two levels of UVB radiation (ambient, enhanced) and two levels of watering (well‐watered, drought‐stressed) according to a 2 × 2 factorial design. Enhanced UVB radiation increased the total concentration of flavonoids and phenolic acids in all plantlets, while the total concentration of salicylates remained unaffected. Drought stress reduced the total concentration of salicylates and phenolic acids in S. myrsinifolia plantlets, while in hybrids only phenolic acids were affected. The response of phenolic acids to enhanced UVB in drought‐stressed plantlets was different from that in well‐watered ones, indicating that drought stress limited the accumulation of phenolic acids under enhanced UVB radiation. Flavonoids increased in response to enhanced UVB radiation in drought‐stressed plantlets, although drought caused serious physiological stress on growth. There were significant differences between hybrid and S. myrsinifolia plantlets with respect to the composition of phenolics and between families and clones with respect to their concentration. In addition, the response of salicylates, flavonoids and phenolic acids to enhanced UVB and drought stress was clone‐specific, which may indicate that climatic changes will alter the genetic composition of northern forests.  相似文献   

2.
The aim of this work was to study the effect of ultraviolet-B (UV-B) exposure on oxidative status in chloroplasts isolated from soybean ( Glycine max cv . Hood). Chloroplasts were isolated from soybean leaves excised from either control seedlings or those exposed to 30 and 60 kJ m−2 day−1 of UV-B radiation for 4 days. Chloroplastic oxidative conditions were assessed as carbon-centered radical, carbonyl groups and ascorbyl radical content. Treatment with UV-B increased the carbon-centered radical-dependent EPR signal significantly by 55 and 100% in chloroplasts from leaves exposed to 30 and 60 kJ m−2 day−1 UV-B, respectively, compared to radical content in chloroplasts from control leaves. The content of carbonyl groups increased by 37 and 62% in chloroplasts isolated from soybean leaves irradiated for 4 days with 30 and 60 kJ m−2 day−1 UV-B, respectively. The content of soluble metabolites in isolated chloroplasts should not be taken as absolute in vivo values; however, these data are valuable for comparative studies. UV-B exposure did not significantly affect ascorbyl radical content compared to controls. The content of ascorbic acid and thiols in chloroplasts isolated from leaves exposed to 60 kJ m−2 day−1 UV-B was increased by 117 and 20.8%, respectively, compared to controls. Neither the content of total carotene nor that of β -carotene or α -tocopherol was affected by the irradiation. The results presented here suggest that the increased content of lipid radicals and oxidized proteins in the chloroplasts isolated from leaves exposed to UV-B could be ascribed to both the lack of antioxidant response in the lipid soluble fraction and the modest increase in the soluble antioxidant content.  相似文献   

3.
Using quartz optical fibres, penetration of both monochromatic (310 nm) and polychromatic UV-B (280–320 nm) radiation in leaves of Brassica napus L. (cv. Ceres) was measured. Plants were grown under either visible light (750 μmol m−2 s−1 photosynthetically active radiation) or with the addition of 8. 9 KJ m−2 day−1 biologically effective UV-B (UV-BBE) radiation. Results showed that of the 310 nm radiation that penetreated the leaf, 90% was within the intial one third of the leaf with high attenuation in the leaf epidermis, especially in UV-treated plants. Polychromatic UV-B radiation, relative to incident radiation, showed a relatively uniform spectral distribution within the leaf, except for collimated radiation. Over 30% of the UV-screening pigments in the leaf, including flavonoids, were found in the adaxial epidermal layer, making this layer less transparent to UV-B radiation than the abaxial epidermis, which contained less than 12% of the UV-screening pigments. UV-screening pigments increased by 20% in UV-treated leaves relative to control leaves. Densely arranged epicuticular wax on the adaxial leaf surface of UV-treated plants may have further decreased penetration of UV-B radiation by reflectance. An increased leaf thickness, and decreases in leaf area and leaf dry weight were also found for UV-treated plants.  相似文献   

4.
A depletion of the stratospheric ozone layer would result in an increased UV-B radiation, which could have harmful effects on marine organisms. The aim of this study was to determine the effects of an enhanced UV-B radiation (280–320 nin) on the motility and growth in four Swedish phytoplanklon species. The different plankton species were exposed to different doses of UV-B radiation during growth. The growth of the motile dinoflagellates, Gyronidium aureolum Hulburt (Ba 6), and Prorocentrum minimum (Pav.) P. Schiller (Ba 12), was more sensitive to UV-B radiation than the non-motile diatoms Dityhim brightwellii (P. West) Grun (Ba 15) and Phaeodactylum tricornutum Bohlin (Ba 16). One week of UV-B radiation 2 h daily (159 J m−2 day−1), had a dramatic effect on the growth of the dinoflagellates, while the diatoms were nearly unaffected. On the other hand, when given higher intensity of UV-B radiation (312, 468 and 624 J m−2 day−1) during the initial phase of growth, also the growth of the diatom, D. brightwellii, was inhibited. Not only the growth but also the swimming speed of the dinoflagellates C. aureolum and P. minimum were affected by UV-B radiation. The speed decreased rapidly after 1–2 h of UV-B radiation (312 J m−2 day−1), and after longer irradiation times the dinoflagellates lost their motility. G. aureolum exposed to UV-B radiation, regained normal speed after two weeks of visible light.  相似文献   

5.
In vitro shoots of cv. Doyenne ďHiver pear ( Pyrus communis L.) were irradiated under controlled environments for 6 h per day at 5 different levels of biologically effective UV-B radiation (UV-BBE). UV-B exposure caused a progressive increase in apical necrosis above background levels and stimulated leaf abscission. Shoots grown for 2 weeks at 7. 8 mol m−2 day −1 of photosynthetic photon flux (PPF) and treated with 8. 4 or 12. 0 kJ m−2 day −1 UV-BBE produced up to 4 times more ethylene than those given 2. 2 or 5. 1 kJ m−2 day−1 UV-BBE or untreated controls. Exposure of shoots to 12 kJ m−2 day −1 of UV-BBE caused an increase in free putreseine content after 4 to 14 days of irradiation. Shoots showed a decrease in CO2 uptake after 3 days of UV-B: thereafter, they appeared to recover their photosynthetic capacity. Under typical PPF conditions used in micropropagation (90 μmol m−2 S−1). 8. 4 kJ m−2 day −1 of UV-B radiation was injurious to realatively tender tissues of in vitro pear shoots: increasing the level of UV-BBE to 12 kJ m−2 day−1 produced even more adverse effects.  相似文献   

6.
Photosynthetically active radiation (PhAR) is apparently the environmental factor having the greatest influence on leaf thickness for Plectranthus parviflorus Henckel (Labiatae). A four-fold increase in leaf thickness from 280 to 1170 μm occurred as the PhAR was raised from 1.3 to 32.5 mol m−2 day−1. Compared to a constant PhAR of 2.5 mol m−2 day−1, a PhAR of 32.5 mol m−2 day−1 for one week during the first week (with return to 2.5 mol m−2 day−1 during the second and third weeks) led to an increase in final leaf thickness by 323 μm (to 802 μm). When increased PhAR was applied during the second week the increase in final thickness over the control was 217 μm, and when increased PhAR was applied during the third week it was 99 μm. However, leaf thickness was not simply responding to total daily PhAR, since a leaf 450 μm thick could occur at a low instantaneous PhAR for a long daytime (total daily PhAR of 1.5 mol m−2 day−1) and at a high PhAR for a short daytime (4.5 mol m−2 day−1). Total daily CO2 uptake (net photosynthesis) was approximately the same in the two cases, suggesting that this is an important factor underlying the differences in leaf thickness. Leaf thickness is physiologically important, since thicker leaves tend to have greater mesophyll surface area per unit leaf area ( A mes/ A ) and hence higher photosynthetic rates.  相似文献   

7.
Soybeans Glycine max (L.) cv. Essex were hydroponically grown in a greenhouse at 2 levels of ultraviolet-B (UV-B) radiation (0 and 2 500 J m−1 day−1 biologically effective UV-B radiation) and 4 levels of P (6.5, 13, 26 and 52 μ M ). Plants were grown in each treatment combination to the complete expansion of the 4th trifoliolate leaf. UV-B radiation and reduced P supply generally decreased plant height, leaf area and total biomass, but increased specific leaf weight and flavonoid content (measured as absorbance of methanolic extracts). Although both UV-B radiation and low P supply produced deleterious effects on plant biomass, the effects were non-additive. The combination of UV-B and the lowest P level (6.5 μ M ) had no effect on total biomass or leaf area. This was at least partially due to the accumulation of flavonoids and leaf thickening. The results show that the sensitivity of soybean to UV-B radiation is dependent upon plant P supply. Plants experiencing P deficiency are less sensitive to UV-B than plants at optimum P levels.  相似文献   

8.
UV-B-sensitive (Poinsett) and -insensitive (Ashley) cultivars of cucumber ( Cucumis sativus L.) were grown in growth chambers at 600 μmol m−2s−1 of photosynthetically active radiation provided by metal halide (MH) or high pressure sodium/deluxe (HPS/DX) lamps. Plants were irradiated 15 days from seeding for 6 h per day under 18. 2 kJ m−2 day−1 of biologically effective UV-B (UV-BBE) radiation. One of the most pronounced effects of UV-B was a 27 to 78% increase in phenylalanine ammonialyase (PAL) activity. UV-B also increased total polyamines. Catalase and superoxide dismutase varied greatly in their response to UV-B. There were no interactive effects on PAL or catalase activity, or total polyamines. There was a UV × PAR source interaction for superoxide dismutase activity. UV-B increased chlorosis and decreased height, dry weight and leaf area. Stem elongation, biomass production, leaf enlargement and chlorosis were greater under HPS/DX lamps than under MH lamps. Chlorosis was greater in Poinsett than in Ashley and in lower leaves than in upper ones. Aside from chlorosis, there were no interactive effects of UV-B, PAR source or cultivar on any of the growth parameters measured, suggesting that the growth response of cucumber seedlings to UV-B is unaffected by PAR source or cultivar. Similarly, except for SOD activity, the biochemical response to UV-B was also not influenced by PAR source or cultivar.  相似文献   

9.
A growth analysis was made of ultraviolet-B (UV-B)-sensitive (Poinsett) and insensitive (Ashley) cultivars of Cucuumis satives L. grown in growth chambers at 600 μmol m−2 s−1 of photosynthetic photon flux (PPF) provided by red- and far-red-deficient metal halide (MH) or blue- and UV-A-deficient high pressure sodium/deluxe f HPS/DX) lamps. Plants were irradiated 6 h daiiy with 0.2 f-UV-B) or 18.2 C+UV-B) kJ m−2 day−1 of biologically effective UV-B for 8 or 15 days from time of seeding. In general, plants given supplemental UV-B for 15 days showed lower leaf area ratio (LARs, and higher specific leaf mass (SLM) mean relative growth rate (MRGR) and net assimilation rate (NAR) than that of control plants, but they showed no difference in leaf mass ratio (LMR), Plants grown under HPS/DX lamps vs MH lamps showed higher SLM and NAR. lower LAR and LMR. hut no difference in MRGR. LMR was the only growth parameter affected by cultivar: at 15 days, it was slightly greater in Poinsett than in Ashley. There were no interactive effects of UV-B. PPF source or cultivar on any of the growth parameters determined, indicating that the choice of either HPS/DX or MH lamps should not affect growth response to UV-B radiation. This was true even though leaves of UV-B-irradiated plants grown under HPS/DX lamps have been shown to have greater chlorosis than those grown under MH lamps.  相似文献   

10.
Barley ( Hordeum vulgare L.) was grown in a glasshouse with 13.56 or 8.84 kJ m−2: biologically effective UV-B (280–320 nm: UV-BBE) simulating levels predicted to occur with 25 or 5% ozone depletion at 40°N latitude, with UV-A (320–400 mm), or with no supplemental irradiation. Activities of L-phenylalanine ammonia-lyase (PAL, EC 4.3.1.5). chalcone-flavanone isomerase (CFI, EC 5.5.1.6) and peroxidase (EC 1.11.1.7) were determined from the 5th through the 30th day after planting. PAL regulates diversion of L-phenylalanine into precursors for secondary phenolics. CFI regulates an early step of flavonoid biosynthesis, and peroxidase activates phenolic precursors for cross-linking and rigidifying cell walls. At all ages UV-B decreased soluble protein leaf−1 but had little effect on fresh weight or CFI activity. Exposure to UV-B decreased peroxidase activity only slightly in early growth stages but decreased it about 40% by day 30. PAL activity was highest 5 days after planting under all treatments, decreased thereafter, and was not detectable in control plants after day 10. UV-B prolonged PAL activity through day 15 in plants given the highest level of UV-B. This UV-B prolongation of PAL activity is correlated with, and is a likely underlying mechanism to explain, the UV-B- enhanced accumulation of flavonoids and ferulic acid in barley primary leaves. The results are discussed in terms of barley leaf adaptation to UV-B as developmental response dependent on conditions of plant growth.  相似文献   

11.
Broad-band UV-B radiation inhibited hypocotyl elongation in etiolated tomato ( Lycopersicon esculentum Mill. cv. Alisa Craig) seedlings. This inhibition could be elicited by < 3 μmol m−2 s−1 of UV-B radiation provided against a background of white light (> 620 μmol m−2 s−1 between 320 and 800 nm), and was similar in wild-type and phytochrome-1-deficient aurea mutant seedlings. These observations suggest that the effect of UV-B radiation is not mediated by phytochrome. An activity spectrum obtained by delivering 1 μmol m−2 s−1 of monochromatic UV radiation against a while light background (63 μmol m−2 s−1 showed maximum effectiveness around 300 nm, which suggests that DNA or aromatic residues in proteins are not the chromophores mediating UV-B induced inhibition of elongation. Chemicals that affect the normal (photo)chemistry of flavins and possibly pterins (KI, NaN, and phenylacetic acid) largely abolished the inhibitor) effect of broad-hand UV-B radiation when applied to the root zone before irradiation. KI was effective at concentrations < 10−4 M , which have been shown in vitro to be effective in quenching the triplet excited stales of flavins but not fluorescence from pterine or singlet states of flavins. Elimination of blue light or reduction of UV-A, two sources of flavin excitation, promoted hypocotyl elongation, but did not affect the inhibition of elongation evened by UV-B. Kl applied after UV-B irradiation had no effect on the inhibition response. Taken together these findings suggest that the chromophore of the photoreceptor system invoked in UV-B perception by tomato seedlings during de-etiolation may be a flavin.  相似文献   

12.
The aim of this study was to investigate whether the cytoskeleton, and in particular the microtubular system, is affected by enhanced levels of ultraviolet-B (280–320 nm, 9 kJ m−2 day−1 biologically effective UV-B radiation) radiation in epidermal cells of Petunia x hybrida Vilm, isolated from leaves of plants grown under UV-B radiation and visible light. In addition, morphological changes during development were monitored. In a previous study microtubules were depolymerized and delays in the different stages of the cell cycle were found when protoplasts of Petunia were irradiated with UV-B radiation (Staxén et al. 1993. Protoplasma 173: 70–76). Thus it was of interest to ascertain whether the cytoskeleton would be similarly affected in an intact system. Assuming an effect of UV-B radiation on the microtubular system, we wished to determine whether this could be correlated to concomitant changes in leaf morphology. Plants of Petunia hybrida were grown in greenhouse conditions in the presence or absence of UV-B radiation. During the course of the experiment, samples were taken from young, expanding leaves and from older, fully expanded leaves and prepared for localization and analysis of microtubules from the adaxial epidermal cells. Morphology rather than the cytoskeleton was affected by UV radiation, despite the fact that the epidermal cytoskeleton would most likely be affected, since it is located in the cells which form the first intercepting layer for incident radiation.
Morphological changes under UV-B radiation, as compared to those under control conditions, were reflected in earlier flowering and an increase in leaf number. Cell division was thus stimulated as was also evidenced from the increased leaf area. Our results indicate that the number of stomata differentiated on a leaf area basis was not altered although the number of stomata per epidermal cell was reduced.  相似文献   

13.
Cucumber ( Cucumis sativus L.) cultivars Marketmore, Lama, XPH 1187, XPH 1484 and Sprint 440 (N) were grown in a greenhouse under two levels of biologically effective ultraviolet-B ( UV -B) radiation (daily dose: 0 and 11.6 kJ m−2 UV-BBE) for 31 days. Significant intraspecific differences were observed in plant height, number of leaves, leaf area and total dry weight. Based upon total biomass accumulation, Marketmore was found to be the most tolerant, and XPH 1484 the most sensitive to UV-B radiation. The dose response of accumulation of UV absorbing compounds (measured as absorbance of methanolic extracts) in leaf tissues showed an increase in UV absorbing compounds with UV-B dose in Marketmore, Sprint 440 (N) and XPH 1187. In Lama and XPH 1484, however, doses below 8.7 kJ m−2 UV-BBE produced no change in UV absorbing compounds. This study suggests that intraspecific differences in UV-B radiation sensitivity in cucumber may be related to inherent differences in the accumulation of UV absorbing compounds in leaves.  相似文献   

14.
Abstract: The effects of solar ultraviolet radiation (UV) on carbon uptake, oxygen evolution and motility of marine phytoplankton were investigated in coastal waters at Kristineberg Marine Research Station on the west coast of Sweden (58° 30'N, 11° 30'E). The mean irradiances at noon above the water surface during the investigation period were: photosynthetic active radiation (PAR, 400–700 nm) 1670 μmol m−2 s−1; ultraviolet-A radiation (UV-A, 320–400 nm) 35.9 W m−2 and ultraviolet-B radiation (UV-B, 280–320 nm) 1.7 W m−2. UV-B radiation was much more attenuated with depth in the water column than were PAR and UV-A radiation. UV-B radiation could not be detected at depths greater than 100–150 cm. Inhibition of carbon uptake by UV-A and UV-B in natural phytoplankton populations was greatest at 50 cm depth and the effects of UV-B were greater than those of UV-A. At depths greater than 50 cm there was almost no effect of ultraviolet radiation on carbon uptake. PAR, UV-A and UV-B decreased oxygen evolution by the dinoflagellate Prorocentrum minimum . Inhibition of oxygen evolution was greater after 4 h than 2 h but it was not possible to distinguish the negative effects of the different light regimes. The motility of P. minimum was not affected by PAR, UV-A and UV-B. The importance of exposure of phytoplankton to different light regimes before being exposed to natural solar radiation is discussed.  相似文献   

15.
Experiments were conducted under greenhouse conditions to investigate the effects of enhanced UV-B radiation (280 to 320 nm) on height, fresh and dry weights, leaf chlorophyll and carotenoids, CO2 uptake rates, and Hill activity in soybean ( Glycine max L. cv. Bragg). Plants were exposed for 6 h continuously from midmorning to midafternoon each day to UV-B radiation which was provided by Westinghouse FS-40 sun lamps filtered with 0.127-mm cellulose acetate film (UV-B enhanced) or 0.127-mm Mylar S film (UV-B Mylar control). Three different UV-B enhanced radiation levels were tested: 1.09 (treatment T1), 1.36 (treatment T2), and 1.83 (treatment T3) UV-B sun equivalent units (UV-Bsec) where 1 UV-Bsec= 15.98 mW·m−2 of solar UV-B obtained by applying EXP -[(α-265)/21]2, a weighting function that simulates the DNA absorption spectrum, to the UV-B lamp systems. These UV-B levels correspond to a calculated decrease in stratospheric ozone content of 6%, 21%, and 36% for treatment T1, T2, and T3, respectively.
Daily exposure of soybean plants to UV-B radiation significantly decreased height, fresh and dry weights, leaf chlorophyll and carotenoid contents, and CO2 uptake rates. Leaf pigment extracted in 80% acetone from UV-B-treated soybean plants showed considerable increase in absorption in the wavelength region of 330 to 400 nm with increased UV-B radiation levels. Chloroplast preparations from leaves of T2 and T3 plants showed significant reductions in Hill reaction measurements.  相似文献   

16.
An application of stable carbon isotope analysis to the mechanistic interpretation of ultraviolet-B (UV-B) effects on growth inhibition is described that is particularly useful for small plants such as Arabidopsis thaliana that are not well suited for gas exchange studies. Many investigators use tissue δ13C, relative abundance of 13C and 12C, as a proxy for water use efficiency and as an indicator of environmental effects on stomatal behaviour and on photosynthesis during growth. Discrimination against 13C is enhanced by both high stomatal conductance and damage to photosynthetic machinery. Because the thinning of the stratospheric ozone layer is permitting more UV-B to enter the biosphere, the mechanisms of action of UV-B radiation on plants are of particular current interest. Arabidopsis thaliana wild-type Landsberg erecta (L er ) and the UV-B-sensitive mutant fah I , deficient in UV-absorbing sinapate esters, were grown in a controlled environment and exposed to UV-BBE doses of 0 or 6–7 kJ m−2 day−1. UV-B exposure decreased dry matter production and δ13C in both genotypes, but growth inhibition was generally greater in fah I than in L er . The fah I mutant also had less leaf greenness than L er . Changes in leaf tissue δ13C were detected before growth inhibition and were evident in treatments of both genotypes that did not cause marked growth effects. This suggests that the effects of UV-B contributing to increased carbon isotope discrimination in L er may have been primarily associated with high stomatal conductance, and in fah I with both high stomatal conductance and damage to photosynthetic machinery.  相似文献   

17.
Spinach plants ( Spinacia oleracea L. cv. Subito) were grown in a complete nutrient solution under ample light intensity (14 h day−1 at 660 μmol m−2 s−1) before being transferred either to a minus-N solution (experiment 1), or to limiting light conditions (6 h day−1 at 220 μmol m−2 s−1; experiment 2). Shoot growth in experiment 1 decreased significantly from 0.24 day−1 to 0.07 day−1 after the fourth day of transfer. Root relative growth rate increased after 1 day from 0.25 to 0.31 day−1, but decreased on the fifth day after transfer to 0.11 day−1. Shoot growth in experiment 2 decreased significantly from 0.25 to 0.17 day−1 after the fourth day of transfer, while root growth decreased to half of its original level (0.25 day−1) already on the second day. Growth substrate levels in the plants (free sugars, free amino acids) and starch levels depended on the plant age, the moment in the diurnal cycle, and the imposed treatment. Fluctuations in shoot growth or root growth resulting from the light or N limitation could not be explained by a correspondent increase or decrease in the levels of growth substrates. The hypotheses underlying the functional equilibrium theory, assuming shoot and root growth to be controlled by N- and C-containing substrates respectively, and several other growth and partitioning models are therefore questioned. A neglect of the osmotic role of the free sugars in these models might be the explanation for this.  相似文献   

18.
SUMMARY. 1. The life cycle of Ephemerella major Klapalek in a chalk trout stream in Belgium took 1 year. Emergence was highly synchronized with a flight period from mid-May to mid-June. Tiny nymphs occurred from June to late August.
2. The mean instantaneous growth rate was high in autumn (3.6% wet wt day−1), very low from November to February (0.8% wet wt day−1) and high until emergence (2.3% wet wt day−1); short day length seemed to be the major factor reducing growth rate during winter.
3. Mortality was close to zero during winter and 1.4—1.7% day−1during other seasons. Total mortality from egg to adult was 99.6%.
4. The annual production was about 9g wet wt m−2 year−1 and the annual P/ ratio was 7.5. There was good agreement between the production values estimated by four methods. Production rate was highest in May (13 mg wet wt m−2 day−1) and zero in February.  相似文献   

19.
Production and food intake by an herbivorous pupfish population ( Cyprinodon nevadensis amargosae ) living in the outflow of a thermal artesian well (Tecopa Bore) near Death Valley, California is described. Water issues from the ground at 47.5° C and cools 8.12° C before leaving the study area 300 m from the source. High stream temperatures restricted the pupfish population to some 41 % of the study area, with a resulting mean density of 89 individuals m−2 (range = 13 to 196m−2). Biomass estimates ranged from 7 kcal m−2 to 42 kcal m−2. The mean annual standing crop of pupfishes (24 kcal m−2) turned over about five times annually. Growth rates were highest in juveniles (♂= 9.5% day−1) and slowest in large adults (♀= 08% day−1). Monthly production ranged from 22 kcal m−2 in September to 3 kcal m−2 in July and August. Pupfish in Tecopa Bore fed on algae and detritus, ingesting 1941 kcal m−2 yr−1 or 17.5% of the annual net primary production. 119 kcal m−2 yr−1 was deposited in growth. This latter value is approximately ten times greater than values previously reported for large carnivorous fishes but is comparable lo values reported for herbivorous fishes under pond culture.  相似文献   

20.
Metabolism of a desert stream   总被引:8,自引:0,他引:8  
SUMMARY. Rates of photosynthesis and community respiration were determined for benthic assemblages in Sycamore Creek, a Sonoran Desert stream in Arizona. Benthos in this stream can be separated into (1) mats of Cladophora glomerata and associated epiphytes and (2) assemblages of epipelic diatoms and blue-green algae. Community respiration and net photosynthesis were measured for these assemblages using submerged light-dark chambers in situ . Multiple regression analysis was used to predict (1) gross photosynthesis as a function of photosynthetically active radiation, temperature and chlorophyll-α concentration; and (2) community respiration as a function of temperature and biomass.
Calculations suggest that Sycamore Creek is autotrophic during the summer ( P/R = 1.7) and that the rates of gross photosynthesis ( P =8.5 g O2 m−2 day−1) and community respiration ( R = 5.1 g O2 m−2 day−1) are high for a small stream. Considerable difference exists between the Cladophora mat assemblages, in which mean P is 12.5gO2m−2 day−1and the P/R ratio is 2.3, and the epipelic assemblages in which mean P is 4.4 g O2m−2 day−1 and P/R is 0.96. The high rate of gross photosynthesis, low litter inputs, high biomass of algae and the intermittent but severe floods that characterize Sycamore Creek indicate that this stream and other similar desert streams are net exporters of organic matter and are, thereby, truly autotrophic stream ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号