首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ornithine decarboxylase from the African trypanosome is an important target for antitrypanosomal chemotherapy. Despite this, the enzyme had not been previously purified or extensively characterized as it is a very low level protein. In this paper we describe the purification of Trypanosoma brucei brucei ornithine decarboxylase from bloodstream form trypomastigotes by 107,000-fold to a specific activity of 2.7 x 10(6) nmol CO2/h/mg of protein in the parasite. T. brucei ornithine decarboxylase had a native molecular weight of 90,000 and a subunit molecular weight of 45,000. The isoelectric point of the protein was 5.0. The Km for ornithine was 280 microM and the Ki for the irreversible inhibitor alpha-difluoromethylornithine (DFMO) was 220 microM with a half-time of inactivation at saturating DFMO concentration of 2.7 min. T. brucei ornithine decarboxylase appears similar to mouse ornithine decarboxylase, further supporting our previous suggestion that the selective toxicity of DFMO to the parasite is not due to catalytic differences between the two proteins. Although a small quantity of T. brucei ornithine decarboxylase was purified from T. brucei, extensive structural and kinetic studies will require a more ample source of the enzyme. We therefore expressed our previously cloned T. brucei ornithine decarboxylase gene in Escherichia coli using a vector that contains an inducible lambda promoter. T. brucei ornithine decarboxylase activity was induced in E. coli to levels that were 50 to 200 fold of that present in the long-slender bloodstream form of T. brucei. Ornithine decarboxylase activity in the crude E. coli lysate was 1500-6000 nmol of CO2/h/mg of protein and represented 0.05-0.2% of the total cell protein. The recombinant T. brucei ornithine decarboxylase was purified to apparent homogeneity from the transformed E. coli. The purified recombinant enzyme had kinetic and physical properties essentially identical to those of the native enzyme.  相似文献   

2.
Studies on the decarboxylation of ornithine in Leishmania mexicana have shown that this activity corresponds to a true ornithine decarboxylase rather than to an oxidative decarboxylation or aminotransferase reaction, both of which also give rise to the release of CO2. The stoichiometric relationship between substrate and products has indicated that extracts of L. mexicana were able to catalyse the formation of an unknown compound besides putrescine and CO2. The addition of cycloheximide to cultures of L. mexicana allowed us to demonstrate that ornithine decarboxylase degradation in vivo was extremely slow in this parasite. This remarkable stability of the enzyme is only comparable to that found in Trypanosoma brucei and contrasts with the high turnover rate of ornithine decarboxylases of different mammalian cells.  相似文献   

3.
Further studies on difluoromethylornithine in African trypanosomes   总被引:4,自引:0,他引:4  
DL-alpha-Difluoromethylornithine (DFMO), a specific enzyme-activated irreversible inhibitor of ornithine decarboxylase (ODC) was previously shown to cure mice infected with Trypanosoma brucei brucei, a parasite of game and cattle in Africa and Trypanosoma brucei rhodesiense, a human African Sleeping Sickness pathogen. Our studies now indicate that DFMO blocks ornithine decarboxylase and lowers trypanosome polyamine levels in vivo. Polyamine uptake in T.b. brucei also resembles that previously described for mammalian cells. The therapeutic potential of DFMO can now also be extended to another human pathogen, Trypanosoma brucei gambiense. Finally, DFMO acts synergistically with another drug, bleomycin, to cure acute trypanosome infections, and furthermore, this same drug combination provides a new approach to the treatment of trypanosomal infections of the central nervous system.  相似文献   

4.
Comparisons were made of ornithine decarboxylase isolated from Morris hepatoma 7777, thioacetamide-treated rat liver and androgen-stimulated mouse kidney. The enzymes from each source were purified in parallel and their size, isoelectric point, interaction with a monoclonal antibody or a monospecific rabbit antiserum to ornithine decarboxylase, and rates of inactivation in vitro, were studied. Mouse kidney, which is a particularly rich source of ornithine decarboxylase after androgen induction, contained two distinct forms of the enzyme which differed slightly in isoelectric point, but not in Mr. Both forms had a rapid rate of turnover, and virtually all immunoreactive ornithine decarboxylase protein was lost within 4h after protein synthesis was inhibited. Only one form of ornithine decarboxylase was found in thioacetamide-treated rat liver and Morris hepatoma 7777. No differences between the rat liver and hepatoma ornithine decarboxylase protein were found, but the rat ornithine decarboxylase could be separated from the mouse kidney ornithine decarboxylase by two-dimensional gel electrophoresis. The rat protein was slightly smaller and had a slightly more acid isoelectric point. Studies of the inactivation of ornithine decarboxylase in vitro in a microsomal system [Zuretti & Gravela (1983) Biochim. Biophys. Acta 742, 269-277] showed that the enzymes from rat liver and hepatoma 7777 and mouse kidney were inactivated at the same rate. This inactivation was not due to degradation of the enzyme protein, but was probably related to the formation of inactive forms owing to the absence of thiol-reducing agents. Treatment with 1,3-diaminopropane, which is known to cause an increase in the rate of degradation of ornithine decarboxylase in vivo [Seely & Pegg (1983) Biochem. J. 216, 701-717] did not stimulate inactivation by microsomal extracts, indicating that this system does not correspond to the rate-limiting step of enzyme breakdown in vivo.  相似文献   

5.
Ornithine decarboxylase (ODC) is a key enzyme in polyamine biosynthesis. Mouse ODC is rapidly degraded in mouse cells, whereas ODC within Trypanosoma brucei, a protozoan parasite infesting cattle, is stable. We have expressed cloned ODC genes of both T. brucei and mouse in ODC-deficient Chinese hamster ovary (CHO) cells. The T. brucei enzyme is stable, whereas the mouse ODC similarly expressed in CHO cells is unstable. This shows that the observed difference in intracellular stability is a property of the ODC protein itself, rather than the cellular environment in which it is expressed. A chimeric ODC composed of the amino terminus of trypanosome and the carboxyl terminus of mouse ODC is rapidly degraded in CHO cells, suggesting that peptide sequences in the mouse ODC carboxyl terminus determine its stability.  相似文献   

6.
Ornithine decarboxylase, the rate-limiting enzyme in the polyamine biosynthetic pathway has been purified 7,600 fold from Plasmodium falciparum by affinity chromatography on a pyridoxamine phosphate column. The partially purified enzyme was specifically tagged with radioactive DL-alpha-difluoromethylornithine and subjected to polyacrylamide gel electrophoresis under denaturing conditions. A major protein band of 49 kilodalton was obtained while with the purified mouse enzyme, a typical 53 kilodalton band, was observed. The catalytic activity of parasite enzyme was dependent on pyridoxal 5'-phosphate and was optimal at pH 8.0. The apparent Michaelis constant for L-ornithine was 52 microM. DL-alpha-difluoromethylornithine efficiently and irreversibly inhibited ornithine decarboxylase activity from P. falciparum grown in vitro or Plasmodium berghei grown in vivo. The Ki of the human malarial enzyme for this inhibitor was 16 microM. Ornithine decarboxylase activity in P. falciparum cultures was rapidly lost upon exposure to the direct product, putrescine. Despite the profound inhibition of protein synthesis with cycloheximide in vitro, parasite enzyme activity was only slightly reduced by 75 min of treatment, suggesting a relatively long half-life for the malarial enzyme. Ornithine decarboxylase activity from P. falciparum and P. berghei was not eliminated by antiserum prepared against purified mouse enzyme. Furthermore, RNA or DNA extracted from P. falciparum failed to hybridize to a mouse ornithine decarboxylase cDNA probe. These results suggest that ODC from P. falciparum bears some structural differences as compared to the mammalian enzyme.  相似文献   

7.
The cDNA encoding mouse ornithine decarboxylase (ODC) was incorporated into a transforming vector pTSA-NEO2 carrying a procyclic acidic repetitive protein promoter and a neomycin phosphotransferase gene. The plasmid thus constructed, pMOD300, was introduced into the procyclic forms of Trypanosoma brucei via electroporation, and the transformants, selected under G418, expressed an ODC activity 100 times above the background level. Contrary to the commonly observed short half-life of mouse ODC in mammalian cells, however, the mouse ODC activity expressed in T. brucei remained stable for at least 6 h when protein synthesis was inhibited by cycloheximide. Pulse labelings and chase experiments with the irreversible ODC inhibitor [3,4-3H]difluoromethylornithine followed by gel electrophoresis, or with L-[35S] methionine followed by immunoprecipitation and gel electrophoresis indicated that the stable mouse ODC expressed in T. brucei has the same subunit molecular weight as the native enzyme. By an in vitro assay of protein stability in rabbit reticulocyte lysates (Loetscher, P., Pratt, G., and Rechsteiner, M. (1991) J. Biol. Chem. 266, 11213-11220), the native mouse ODC and the enzyme expressed in T. brucei had the same degree of instability. Thus, the mouse ODC expressed in T. brucei is probably identical to the native mouse ODC. Its remarkable stability in T. brucei must be due to the absence in trypanosomes of the proteolytic machinery present in mammalian cells responsible for rapid degradation of mouse ODC.  相似文献   

8.
9.
10.
Mammalian ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, is rapidly degraded in cells, an attribute important to the regulation of its activity. Mutant and chimeric ODCs were created to determine the structural requirements for two modes of proteolysis. Constitutive degradation requires the carboxy terminus and is independent of intracellular polyamines. Truncation of five or more carboxy-terminal amino acids prevents this mode of degradation, as do several internal deletions within the 37 carboxy-most amino acids that spare the last five residues. Polyamine-dependent degradation of ODC requires a distinct region outside the carboxy terminus. The ODC of a parasite, Trypanosoma brucei, is structurally very similar to mouse ODC but lacks the carboxy-terminal domain; it is not a substrate for either pathway. The regulatory properties of enzymatically active chimeric proteins incorporating regions of the two ODCs support the conclusion that distinct domains of mouse ODC confer constitutive degradation and polyamine-mediated regulation. Mouse ODC contains two PEST regions. The first was not required for either form of degradation; major deletions within the second ablated constitutive degradation. When mouse and T. brucei ODC RNAs were translated in vitro in a reticulocyte lysate system, the effects of polyamine concentration on ODC protein production and activity were similar for the two mRNAs, which contradicts claims that this system accurately reflects the in vivo effects of polyamines on responsive ODCs.  相似文献   

11.
ABSTRACT. Activity of ornithine decarboxylase, the major rate limiting enzyme of polyamine biosynthesis, was determined in bloodstream trypomastigotes of Trypanosoma brucei brucei. The enzyme required pyridoxal-5′-phosphate, dithiothreitol and EDTA for optimal activity. Several properties of the enzyme were investigated and compared to the mammalian enzyme. Most notably, the parasite enzyme was >60-fold more sensitive to the inhibitor DL-α-difluoromethylornithine than its mammalian counterpart, thus making it an attractive target for chemotherapy.  相似文献   

12.
L Persson  J E Seely  A E Pegg 《Biochemistry》1984,23(16):3777-3783
An immunoblotting technique was used to study the forms of ornithine decarboxylase present in androgen-induced mouse kidney. Two forms were detected which differed slightly in isoelectric point but not in subunit molecular weight (approximately 55 000). Both forms were enzymatically active and could be labeled by reaction with radioactive alpha-(difluoromethyl)-ornithine, an enzyme-activated irreversible inhibitor. On storage of crude kidney homogenates or partially purified preparations of ornithine decarboxylase, the enzyme protein was degraded to a smaller size (Mr approximately 53 000) without substantial loss of enzyme activity. The synthesis and degradation of ornithine decarboxylase protein were studied by labeling the protein by intraperitoneal injection of [35S]methionine and immunoprecipitation using both monoclonal and polyclonal antibodies. The fraction of total protein synthesis represented by renal ornithine decarboxylase was increased at least 25-fold by testosterone treatment of female mice and was found to be about 1.1% in the fully induced androgen-treated female. Both forms of the enzyme were rapidly labeled in vivo, and the immunoprecipitable ornithine decarboxylase protein was almost completely lost after 4-h exposure to cycloheximide, confirming directly the very rapid turnover of this enzyme. Treatment with 1,3-diaminopropane which is known to cause a great reduction in ornithine decarboxylase activity did not greatly selectively inhibit the synthesis of the enzyme. However, 1,3-diaminopropane did produce an increase in the rate of degradation of ornithine decarboxylase and a general reduction in protein synthesis. These two factors, therefore, appear to be responsible for the loss of ornithine decarboxylase activity and protein in response to 1,3-diaminopropane.  相似文献   

13.
The insecticidal crystal protein (ICP) gene, icp, from a 68-kb plasmid derived from Bacillus thuringiensis subsp. sotto was cloned in Escherichia coli. The icp expression in E. coli cells was confirmed by both immunological and insect-toxicity assays of the cell extract. The entire icp gene resides in the 6.6-kb PstI fragment, which codes for a 144-kDal peptide identical to the intact ICP, as determined by its size and reaction with anti-ICP antibody. Deletion analysis further revealed that the 2.8-kb region within the 6.6-kb PstI fragment codes for ICP. Analysis of the nucleotide sequence indicated that a peptide of 934 amino acid residues truncated at the C-terminal end is encoded by this 2.8-kb fragment. A unique feature of this truncated ICP is the abundance of cysteine and lysine residues within its C-terminal region.  相似文献   

14.
A monoclonal antibody of the immunoglobulin M class was produced against mouse kidney ornithine decarboxylase. Screening for the antibody was carried out using alpha-difluoromethyl[5-3H]ornithine-labelled ornithine decarboxylase. The antibody reacted with this antigen and with native ornithine decarboxylase. The antibody attached to Sepharose could be used to form an immunoaffinity column that retained mammalian ornithine decarboxylase. The active enzyme could then be eluted in a highly purified form by 1.0M-sodium thiocyanate. The monoclonal antibody could also be used to precipitate labelled ornithine decarboxylase from homogenates of kidneys from androgen-treated mice given [35S]methionine. Only one band, corresponding to Mr of about 55000, was observed. The extensive labelling of this band is consistent with the rapid turnover of ornithine decarboxylase protein, since this enzyme represents only about 1 part in 10000 of the cytosolic protein.  相似文献   

15.
A human neuroblastoma cell line with an altered ornithine decarboxylase   总被引:5,自引:0,他引:5  
A human neuroblastoma cell line (Paju) was resistant to 10 mM difluoromethylornithine, a concentration at which the growth of all mammalian cells normally stops. Ornithine decarboxylase from Paju was very resistant to inhibition by difluoromethylornithine in vitro (Ki = 10 microM compared to 0.5 microM for mouse kidney ornithine decarboxylase). After purification, apparently homogeneous Paju ornithine decarboxylase was inactivated with [3H]difluoromethylornithine and analyzed by polyacrylamide gel electrophoresis. Under denaturing conditions it was found to have an altered molecular structure, i.e. two nonidentical subunits of Mr = 55,000 and 60,000. Another unusual feature of Paju ornithine decarboxylase was its long half-life in vivo (T 1/2 = 8 h compared with 36 min in human HL-60 promyelocytic leukemia cells). The disappearance of immunoreactive protein was only slightly slower than the loss of catalytic activity. The long half-life of Paju ornithine decarboxylase was not shared by adenosylmethionine decarboxylase. Despite the altered structure of Paju ornithine decarboxylase, it was recognized by a specific antisera raised in rabbit against mouse kidney ornithine decarboxylase. The Paju karyotype did not contain double minute chromosomes or any large homogeneously staining region such as that seen in a mouse lymphoma cell mutant that is resistant to difluoromethylornithine and overproduces ornithine decarboxylase (McConlogue, L., and Coffino, P. (1983) J. Biol. Chem. 258, 12083-12086).  相似文献   

16.
Selective degradation by proteasomes of ornithine decarboxylase, the initial enzyme in polyamine biosynthesis, is mediated by the polyamine-inducible protein antizyme. Antizyme binds to a region near the N terminus of ornithine decarboxylase (X. Li and P. Coffino, Mol. Cell. Biol. 12:3556-3562, 1992). This interaction induces a conformational change in ornithine decarboxylase that exposes its C terminus and inactivates the enzyme (X. Li and P. Coffino, Mol. Cell. Biol. 13:1487-1492, 1993). Here we show that the C-terminal half of antizyme alone can inactivate ornithine decarboxylase and alter its conformation, but it cannot direct degradation of the enzyme, either in vitro or in vivo. A portion of the N-terminal half of antizyme must be present to promote degradation.  相似文献   

17.
Ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) has been purified from 3T3- and SV40-transformed 3T3 mouse fibroblasts by affinity chromatography, and the physicochemical properties of the two enzymes compared. Measured properties include molecular weight of the active species, subunit molecular weight and specific activity of the purified enzymes, kinetic parameters, thermostability, degradation rate in vivo and immunological cross-reactivity. Although crude extracts of the transformant possess more ornithine decarboxylase activity per mg of protein than the parent strain, there is no evidence for the appearance of an altered form of the enzyme in these cells. The results reported in the present paper indicate that the increased ornithine decarboxylase activity in the transformed cells is the result of higher enzyme biosynthesis de novo.  相似文献   

18.
A gene encoding Trypanosoma brucei UDP-N-acetylglucosamine pyrophosphorylase was identified, and the recombinant protein was shown to have enzymatic activity. The parasite enzyme is unusual in having a strict substrate specificity for N-acetylglucosamine 1-phosphate and in being located inside a peroxisome-like microbody, the glycosome. A bloodstream form T. brucei conditional null mutant was constructed and shown to be unable to sustain growth in vitro or in vivo under nonpermissive conditions, demonstrating that there are no alternative metabolic or nutritional routes to UDP-N-acetylglucosamine and providing a genetic validation for the enzyme as a potential drug target. The conditional null mutant was also used to investigate the effects of N-acetylglucosamine starvation in the parasite. After 48 h under nonpermissive conditions, about 24 h before cell lysis, the status of parasite glycoprotein glycosylation was assessed. Under these conditions, UDP-N-acetylglucosamine levels were less than 5% of wild type. Lectin blotting and fluorescence microscopy with tomato lectin revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite. The principal parasite surface coat component, the variant surface glycoprotein, was also analyzed. Endoglycosidase digestions and mass spectrometry showed that, under UDP-N-acetylglucosamine starvation, the variant surface glycoprotein was specifically underglycosylated at its C-terminal Asn-428 N-glycosylation site. The significance of this finding, with respect to the hierarchy of site-specific N-glycosylation in T. brucei, is discussed.  相似文献   

19.
Variant S49 mouse lymphoma cells with increased ornithine decarboxylase activity were obtained by selecting for resistance to alpha-difluoromethylornithine (DFMO), a specific inhibitor of the enzyme. Ornithine decarboxylase was identified as a specifically immunoprecipitable polypeptide that was made at an increased rate in the variant cells. Ornithine decarboxylase was also identified on a two-dimensional gel as a metabolically labeled polypeptide of Mr approximately 55,000 which was synthesized at an increased rate in two independently selected variants. Synthesis of this polypeptide was further augmented by treatment of cells with inhibitors of ornithine decarboxylase activity. The charge of the polypeptide was altered by treatment of either cells or cellular extracts with DFMO, a suicide substrate which binds covalently to the enzyme. This charge alteration and the inactivation of ornithine decarboxylase showed the same dependence on DFMO concentration and both effects were prevented by addition of either ornithine or putrescine. Pulse-chase experiments showed that the half-life of the ornithine decarboxylase polypeptide in these variant cells was 45 min. We conclude that ornithine decarboxylase is made at an increased rate in the resistant variants and that the polypeptide turns over rapidly.  相似文献   

20.
Ornithine decarboxylase was purified at least 1500-fold from mouse epidermis pretreated with five consecutive doses of 12-O-tetradecanoylphorbol-13-acetate and 3-isobutyl-1-methylxanthine at 3- to 4-day intervals. Following DEAE-cellulose chromatography and ammonium sulfate precipitation, ornithine decarboxylase was purified further by affinity chromatography. Ornithine decarboxylase was then radioactively labeled by covalently binding [3H]-alpha-difluromethylornithine to the enzyme following polyacrylamide gel electrophoresis under non-denaturing conditions. Following sodium dodecyl sulfate polyacrylamide gel electrophoresis and silver staining of protein, a band was identified that corresponded to a molecular weight of approx. 56,000, coincident with a peak of radioactivity. This is the first study to purify ornithine decarboxylase from mouse epidermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号