首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a simple procedure that enables the efficient selection of cells that are deficient for DNA mismatch repair (MMR). This selection procedure was used to investigate the frequency of fortuitous MMR-deficient cells in a mouse embryonic stem cell line, heterozygous for the MMR gene Msh2. We found a surprisingly high frequency (3 x 10(-4)) of Msh2-deficient cells. The wild type Msh2 allele was almost invariably lost by loss of heterozygosity. Single treatments with the genotoxic agents ethylnitrosourea, UVC light and mitomycin C resulted in a further increase of the number of Msh2-/- cells in the heterozygous cell line. This increase was not only due to induced loss of the wild type allele but also to a selective growth advantage of preexisting Msh2-/- cells to ethylnitrosourea and UVC. Mitomycin C, in contrast to ethylnitrosourea and UVC, uniquely induced loss of heterozygosity at Msh2. These mechanistically different ways of loss of the wild type Msh2 allele reflect the different repair pathways processing these damages. Heterozygous germ line defects in one of the MMR genes underlie the hereditary nonpolyposis colorectal cancer (HNPCC) syndrome. Based on the results described here we hypothesize that mutagen-induced loss of MMR in the intestine of these patients contributes to the tissue specificity of carcinogenesis in HNPCC patients.  相似文献   

2.
The CTG repeat involved in myotonic dystrophy is one of the most unstable trinucleotide repeats. However, the molecular mechanisms underlying this particular form of genetic instability—biased towards expansions—have not yet been completely elucidated. We previously showed, with highly unstable CTG repeat arrays in DM1 transgenic mice, that Msh2 is required for the formation of intergenerational and somatic expansions. To identify the partners of Msh2 in the formation of intergenerational CTG repeat expansions, we investigated the involvement of Msh3 and Msh6, partners of Msh2 in mismatch repair. Transgenic mice with CTG expansions were crossed with Msh3- or Msh6-deficient mice and CTG repeats were analysed after maternal and paternal transmissions. We demonstrated that Msh3 but not Msh6 plays also a key role in the formation of expansions over successive generation. Furthermore, the absence of one Msh3 allele was sufficient to decrease the formation of expansions, indicating that Msh3 is rate-limiting in this process. In the absence of Msh6, the frequency of expansions decreased only in maternal transmissions. However, the significantly lower levels of Msh2 and Msh3 proteins in Msh6 -/- ovaries suggest that the absence of Msh6 may have an indirect effect.  相似文献   

3.
ATP binding causes the mispair-bound Msh2-Msh6 mismatch recognition complex to slide along the DNA away from the mismatch, and ATP is required for the mispair-dependent interaction between Msh2-Msh6 and Mlh1-Pms1. It has been inferred from these observations that ATP induces conformational changes in Msh2-Msh6; however, the nature of these conformational changes and their requirement in mismatch repair are poorly understood. Here we show that ATP induces a conformational change within the C-terminal region of Msh6 that protects the trypsin cleavage site after Msh6 residue Arg1124. An engineered disulfide bond within this region prevented the ATP-driven conformational change and resulted in an Msh2-Msh6 complex that bound mispaired bases but could not form sliding clamps or bind Mlh1-Pms1. The engineered disulfide bond also reduced mismatch repair efficiency in vivo, indicating that this ATP-driven conformational change plays a role in mismatch repair.  相似文献   

4.
DNA mismatch repair (MMR) is integral to the maintenance of genomic stability and more recently has been demonstrated to affect apoptosis and cell cycle arrest in response to a variety of adducts induced by exogenous agents. Comparing Msh2-null and wildtype mouse embryonic fibroblasts (MEFs), both primary and transformed, we show that Msh2 deficiency results in increased survival post-UVB, and that UVB-induced apoptosis is significantly reduced in Msh2-deficient cells. Furthermore, p53 phosphorylation at serine 15 is delayed or diminished in Msh2-deficient cells, suggesting that Msh2 may act upstream of p53 in a post-UVB apoptosis or growth arrest response pathway. Taken together, these data suggest that MMR heterodimers containing Msh2 may function as a sensor of UVB-induced DNA damage and influence the initiation of UVB-induced apoptosis, thus implicating MMR in protecting against UV-induced tumorigenesis.  相似文献   

5.
DNA mismatch repair (MMR) is a highly conserved mutation avoidance mechanism that corrects DNA polymerase misincorporation errors. In initial steps in MMR, Msh2-Msh6 binds mispairs and small insertion/deletion loops, and Msh2-Msh3 binds larger insertion/deletion loops. The msh2Δ1 mutation, which deletes the conserved DNA-binding domain I of Msh2, does not dramatically affect Msh2-Msh6-dependent repair. In contrast, msh2Δ1 mutants show strong defects in Msh2-Msh3 functions. Interestingly, several mutations identified in patients with hereditary non-polyposis colorectal cancer map to domain I of Msh2; none have been found in MSH3. To understand the role of Msh2 domain I in MMR, we examined the consequences of combining the msh2Δ1 mutation with mutations in two distinct regions of MSH6 and those that increase cellular mutational load (pol3-01 and rad27). These experiments reveal msh2Δ1-specific phenotypes in Msh2-Msh6 repair, with significant effects on mutation rates. In vitro assays demonstrate that msh2Δ1-Msh6 DNA binding is less specific for DNA mismatches and produces an altered footprint on a mismatch DNA substrate. Together, these results provide evidence that, in vivo, multiple factors insulate MMR from defects in domain I of Msh2 and provide insights into how mutations in Msh2 domain I may cause hereditary non-polyposis colorectal cancer.  相似文献   

6.
Aging and DNA polymerase β deficiency (β-pol+/−) interact to accelerate the development of malignant lymphomas and adenocarcinoma and increase tumor bearing load in mice. Folate deficiency (FD) has been shown to induce DNA damage repaired via the base excision repair (BER) pathway. We anticipated that FD and BER deficiency would interact to accelerate aberrant crypt foci (ACF) formation and tumor development in β-pol haploinsufficient animals. FD resulted in a significant increase in ACF formation in wild type (WT) animals exposed to 1,2-dimethylhydrazine, a known colon and liver carcinogen; however, FD reduced development of ACF in β-pol haploinsufficient mice. Prolonged feeding of the FD diet resulted in advanced ACF formation and liver tumors in wild type mice. However, FD attenuated onset and progression of ACF and prevented liver tumorigenesis in β-pol haploinsufficient mice, i.e. FD provided protection against tumorigenesis in a BER-deficient environment in all tissues where 1,2-dimethylhydrazine exerts its damage. Here we show a distinct down-regulation in DNA repair pathways, e.g. BER, nucleotide excision repair, and mismatch repair, and decline in cell proliferation, as well as an up-regulation in poly(ADP-ribose) polymerase, proapoptotic genes, and apoptosis in colons of FD β-pol haploinsufficient mice.  相似文献   

7.
The acute toxicity of potassium bromate (KBrO3) on rat small intestine was studied in this work. Animals were given a single oral dose of KBrO3 (100 mg/kg body weight) and sacrificed 12, 24, 48, 96 and 168 h after the treatment; control animals were not given KBrO3. The administration of KBrO3 resulted in a reversible decline in the specific activities of several BBM enzymes. Lipid peroxidation, protein oxidation and hydrogen peroxide levels increased while total sulfhydryl groups and reduced glutathione decreased in KBrO3-treated rats indicating induction of oxidative stress in the intestinal mucosa. The activities of anti-oxidant and carbohydrate metabolic enzymes were also altered upon KBrO3 treatment. The maximum changes in all the parameters were 48 h after administration of KBrO3 after which recovery took place, in many cases almost to control values after 168 h. Histopathological studies supported the biochemical findings showing extensive damage to the intestine at 48 h and recovery at 168 h. These results show that a single oral dose of KBrO3 causes reversible oxidative damage to the intestine.  相似文献   

8.
9.
RECQ1 is the most abundant RecQ homolog in humans but its functions have remained mostly elusive. Biochemically, RECQ1 displays distinct substrate specificities from WRN and BLM, indicating that these RecQ helicases likely perform non-overlapping functions. Our earlier work demonstrated that RECQ1-deficient cells display spontaneous genomic instability. We have obtained key evidence suggesting a unique role of RECQ1 in repair of oxidative DNA damage. We show that similar to WRN, RECQ1 associates with PARP-1 in nuclear extracts and exhibits direct protein interaction in vitro. Deficiency in WRN or BLM helicases have been shown to result in reduced homologous recombination and hyperactivation of PARP under basal condition. However, RECQ1-deficiency did not lead to PARP activation in undamaged cells and nor did it result in reduction in homologous recombination repair. In stark contrast to what is seen in WRN-deficiency, RECQ1-deficient cells hyperactivate PARP in a specific response to H2O2 treatment. RECQ1-deficient cells are more sensitive to oxidative DNA damage and exposure to oxidative stress results in a rapid and reversible recruitment of RECQ1 to chromatin. Chromatin localization of RECQ1 precedes WRN helicase, which has been shown to function in oxidative DNA damage repair. However, oxidative DNA damage-induced chromatin recruitment of these RecQ helicases is independent of PARP activity. As other RecQ helicases are known to interact with PARP-1, this study provides a paradigm to delineate specialized and redundant functions of RecQ homologs in repair of oxidative DNA damage.  相似文献   

10.
Mutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germline of mismatch repair deficient Msh2 knock-out mice. Spontaneous mutation rates in homozygous Msh2(-/-) males were significantly higher than those in isogenic wild-type (Msh2(+/+)) and heterozygous (Msh2(+/-)) mice. In contrast, the irradiated Msh2(-/-) mice did not show any detectable increases in their mutation rate, whereas significant ESTR mutation induction was observed in the irradiated Msh2(+/+) and Msh2(+/-) animals. Considering these data and the results of other publications, we propose that the Msh2-deficient mice possess a mutator phenotype in their germline and somatic tissues while the loss of a single Msh2 allele does not affect the stability of heterozygotes.  相似文献   

11.
We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells.  相似文献   

12.
In the baker’s yeast Saccharomyces cerevisiae, most of the meiotic crossovers are generated through a pathway involving the highly conserved mismatch repair related Msh4-Msh5 complex. To understand the role of Msh4-Msh5 in meiotic crossing over, we determined its genome wide in vivo binding sites in meiotic cells. We show that Msh5 specifically associates with DSB hotspots, chromosome axes, and centromeres on chromosomes. A basal level of Msh5 association with these chromosomal features is observed even in the absence of DSB formation (spo11Δ mutant) at the early stages of meiosis. But efficient binding to DSB hotspots and chromosome axes requires DSB formation and resection and is enhanced by double Holliday junction structures. Msh5 binding is also correlated to DSB frequency and enhanced on small chromosomes with higher DSB and crossover density. The axis protein Red1 is required for Msh5 association with the chromosome axes and DSB hotspots but not centromeres. Although binding sites of Msh5 and other pro-crossover factors like Zip3 show extensive overlap, Msh5 associates with centromeres independent of Zip3. These results on Msh5 localization in wild type and meiotic mutants have implications for how Msh4-Msh5 works with other pro-crossover factors to ensure crossover formation.  相似文献   

13.
Hybridization has resulted in the origin and variation in extant species, and hybrids continue to arise despite pre- and post-zygotic barriers that limit their formation and evolutionary success. One important system that maintains species boundaries in prokaryotes and eukaryotes is the mismatch repair pathway, which blocks recombination between divergent DNA sequences. Previous studies illuminated the role of the mismatch repair component Msh2 in blocking genetic recombination between divergent DNA during meiosis. Loss of Msh2 results in increased interspecific genetic recombination in bacterial and yeast models, and increased viability of progeny derived from yeast hybrid crosses. Hybrid isolates of two pathogenic fungal Cryptococcus species, Cryptococcus neoformans and Cryptococcus deneoformans, are isolated regularly from both clinical and environmental sources. In the present study, we sought to determine if loss of Msh2 would relax the species boundary between C. neoformans and C. deneoformans. We found that crosses between these two species in which both parents lack Msh2 produced hybrid progeny with increased viability and high levels of aneuploidy. Whole-genome sequencing revealed few instances of recombination among hybrid progeny and did not identify increased levels of recombination in progeny derived from parents lacking Msh2. Several hybrid progeny produced structures associated with sexual reproduction when incubated alone on nutrient-rich medium in light, a novel phenotype in Cryptococcus. These findings represent a unique, unexpected case where rendering the mismatch repair system defective did not result in increased meiotic recombination across a species boundary. This suggests that alternative pathways or other mismatch repair components limit meiotic recombination between homeologous DNA and enforce species boundaries in the basidiomycete Cryptococcus species.  相似文献   

14.
DNA mismatch repair is initiated by either the Msh2-Msh6 or the Msh2-Msh3 mispair recognition heterodimer. Here we optimized the expression and purification of Saccharomyces cerevisiae Msh2-Msh3 and performed a comparative study of Msh2-Msh3 and Msh2-Msh6 for mispair binding, sliding clamp formation, and Mlh1-Pms1 recruitment. Msh2-Msh3 formed sliding clamps and recruited Mlh1-Pms1 on +1, +2, +3, and +4 insertion/deletions and CC, AA, and possibly GG mispairs, whereas Msh2-Msh6 formed mispair-dependent sliding clamps and recruited Mlh1-Pms1 on 7 of the 8 possible base:base mispairs, the +1 insertion/deletion mispair, and to a low level on the +2 but not the +3 or +4 insertion/deletion mispairs and not on the CC mispair. The mispair specificity of sliding clamp formation and Mlh1-Pms1 recruitment but not mispair binding alone correlated best with genetic data on the mispair specificity of Msh2-Msh3- and Msh2-Msh6-dependent mismatch repair in vivo. Analysis of an Msh2-Msh6/Msh3 chimeric protein and mutant Msh2-Msh3 complexes showed that the nucleotide binding domain and communicating regions but not the mispair binding domain of Msh2-Msh3 are responsible for the extremely rapid dissociation of Msh2-Msh3 sliding clamps from DNA relative to that seen for Msh2-Msh6, and that amino acid residues predicted to stabilize Msh2-Msh3 interactions with bent, strand-separated mispair-containing DNA are more critical for the recognition of small +1 insertion/deletions than larger +4 insertion/deletions.  相似文献   

15.
Myotonic dystrophy type 1 (DM1) is associated with one of the most highly unstable CTG•CAG repeat expansions. The formation of further repeat expansions in transgenic mice carrying expanded CTG•CAG tracts requires the mismatch repair (MMR) proteins MSH2 and MSH3, forming the MutSβ complex. It has been proposed that binding of MutSβ to CAG hairpins blocks its ATPase activity compromising hairpin repair, thereby causing expansions. This would suggest that binding, but not ATP hydrolysis, by MutSβ is critical for trinucleotide expansions. However, it is unknown if the MSH2 ATPase activity is dispensible for instability. To get insight into the mechanism by which MSH2 generates trinucleotide expansions, we crossed DM1 transgenic mice carrying a highly unstable >(CTG)300 repeat tract with mice carrying the G674A mutation in the MSH2 ATPase domain. This mutation impairs MSH2 ATPase activity and ablates base–base MMR, but does not affect the ability of MSH2 (associated with MSH6) to bind DNA mismatches. We found that the ATPase domain mutation of MSH2 strongly affects the formation of CTG expansions and leads instead to transmitted contractions, similar to a Msh2-null or Msh3-null deficiency. While a decrease in MSH2 protein level was observed in tissues from Msh2G674 mice, the dramatic reduction of expansions suggests that the expansion-biased trinucleotide repeat instability requires a functional MSH2 ATPase domain and probably a functional MMR system.  相似文献   

16.
Myotonic dystrophy type 1 (DM1) is associated with one of the most highly unstable CTG•CAG repeat expansions. The formation of further repeat expansions in transgenic mice carrying expanded CTG•CAG tracts requires the mismatch repair (MMR) proteins MSH2 and MSH3, forming the MutSβ complex. It has been proposed that binding of MutSβ to CAG hairpins blocks its ATPase activity compromising hairpin repair, thereby causing expansions. This would suggest that binding, but not ATP hydrolysis, by MutSβ is critical for trinucleotide expansions. However, it is unknown if the MSH2 ATPase activity is dispensible for instability. To get insight into the mechanism by which MSH2 generates trinucleotide expansions, we crossed DM1 transgenic mice carrying a highly unstable >(CTG)300 repeat tract with mice carrying the G674A mutation in the MSH2 ATPase domain. This mutation impairs MSH2 ATPase activity and ablates base–base MMR, but does not affect the ability of MSH2 (associated with MSH6) to bind DNA mismatches. We found that the ATPase domain mutation of MSH2 strongly affects the formation of CTG expansions and leads instead to transmitted contractions, similar to a Msh2-null or Msh3-null deficiency. While a decrease in MSH2 protein level was observed in tissues from Msh2G674 mice, the dramatic reduction of expansions suggests that the expansion-biased trinucleotide repeat instability requires a functional MSH2 ATPase domain and probably a functional MMR system.  相似文献   

17.
In Saccharomyces cerevisiae, Msh2–Msh3-mediated mismatch repair (MMR) recognizes and targets insertion/deletion loops for repair. Msh2–Msh3 is also required for 3′ non-homologous tail removal (3′NHTR) in double-strand break repair. In both pathways, Msh2–Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, we recently demonstrated that the two pathways have distinct requirements with respect to Msh2–Msh3 activities. We identified a set of aromatic residues in the nucleotide binding pocket (FLY motif) of Msh3 that, when mutated, disrupted MMR, but left 3′NHTR largely intact. One of these mutations, msh3Y942A, was predicted to disrupt the nucleotide sandwich and allow altered positioning of ATP within the pocket. To develop a mechanistic understanding of the differential requirements for ATP binding and/or hydrolysis in the two pathways, we characterized Msh2–Msh3 and Msh2–msh3Y942A ATP binding and hydrolysis activities in the presence of MMR and 3′NHTR DNA substrates. We observed distinct, substrate-dependent ATP hydrolysis and nucleotide turnover by Msh2–Msh3, indicating that the MMR and 3′NHTR DNA substrates differentially modify the ATP binding/hydrolysis activities of Msh2–Msh3. Msh2–msh3Y942A retained the ability to bind DNA and ATP but exhibited altered ATP hydrolysis and nucleotide turnover. We propose that both ATP and structure-specific repair substrates cooperate to direct Msh2–Msh3-mediated repair and suggest an explanation for the msh3Y942A separation-of-function phenotype.  相似文献   

18.
He D  Chen Y  Li H  Furuya M  Ikehata H  Uehara Y  Komura J  Mak TW  Ono T 《Mutation research》2012,734(1-2):50-55
In an attempt to evaluate the roles of the mismatch repair gene Msh2 in genome maintenance and in development during the fetal stage, spontaneous mutations and several developmental indices were studied in Msh2-deficient lacZ-transgenic mouse fetuses. Mutation levels in fetuses were elevated at 9.5dpc (days post coitum) when compared to wild-type mice, and the level of mutations continued to increase until the fetuses reached the newborn stage. The mutation levels in 4 different tissues of newborns showed similar magnitudes to those in the whole body. The levels remained similar after birth until 6 months of age. The molecular nature of the mutations examined in 12.5dpc fetuses of Msh2(+/+) and Msh2(-/-) revealed unique spectra which reflect errors produced during the DNA replication process, and those corrected by a mismatch repair system. Most base substitutions and simple deletions were reduced by the presence of the Msh2 gene, whereas G:C to A:T changes at CpG sequences were not affected, suggesting that the latter change was not influenced by mismatch repair. On the other hand, analysis of developmental indices revealed that there was very little effect, including the presence of malformations, resulting from Msh2-deficiencies. These results indicate that elevated mutation levels have little effect on the development of the fetus, even if a mutator phenotype appears at the organogenesis stage.  相似文献   

19.
Bacterial MutS homodimers contain two ATPase active sites that have non-equivalent functions in DNA mismatch repair. The homologous Msh2-Msh6 complex in eukaryotes also has intrinsic ATPase activity that is essential for mismatch repair. Here, we investigate differences in the two putative ATPase active sites by examining the properties of heterodimers containing alanine substituted for an invariant glutamic acid in the active site of either Msh2, Msh6 or both. Mutation rates in wild type versus Glu-->Ala mutant haploid yeast strains indicate that both ATPase active sites are essential for mismatch repair activity in vivo. The properties of purified heterodimers suggest that the ATPase active site in Msh6 binds ATP with higher affinity and hydrolyzes ATP faster and with higher efficiency than does the ATPase active site in Msh2. This suggests sequential action of the two ATPase active sites, in which ATP binds to Msh6 first to trigger downstream events in mismatch repair.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号