首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Genome-wide association studies have identified that multiple single nucleiotide polymorphisms on chromosome 9p21 are tightly associated with coronary artery disease (CAD). However, the mechanism linking this risk locus to CAD remains unclear.

Methodology/Principal Findings

The methylation status of six candidate genes (BAX, BCL-2, TIMP3, p14ARF, p15INK4b and p16INK4a) in 205 patients and controls who underwent coronary angiography were analyzed by quantitative MethyLight assay. Rs10757274 was genotyped and expression of INK4/ARF and antisense non-coding RNA in the INK4 locus (ANRIL) was determined by real-time RT-PCR. Compared with controls, DNA methylation levels at p15INK4b significantly increased in CAD patients (p = 0.006). To validate and dissect the methylation percentage of each target CpG site at p15INK4b, pyrosequencing was performed, finding CpG +314 and +332 remarkably hypermethylated in CAD patients. Further investigation determined that p15INK4b hypermethylation prevalently emerged in lymphocytes of CAD patients (p = 0.013). The rs10757274 genotype was significantly associated with CAD (p = 0.003) and GG genotype carriers had a higher level of ANRIL exon 1–5 expression compared among three genotypes (p = 0.009). There was a stepwise increase in p15INK4b and p16INK4a methylation as ANRIL exon 1–5 expression elevated (r = 0.23, p = 0.001 and r = 0.24, p = 0.001, respectively), although neither of two loci methylation was directly linked to rs10757274 genotype.

Conclusions/Significance

p15INK4b methylation is associated with CAD and ANRIL expression. The epigenetic changes in p15INK4b methylation and ANRIL expression may involve in the mechanisms of chromosome 9p21 on CAD development.  相似文献   

3.
4.
Inter-individual variation in patterns of DNA methylation at birth can be explained by the influence of environmental, genetic and stochastic factors. This study investigates the genetic and non-genetic determinants of variation in DNA methylation in human infants. Given its central role in provision of methyl groups for DNA methylation, this study focuses on aspects of folate metabolism. Global (LUMA) and gene specific (IGF2, ZNT5, IGFBP3) DNA methylation were quantified in 430 infants by Pyrosequencing®. Seven polymorphisms in 6 genes (MTHFR, MTRR, FOLH1, CβS, RFC1, SHMT) involved in folate absorption and metabolism were analysed in DNA from both infants and mothers. Red blood cell folate and serum vitamin B12 concentrations were measured as indices of vitamin status. Relationships between DNA methylation patterns and several covariates viz. sex, gestation length, maternal and infant red cell folate, maternal and infant serum vitamin B12, maternal age, smoking and genotype were tested. Length of gestation correlated positively with IGF2 methylation (rho = 0.11, p = 0.032) and inversely with ZNT5 methylation (rho = −0.13, p = 0.017). Methylation of the IGFBP3 locus correlated inversely with infant vitamin B12 concentration (rho = −0.16, p = 0.007), whilst global DNA methylation correlated inversely with maternal vitamin B12 concentrations (rho = 0.18, p = 0.044). Analysis of common genetic variants in folate pathway genes highlighted several associations including infant MTRR 66G>A genotype with DNA methylation (χ2 = 8.82, p = 0.003) and maternal MTHFR 677C>T genotype with IGF2 methylation (χ2 = 2.77, p = 0.006). These data support the hypothesis that both environmental and genetic factors involved in one-carbon metabolism influence DNA methylation in infants. Specifically, the findings highlight the importance of vitamin B12 status, infant MTRR genotype and maternal MTHFR genotype, all of which may influence the supply of methyl groups for DNA methylation. In addition, gestational length appears to be an important determinant of infant DNA methylation patterns.  相似文献   

5.

Background

Protein tyrosine phosphatase non-receptor 22 (PTPN22) is a key negative regulator of T lymphocytes and has emerged as an important candidate susceptibility factor for a number of immune-related diseases. This study aimed to examine the predisposition of PTPN22 SNPs to Vogt-Koyanagi-Harada (VKH) syndrome and acute anterior uveitis (AAU) associated with ankylosing spondylitis (AS).

Methods

A total of 1005 VKH syndrome, 302 AAU+AS+ patients and 2010 normal controls among the Chinese Han population were enrolled in the study. Genotyping, PTPN22 expression, cell proliferation, cytokine production and cell activation were examined by PCR-RFLP, Real-time PCR, CCK8, ELISA and Flow cytometry.

Results

The results showed significantly increased frequencies of the rs2488457 CC genotype and C allele but a decreased frequency of the GG genotype in VKH syndrome patients (PBonferroni correction (Pc) = 3.47×10−7, OR = 1.54; Pc = 3.83×10−8, OR = 1.40; Pc = 6.35×10−4, OR = 0.62; respectively). No significant association of the tested SNPs with AAU+AS+ patients was observed. Functional studies showed a decreased PTPN22 expression, impaired cell proliferation and lower production of IL-10 in rs2488457 CC cases compared to GG cases (Pc = 0.009, Pc = 0.015 and Pc = 0.048 respectively). No significant association was observed concerning T cell activation and rs2488457 genotype.

Conclusions

The study showed that a functional variant of PTPN22 confers risk for VKH syndrome but not for AAU+AS+ in a Chinese Han population, which may be due to a modulation of the PTPN22 expression, PBMC proliferation and IL-10 production.  相似文献   

6.

Background

Both selective H1-antihistamine (SAH) and leukotriene receptor antagonist (LTRA) have been shown to be effective in treating patients with seasonal allergic rhinitis (SAR), but it is still uncertain which treatment option is optimal. This meta-analysis was aimed to compare the efficacy and safety of SAH and LTRA for SAR.

Materials and Methods

PubMed, EMBASE and the Cochrane Library were searched for all eligible studies that compared the efficacy and safety of SAH and LTRA for SAR up to September 7, 2014. The pooled mean difference (MD), odd ratios (ORs) and 95% confidence intervals (95% CIs) were calculated using a fixed- or random-effects model.

Results

Nine studies with 5781 SAR patients were included. The results showed that SAH is superior to LTRA in terms of the daytime eye symptoms score (DESS) and composite symptoms score (CSS) for SAR (MD = 0.06, 95% CI, 0.03 to 0.10, P = 0.000, I 2 = 99%; MD = 0.03, 95% CI, 0.01 to 0.05, P = 0.010, I 2 = 98%), whereas LTRA overmatched SAH with respect to the night-time symptoms score (NSS) (MD = −0.04, 95% CI, −0.05 to −0.02, P = 0.000, I 2 = 97%). Additionally, the results of subgroup analysis indicated that the dose, duration and gender of the patients might impact the comparisons of the effects of SAH and LTRA on their efficacy for SAR.

Conclusion

This meta-analysis suggested that SAH and LTRA have similar effects and safety for SAR, but SAH is more appropriate for daytime nasal symptoms (congestion, rhinorrhea, pruritus and sneezing), while LTRA is better suited for nighttime symptoms (difficulty going to sleep, nighttime awakenings, and nasal congestion on awakening), respectively. Meanwhile, the dose, duration and gender of patients may influence the anti-SAR effects of SAH and LTRA.  相似文献   

7.
Biological N2 fixation is the dominant supply of new nitrogen (N) to the oceans, but is often inhibited in the presence of fixed N sources such as nitrate (NO3 ). Anthropogenic fixed N inputs to the ocean are increasing, but their effect on marine N2 fixation is uncertain. Thus, global estimates of new oceanic N depend on a fundamental understanding of factors that modulate N source preferences by N2-fixing cyanobacteria. We examined the unicellular diazotroph Crocosphaera watsonii (strain WH0003) to determine how the light-limited growth rate influences the inhibitory effects of fixed N on N2 fixation. When growth (µ) was limited by low light (µ = 0.23 d−1), short-term experiments indicated that 0.4 µM NH4 + reduced N2-fixation by ∼90% relative to controls without added NH4 +. In fast-growing, high-light-acclimated cultures (µ = 0.68 d−1), 2.0 µM NH4 + was needed to achieve the same effect. In long-term exposures to NO3 , inhibition of N2 fixation also varied with growth rate. In high-light-acclimated, fast-growing cultures, NO3 did not inhibit N2-fixation rates in comparison with cultures growing on N2 alone. Instead NO3 supported even faster growth, indicating that the cellular assimilation rate of N2 alone (i.e. dinitrogen reduction) could not support the light-specific maximum growth rate of Crocosphaera. When growth was severely light-limited, NO3 did not support faster growth rates but instead inhibited N2-fixation rates by 55% relative to controls. These data rest on the basic tenet that light energy is the driver of photoautotrophic growth while various nutrient substrates serve as supports. Our findings provide a novel conceptual framework to examine interactions between N source preferences and predict degrees of inhibition of N2 fixation by fixed N sources based on the growth rate as controlled by light.  相似文献   

8.

Objective

There is emerging evidence from animal studies suggesting a key role for methylation in the pathogenesis of essential hypertension. However, to date, very few studies have investigated the role of methylation in the development of human hypertension, and none has taken a genome-wide approach. Based on the recent studies that highlight the involvement of inflammation in the development of hypertension, we hypothesize that changes in DNA methylation of leukocytes are involved in the pathogenesis of hypertension.

Method & Results

We conducted a genome-wide methylation analysis on 8 hypertensive cases and 8 normotensive age-matched controls aged 14–23 years and performed validation of the most significant CpG sites in 2 genes in an independent sample of 36 hypertensive cases and 60 normotensive controls aged 14–30 years. Validation of the CpG sites in the SULF1 gene was further conducted in a second replication sample of 36 hypertensive cases and 34 controls aged 15.8–40 years. A CpG site in the SULF1 gene showed higher methylation levels in cases than in healthy controls in the genome-wide step (p = 6.2×10−5), which was confirmed in the validation step (p = 0.011) for subjects ≤30 years old but was not significant for subjects of all ages combined (p = 0.095).

Conclusion

The identification of a difference in a blood leukocyte DNA methylation site between hypertensive cases and normotensive controls suggests that changes in DNA methylation may play an important role in the pathogenesis of hypertension. The age dependency of the effect further suggests complexity of epigenetic regulation in this age-related disease.  相似文献   

9.
Cytosine-5 methylation within CpG dinucleotides is a potentially important mechanism of epigenetic influence on human traits and disease. In addition to influences of age and gender, genetic control of DNA methylation levels has recently been described. We used whole blood genomic DNA in a twin set (23 MZ twin-pairs and 23 DZ twin-pairs, N = 92) as well as healthy controls (N = 96) to investigate heritability and relationship with age and gender of selected DNA methylation profiles using readily commercially available GoldenGate bead array technology. Despite the inability to detect meaningful methylation differences in the majority of CpG loci due to tissue type and locus selection issues, we found replicable significant associations of DNA methylation with age and gender. We identified associations of genetically heritable single nucleotide polymorphisms with large differences in DNA methylation levels near the polymorphism (cis effects) as well as associations with much smaller differences in DNA methylation levels elsewhere in the human genome (trans effects). Our results demonstrate the feasibility of array-based approaches in studies of DNA methylation and highlight the vast differences between individual loci. The identification of CpG loci of which DNA methylation levels are under genetic control or are related to age or gender will facilitate further studies into the role of DNA methylation and disease.  相似文献   

10.
CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2nd SRCR domain with susceptibility to MS (P max(T) permutation = 1×10−4). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. – CD4+ naïve cells, P = 0.0001; CD8+ naïve cells, P<0.0001; CD4+ and CD8+ central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4+ and CD8+ T cells.  相似文献   

11.
DNA methylation has been implicated in the etiopathology of various complex disorders. DNA methyltransferases are involved in maintaining and establishing new methylation patterns. The aim of the present study was to investigate the inherent genetic variations within DNA methyltransferase genes in predisposing to susceptibility to schizophrenia. We screened for polymorphisms in DNA methyltransferases, DNMT1, DNMT3A, DNMT3B and DNMT3L in 330 schizophrenia patients and 302 healthy controls for association with Schizophrenia in south Indian population. These polymorphisms were also tested for subgroup analysis with patient''s gender, age of onset and family history. DNMT1 rs2114724 (genotype P = .004, allele P = 0.022) and rs2228611 (genotype P = 0.004, allele P = 0.022) were found to be significantly associated at genotypic and allelic level with Schizophrenia in South Indian population. DNMT3B rs2424932 genotype (P = 0.023) and allele (P = 0.0063) increased the risk of developing schizophrenia in males but not in females. DNMT3B rs1569686 (genotype P = 0.027, allele P = 0.033) was found to be associated with early onset of schizophrenia and also with family history and early onset (genotype P = 0.009). DNMT3L rs2070565 (genotype P = 0.007, allele P = 0.0026) confers an increased risk of developing schizophrenia at an early age in individuals with family history. In-silico prediction indicated functional relevance of these SNPs in regulating the gene. These observations might be crucial in addressing and understanding the genetic control of methylation level differences from ethnic viewpoint. Functional significance of genotype variations within the DNMTs indeed suggest that the genetic nature of methyltransferases should be considered while addressing epigenetic events mediated by methylation in Schizophrenia.  相似文献   

12.
Humans and dogs are both affected by the allergic skin disease atopic dermatitis (AD), caused by an interaction between genetic and environmental factors. The German shepherd dog (GSD) is a high-risk breed for canine AD (CAD). In this study, we used a Swedish cohort of GSDs as a model for human AD. Serum IgA levels are known to be lower in GSDs compared to other breeds. We detected significantly lower IgA levels in the CAD cases compared to controls (p = 1.1×10−5) in our study population. We also detected a separation within the GSD cohort, where dogs could be grouped into two different subpopulations. Disease prevalence differed significantly between the subpopulations contributing to population stratification (λ = 1.3), which was successfully corrected for using a mixed model approach. A genome-wide association analysis of CAD was performed (n cases = 91, n controls = 88). IgA levels were included in the model, due to the high correlation between CAD and low IgA levels. In addition, we detected a correlation between IgA levels and the age at the time of sampling (corr = 0.42, p = 3.0×10−9), thus age was included in the model. A genome-wide significant association was detected on chromosome 27 (praw = 3.1×10−7, pgenome = 0.03). The total associated region was defined as a ∼1.5-Mb-long haplotype including eight genes. Through targeted re-sequencing and additional genotyping of a subset of identified SNPs, we defined 11 smaller haplotype blocks within the associated region. Two blocks showed the strongest association to CAD. The ∼209-kb region, defined by the two blocks, harbors only the PKP2 gene, encoding Plakophilin 2 expressed in the desmosomes and important for skin structure. Our results may yield further insight into the genetics behind both canine and human AD.  相似文献   

13.
Tuberculosis (TB), an infectious disease caused by infection of Mycobacterium tuberculosis, is a major public health challenge globally. Genetic epidemiological evidence suggests a genetic basis for TB, but the molecular mechanism for a genetic predisposition to TB remains largely unknown. Thirty-five tag single-nucleotide polymorphisms (SNPs) across 11 candidate cytokines and related genes, including IL-12/IFN-γ axis genes (IL12B, IL12RB1, IL18R1, IL27, IFNGR1, IFNGR2 and STAT1), the TNF gene locus (TNF and LTA), IL10, and CCL2, were genotyped using Sequenom''s iPLEX assays in 1,032 patients with TB and 1,008 controls of Chinese Han origin. We did not find that any of the 35 tag SNPs individually or as haplotypes was significantly associated with susceptibility to TB, on the basis of multivariable logistic regression analysis with adjustment for age and sex. However, stratification analyses showed that, in those with age 46 years or older, carrying the rs1974675 T allele in the IL18R1 gene had a significantly decreased susceptibility to TB occurrence compared with carrying the C/C genotype (OR = 0.57, P = 5.0×10−4). Further analysis indicated that a SNP in absolute linkage disequilibrium with rs1974675, rs3755276, is located within a CpG dinucleotide and showed hypomethylation in controls than in patients (19.6% vs. 31.4%; P = 1.0×10−4) and genotype-specific DNA methylation at the IL18R1 promoter and IL18R1 mRNA levels. In addition, DNA methylation levels were significantly inversely correlated with mRNA levels. Thus, decreased mRNA levels of IL18R1 due to rs3755276 may partially mediate the increased susceptibility to TB risk.  相似文献   

14.
Epigenetic regulation of gene expression has been shown to change over time and may be associated with environmental exposures in common complex traits. Age-related hearing impairment is a complex disorder, known to be heritable, with heritability estimates of 57–70%. Epigenetic regulation might explain the observed difference in age of onset and magnitude of hearing impairment with age. Epigenetic epidemiology studies using unrelated samples can be limited in their ability to detect small effects, and recent epigenetic findings in twins underscore the power of this well matched study design. We investigated the association between venous blood DNA methylation epigenome-wide and hearing ability. Pure-tone audiometry (PTA) and Illumina HumanMethylation array data were obtained from female twin volunteers enrolled in the TwinsUK register. Two study groups were explored: first, an epigenome-wide association scan (EWAS) was performed in a discovery sample (n = 115 subjects, age range: 47–83 years, Illumina 27 k array), then replication of the top ten associated probes from the discovery EWAS was attempted in a second unrelated sample (n = 203, age range: 41–86 years, Illumina 450 k array). Finally, a set of monozygotic (MZ) twin pairs (n = 21 pairs) within the discovery sample (Illumina 27 k array) was investigated in more detail in an MZ discordance analysis. Hearing ability was strongly associated with DNA methylation levels in the promoter regions of several genes, including TCF25 (cg01161216, p = 6.6×10−6), FGFR1 (cg15791248, p = 5.7×10−5) and POLE (cg18877514, p = 6.3×10−5). Replication of these results in a second sample confirmed the presence of differential methylation at TCF25 (p(replication) = 6×10−5) and POLE (p(replication) = 0.016). In the MZ discordance analysis, twins'' intrapair difference in hearing ability correlated with DNA methylation differences at ACP6 (cg01377755, r = −0.75, p = 1.2×10−4) and MEF2D (cg08156349, r = −0.75, p = 1.4×10−4). Examination of gene expression in skin, suggests an influence of differential methylation on expression, which may account for the variation in hearing ability with age.  相似文献   

15.
Transarterial chemoembolization (TACE) has therapeutic effects in patients with unresectable hepatocellular carcinoma (HCC), but its impact on the cellular immune response during disease progression is largely unknown. Here we conducted a prospective study to evaluate the effect of TACE on immune status and to identify prognostic immune markers governing treatment success. In this study, 51 stage III HCC patients, 28 stage I HCC patients (TNM classification) and 20 healthy donors were enrolled. Flow cytometry and cytometric bead array were used to evaluate the circulating immune cell subsets, including CD4+ T cells (Th1, Th17 and Treg cells), CD8+ T cells, NK cells, and NKT cells, and plasma cytokines before TACE and 30 days after TACE. Interestingly, among those immune parameters, the frequency of circulating Th17 cells was higher in stage III HCC patients than in stage I HCC patients (P = 0.015) and healthy donors (P<0.001). Moreover, an increased frequency of circulating Th17 cells was observed 30 days after TACE (Th17D30) compared with the baseline level (P = 0.036). Kaplan-Meier analysis demonstrated that Th17D30 was positively associated with overall survival (OS; P = 0.007) and time to progression (TTP; P = 0.009). Multivariate Cox analysis revealed that Th17D30 was an independent prognostic factor for OS (HR = 0.317, P = 0.032) and TTP (HR = 0.304, P = 0.010). These results provide a potential prognostic marker for stage III HCC patients undergoing TACE and may be useful for identifying patients who can benefit from adjuvant immunotherapies.  相似文献   

16.
Excessive fibroproliferation is a central hallmark of idiopathic pulmonary fibrosis (IPF), a chronic, progressive disorder that results in impaired gas exchange and respiratory failure. Fibroblasts are the key effector cells in IPF, and aberrant expression of multiple genes contributes to their excessive fibroproliferative phenotype. DNA methylation changes are critical to the development of many diseases, but the DNA methylome of IPF fibroblasts has never been characterized. Here, we utilized the HumanMethylation 27 array, which assays the DNA methylation level of 27,568 CpG sites across the genome, to compare the DNA methylation patterns of IPF fibroblasts (n = 6) with those of nonfibrotic patient controls (n = 3) and commercially available normal lung fibroblast cell lines (n = 3). We found that multiple CpG sites across the genome are differentially methylated (as defined by P value less than 0.05 and fold change greater than 2) in IPF fibroblasts compared to fibroblasts from nonfibrotic controls. These methylation differences occurred both in genes recognized to be important in fibroproliferation and extracellular matrix generation, as well as in genes not previously recognized to participate in those processes (including organ morphogenesis and potassium ion channels). We used bisulfite sequencing to independently verify DNA methylation differences in 3 genes (CDKN2B, CARD10, and MGMT); these methylation changes corresponded with differences in gene expression at the mRNA and protein level. These differences in DNA methylation were stable throughout multiple cell passages. DNA methylation differences may thus help to explain a proportion of the differences in gene expression previously observed in studies of IPF fibroblasts. Moreover, significant variability in DNA methylation was observed among individual IPF cell lines, suggesting that differences in DNA methylation may contribute to fibroblast heterogeneity among patients with IPF. These results demonstrate that IPF fibroblasts exhibit global differences in DNA methylation that may contribute to the excessive fibroproliferation associated with this disease.  相似文献   

17.
PLA2G7 gene product is a secreted enzyme whose activity is associated with coronary heart disease (CHD). The goal of our study is to investigate the contribution of PLA2G7 promoter DNA methylation to the risk of CHD. Using the bisulphite pyrosequencing technology, PLA2G7 methylation was measured among 36 CHD cases and 36 well-matched controls. Our results indicated that there was a significant association between PLA2G7 methylation and CHD (adjusted P = 0.025). Significant gender-specific correlation was observed between age and PLA2G7 methylation (males: adjusted r = −0.365, adjusted P = 0.037; females: adjusted r = 0.373, adjusted P = 0.035). A breakdown analysis by gender showed that PLA2G7 methylation was significantly associated with CHD in females (adjusted P = 0.003) but not in males. A further two-way ANOVA analysis showed there was a significant interaction between gender and status of CHD for PLA2G7 methylation (gender*CHD: P = 6.04E−7). Moreover, PLA2G7 methylation is associated with the levels of total cholesterols (TC, r = 0.462, P = 0.009), triglyceride (TG, r = 0.414, P = 0.02) and Apolipoprotein B (ApoB, r = 0.396, P = 0.028) in females but not in males (adjusted P>0.4). Receiver operating characteristic (ROC) curves showed that PLA2G7 methylation could predict the risk of CHD in females (area under curve (AUC) = 0.912, P = 2.40E−5). Our results suggest that PLA2G7 methylation changes with aging in a gender-specific pattern. The correlation between PLA2G7 methylation and CHD risk in females is independent of other parameters including age, smoking, diabetes and hypertension. PLA2G7 methylation might exert its effects on the risk of CHD by regulating the levels of TC, TG, and ApoB in females. The gender disparities in the PLA2G7 methylation may play a role in the molecular mechanisms underlying the pathophysiology of CHD.  相似文献   

18.
Escherichia coli O157:H7 (EcO157) associated with the 2006 spinach outbreak appears to have persisted as the organism was isolated, three months after the outbreak, from environmental samples in the produce production areas of the central coast of California. Survival in harsh environments may be linked to the inherent fitness characteristics of EcO157. This study evaluated the comparative fitness of outbreak-related clinical and environmental strains to resist protozoan predation and survive in soil from a spinach field in the general vicinity of isolation of strains genetically indistinguishable from the 2006 outbreak strains. Environmental strains from soil and feral pig feces survived longer (11 to 35 days for 90% decreases, D-value) with Vorticella microstoma and Colpoda aspera, isolated previously from dairy wastewater; these D-values correlated (P<0.05) negatively with protozoan growth. Similarly, strains from cow feces, feral pig feces, and bagged spinach survived significantly longer in soil compared to clinical isolates indistinguishable by 11-loci multi-locus variable-number tandem-repeat analysis. The curli-positive (C+) phenotype, a fitness trait linked with attachment in ruminant and human gut, decreased after exposure to protozoa, and in soils only C cells remained after 7 days. The C+ phenotype correlated negatively with D-values of EcO157 exposed to soil (r s = −0.683; P = 0.036), Vorticella (r s = −0.465; P = 0.05) or Colpoda (r s = −0.750; P = 0.0001). In contrast, protozoan growth correlated positively with C+ phenotype (Vorticella, r s = 0.730, P = 0.0004; Colpoda, r s = 0.625, P = 0.006) suggesting a preference for consumption of C+ cells, although they grew on C strains also. We speculate that the C phenotype is a selective trait for survival and possibly transport of the pathogen in soil and water environments.  相似文献   

19.

Background and Objective

Reflux esophagitis (RE) is characterized by inflammation of the squamous epithelium (SQ) of the esophagus and may progress to Barrett’s esophagus (BE) characterized by intestinal metaplasia. The role of inflammation in this transition has been postulated but lacks experimental evidence. Here, the inflammatory responses in the esophagus of these patients were investigated.

Patients and Methods

Fifty-one esophageal biopsies from with patients BE (n = 19), RE (n = 8) and controls (n = 23) were analyzed. T-cells were analyzed before and after ex vivo expansion (14 days) by multicolor flow cytometric analysis. The following markers were studied: CD3, CD4, CD8 (T-cell markers), Granzyme B (marker of cytotoxicity), CD103 (αE/epithelial integrin) and NKg2a (inhibitory receptor on T-cells and NK-cells).

Results

Analysis of ex vivo cultures from normal looking SQ from controls, RE patients, and BE patients revealed no significant differences in the number and phenotypes of T-cells. In contrast, tissue from RE was different to normal SQ in four aspects: 1) higher percentages of CD3+CD4+-cells (72±7% vs 48±6%, p = 0.01) and 2) CD8+GranzymeB+ -cells (53±11% vs 26±4%, p<0.05), while 3) lower percentages of CD4+CD103+-cells (45±19% vs 80±3%, p = 0.02) and 4) CD8+NKg2a+- cells (31±12% vs 44±5%).

Conclusion

Despite the fact that both tissues are exposed to the same reflux associated inflammatory triggers, the immune response observed in RE is clearly distinct from that in SQ of BE. The differences in immune responses in BE tissue might contribute to its susceptibility for transformation into intestinal metaplasia.  相似文献   

20.

Purpose

To investigate the associations of single nucleotide polymorphisms (SNPs) of three genes (IL-12B, IL-12Rβ1 and IL-12Rβ2) in Behcet''s disease (BD) and Vogt-Koyanagi-Harada (VKH) syndrome in a Chinese Han population.

Methods

A total of 806 BD cases, 820 VKH patients, and 1600 healthy controls were involved in this study. The first investigation included 400 BD patients, 400 VKH cases, and 600 healthy individuals. A second confirmatory study included a separate set of 406 BD patients, 420 VKH cases and another 1000 normal controls. Genotyping was carried out by PCR-restriction fragment length polymorphism assay and results were validated by using direct sequencing. The χ2 test was performed to compare the allele and genotype frequencies between cases and healthy controls.

Results

This study comprised two phases. In the first phase study, a significantly increased frequency of the rs3212227/IL-12B genotype CC and C allele was found in BD patients as compared to controls (Bonferroni corrected p value (pc) = 0.009, OR 1.8; pc = 0.024, OR 1.3, respectively). Moreover, the frequency of the C allele of rs3212227/IL-12B was also significantly increased in VKH patients (pc = 0.012, OR 1.3, 95% CI 1.1 to 1.6). No associations were found for the other seven tested SNPs either in BD or VKH disease. The second study as well as the combined data confirmed the significant association of rs3212227/IL-12B with BD (CC genotype: combined pc = 6.3×10−7, OR = 1.8; C allele: combined pc = 2.0×10−5, OR = 1.3, respectively) and the C allele frequency of rs3212227/IL-12B as the risk factor to VKH patients (combined pc = 2.5×10−5, OR 1.3, 95% CI 1.2 to 1.5).

Conclusions

Our study revealed that the IL-12B gene is involved both in the susceptibility to BD as well as VKH syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号