首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens.  相似文献   

2.
T-cell receptor gene rearrangements were studied in Aotus monkeys developing high antibody titers and sterilizing immunity against the Plasmodium falciparum malaria parasite upon vaccination with the modified synthetic peptide 24112, which was identified in the Merozoite Surface Protein 2 (MSP-2) and is known to bind to HLA-DRβ1*0403 molecules with high capacity. Spectratyping analysis showed a preferential usage of Vβ12 and Vβ6 TCR gene families in 67% of HLA-DRβ1*0403-like genotyped monkeys. Docking of peptide 24112 into the HLA-DRβ1*0401–HA peptide–HA1.7TCR complex containing the VDJ rearrangements identified in fully protected monkeys showed a different structural signature compared to nonprotected monkeys. These striking results show the exquisite specificity of the TCR/pMHCII complex formation needed for inducing sterilizing immunity and provide important hints for a logical and rational methodology to develop multiepitopic, minimal subunit-based synthetic vaccines against infectious diseases, among them malaria.  相似文献   

3.
A Plasmodium falciparum 3D7 strain Apical Membrane Antigen-1 (AMA1) vaccine, formulated with AS02A adjuvant, slowed parasite growth in a recent Phase 1/2a trial, however sterile protection was not observed. We tested this AS02A, and a Montanide ISA720 (ISA) formulation of 3D7 AMA1 in Aotus monkeys. The 3D7 parasite does not invade Aotus erythrocytes, hence two heterologous strains, FCH/4 and FVO, were used for challenge, FCH/4 AMA1 being more homologous to 3D7 than FVO AMA1. Following three vaccinations, the monkeys were challenged with 50,000 FCH/4 or 10,000 FVO parasites. Three of the six animals in the AMA+ISA group were protected against FCH/4 challenge. One monkey did not become parasitemic, another showed only a short period of low level parasitemia that self-cured, and a third animal showed a delay before exhibiting its parasitemic phase. This is the first protection shown in primates with a recombinant P. falciparum AMA1 without formulation in Freund''s complete adjuvant. No animals in the AMA+AS02A group were protected, but this group exhibited a trend towards reduced growth rate. A second group of monkeys vaccinated with AMA+ISA vaccine was not protected against FVO challenge, suggesting strain-specificity of AMA1-based protection. Protection against FCH/4 strain correlated with the quantity of induced antibodies, as the protected animals were the only ones to have in vitro parasite growth inhibitory activity of >70% at 1∶10 serum dilution; immuno-fluorescence titers >8,000; ELISA titers against full-length AMA1 >300,000 and ELISA titer against AMA1 domains1+2 >100,000. A negative correlation between log ELISA titer and day 11 cumulative parasitemia (Spearman rank r = −0.780, p value = 0.0001), further confirmed the relationship between antibody titer and protection. High titers of cross-strain inhibitory antibodies against AMA1 are therefore critical to confer solid protection, and the Aotus model can be used to down-select future AMA1 formulations, prior to advanced human trials.  相似文献   

4.
Polymorphic parasite antigens are known targets of protective immunity to malaria, but this antigenic variation poses challenges to vaccine development. A synthetic MSP-1 Block 2 construct, based on all polymorphic variants found in natural Plasmodium falciparum isolates has been designed, combined with the relatively conserved Block 1 sequence of MSP-1 and expressed in E.coli. The MSP-1 Hybrid antigen has been produced with high yield by fed-batch fermentation and purified without the aid of affinity tags resulting in a pure and extremely thermostable antigen preparation. MSP-1 hybrid is immunogenic in experimental animals using adjuvants suitable for human use, eliciting antibodies against epitopes from all three Block 2 serotypes. Human serum antibodies from Africans naturally exposed to malaria reacted to the MSP-1 hybrid as strongly as, or better than the same serum reactivities to individual MSP-1 Block 2 antigens, and these antibody responses showed clear associations with reduced incidence of malaria episodes. The MSP-1 hybrid is designed to induce a protective antibody response to the highly polymorphic Block 2 region of MSP-1, enhancing the repertoire of MSP-1 Block 2 antibody responses found among immune and semi-immune individuals in malaria endemic areas. The target population for such a vaccine is young children and vulnerable adults, to accelerate the acquisition of a full range of malaria protective antibodies against this polymorphic parasite antigen.  相似文献   

5.
There has long been a need for a laboratory host of human plasmodia. Although certain of the anthropoid apes, especially Pan troglodytes (the chimpanzee) are susceptible to one or more species of these malarias, there are numerous difficulties in utilizing such animals as experimental subjects. Of the Old World monkeys, only macaques have shown some susceptibility to Plasmodium falciparum.With the demonstration in 1966 that P. vivax would develop in Aotus trivirgatus (the night monkey), New World monkeys became established as models for investigation. Later it was determined that vivax lines could be maintained in Saimiri, Saguinus, and Ateles spp. Adaptation of P. falciparum directly from man has been achieved in Aotus, with subsequent passage in Saimiri and Cebus; other Panamanian monkeys show only transitory parasitemias. Thus far, P. malariae has been infective only to Aotus.Infectivity of the gametocytes to mosquitoes has been retained in monkeys, with transmission back to man or to other monkeys, thus providing all stages of the parasites for biologic, chemotherapeutic, pathologic or immunologic studies.  相似文献   

6.
We have previously reported that Vivax Malaria Protein 001 (VMP001), a vaccine candidate based on the circumsporozoite protein of Plasmodium vivax, is immunogenic in mice and rhesus monkeys in the presence of various adjuvants. In the present study, we evaluated the immunogenicity and efficacy of VMP001 formulated with a TLR9 agonist in a water-in-oil emulsion. Following immunization, the vaccine efficacy was assessed by challenging Aotus nancymaae monkeys with P. vivax sporozoites. Monkeys from both the low- and high-dose vaccine groups generated strong humoral immune responses to the vaccine (peak median titers of 291,622), and its subunits (peak median titers to the N-term, central repeat and C-term regions of 22,188; 66,120 and 179,947, respectively). 66.7% of vaccinated monkeys demonstrated sterile protection following challenge. Protection was associated with antibodies directed against the central repeat region. The protected monkeys had a median anti-repeat titer of 97,841 compared to 14,822 in the non-protected monkeys. This is the first report demonstrating P. vivax CSP vaccine-induced protection of Aotus monkeys challenged with P. vivax sporozoites.  相似文献   

7.

Objectives

Peptides delivered on the surface of influenza virosomes have been shown to induce solid humoral immune responses in experimental animals. High titers of peptide-specific antibodies were also induced in a phase 1a clinical trial in volunteers immunized with virosomal formulations of two peptides derived from the circumsporozoite protein (CSP) and the apical membrane antigen 1 (AMA-1) of Plasmodium falciparum. The main objective of this study was to perform a detailed immunological and functional analysis of the CSP-specific antibodies elicited in this phase 1a trial.

Methodology/Principal Findings

46 healthy malaria-naïve adults were immunized with virosomal formulations of two peptide-phosphatidylethanolamine conjugates, one derived from the NANP repeat region of P. falciparum CSP (designated UK-39) the other from P. falciparum AMA-1 (designated AMA49-C1). The two antigens were delivered in two different concentrations, alone and in combination. One group was immunized with empty virosomes as control. In this report we show a detailed analysis of the antibody response against UK-39. Three vaccinations with a 10 µg dose of UK-39 induced high titers of sporozoite-binding antibodies in all volunteers. This IgG response was affinity maturated and long-lived. Co-administration of UK-39 and AMA49-C1 loaded virosomes did not interfere with the immunogenicity of UK-39. Purified total IgG from UK-39 immunized volunteers inhibited sporozoite migration and invasion of hepatocytes in vitro. Sporozoite inhibition closely correlated with titers measured in immunogenicity assays.

Conclusions

Virosomal delivery of a short, conformationally constrained peptide derived from P. falciparum CSP induced a long-lived parasite-inhibitory antibody response in humans. Combination with a second virosomally-formulated peptide derived from P. falciparum AMA-1 did not interfere with the immunogenicity of either peptide, demonstrating the potential of influenza virosomes as a versatile, human-compatible antigen delivery platform for the development of multivalent subunit vaccines.

Trial Registration

ClinicalTrials.gov NCT00400101  相似文献   

8.
Merozoite surface protein 1 (MSP-1) is a high-molecular-weight protein expressed on the surface of the malaria merozoite in a noncovalent complex with other protein molecules. MSP-1 undergoes a series of proteolytic processing events, but no precise biological role for the various proteolytic fragments of MSP-1 or for the additional proteins present in the complex is known. Through the use of the yeast two-hybrid system, we have isolated genes encoding proteins that interact with a region of the amino-terminal proteolytic fragment of MSP-1 from the mouse parasite Plasmodium yoelii. This analysis has led to the isolation of two sequence-related molecules, one of which is the P. yoelii homologue of MSP-7 originally described in Plasmodium falciparum. BLAST analysis of the P. falciparum database has revealed that there are six related protein molecules present in this species encoded near each other on chromosome 13. In P. falciparum, we designated these molecules MSRP-1 to -5. Analysis of the P. yoelii database indicates a similar chromosomal organization for the two genes in the mouse parasite species. The three P. falciparum sequences with the highest degree of homology to the P. yoelii sequences isolated in the two-hybrid screen have been characterized at the molecular level (MSRP-1 to -3). Expression analysis indicated that the mRNAs are expressed at various levels in the different asexual stages. Immunofluorescence studies colocalized the expression of the MSRP molecules and the amino-terminal portion of MSP-1 to the surfaces of trophozoites. In vitro binding experiments confirmed the interaction between MSRP-1, MSRP-2, and the amino-terminal region of P. falciparum MSP-1.  相似文献   

9.

Background

The circumsporozoite surface protein is the primary target of human antibodies against Plasmodium falciparum sporozoites, these antibodies are predominantly directed to the major repetitive epitope (Asn-Pro-Asn-Ala)n, (NPNA)n. In individuals immunized by the bites of irradiated Anopheles mosquitoes carrying P. falciparum sporozoites in their salivary glands, the anti-repeat response dominates and is thought by many to play a role in protective immunity.

Methods

The antibody repertoire from a protected individual immunized by the bites of irradiated P. falciparum infected Anopheles stephensi was recapitulated in a phage display library. Following affinity based selection against (NPNA)3 antibody fragments that recognized the PfCSP repeat epitope were rescued.

Results

Analysis of selected antibody fragments implied the response was restricted to a single antibody fragment consisting of VH3 and VκI families for heavy and light chain respectively with moderate affinity for the ligand.

Conclusion

The dissection of the protective antibody response against the repeat epitope revealed that the response was apparently restricted to a single VH/VL pairing (PfNPNA-1). The affinity for the ligand was in the μM range. If anti-repeat antibodies are involved in the protective immunity elicited by exposure to radiation attenuated P. falciparum sporozoites, then high circulating levels of antibodies against the repeat region may be more important than intrinsic high affinity for protection. The ability to attain and sustain high levels of anti-(NPNA)n will be one of the key determinants of efficacy for a vaccine that relies upon anti-PfCSP repeat antibodies as the primary mechanism of protective immunity against P. falciparum.  相似文献   

10.
Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is a leading blood stage vaccine candidate. Plasmodium knowlesi AMA1 (PkAMA1) was produced and purified using similar methodology as for clinical grade PfAMA1 yielding a pure, conformational intact protein. Combined with the adjuvant CoVaccine HT™, PkAMA1 was found to be highly immunogenic in rabbits and the efficacy of the PkAMA1 was subsequently tested in a rhesus macaque blood-stage challenge model. Six rhesus monkeys were vaccinated with PkAMA1 and a control group of 6 were vaccinated with PfAMA1. A total of 50 µg AMA1 was administered intramuscularly three times at 4 week intervals. One of six rhesus monkeys vaccinated with PkAMA1 was able to control parasitaemia, upon blood stage challenge with P. knowlesi H-strain. Four out of the remaining five showed a delay in parasite onset that correlated with functional antibody titres. In the PfAMA1 vaccinated control group, five out of six animals had to be treated with antimalarials 8 days after challenge; one animal did not become patent during the challenge period. Following a rest period, animals were boosted and challenged again. Four of the six rhesus monkeys vaccinated with PkAMA1 were able to control the parasitaemia, one had a delayed onset of parasitaemia and one animal was not protected, while all control animals required treatment. To confirm that the control of parasitaemia was AMA1-related, animals were allowed to recover, boosted and re-challenged with P. knowlesi Nuri strain. All control animals had to be treated with antimalarials by day 8, while five out of six PkAMA1 vaccinated animals were able to control parasitaemia. This study shows that: i) Yeast-expressed PkAMA1 can protect against blood stage challenge; ii) Functional antibody levels as measured by GIA correlated inversely with the day of onset and iii) GIA IC50 values correlated with estimated in vivo growth rates.  相似文献   

11.
BACKGROUND: Plasmodium falciparum merozoites bind to and invade human erythrocytes via specific erythrocyte receptors. This establishes the erythrocytic stage of the parasite life cycle that causes clinical disease resulting in 2-3 million deaths per year. We tested the hypothesis that a Plasmodium falciparum ligand, EBA-175 region II (RII), which binds its erythrocyte receptor glycophorin A during invasion, can be used as an immunogen to induce antibodies that block the binding of RII to erythrocytes and thereby inhibit parasite invasion of erythrocytes. Accordingly, we immunized mice, rabbits, and monkeys with DNA plasmids that encoded the 616 amino acid RII. MATERIALS AND METHODS: DNA vaccine plasmids that targeted the secretion of recombinant RII protein with and without the universal T-cell helper epitopes P2P30 were used to immunize mice, rabbits, and Aotus monkeys. RII specific antibodies were assessed by IFA, ELISA, blocking of native [35S] labeled EBA-175 binding to human erythrocytes, and growth inhibition assays, all in vitro. RESULTS: The RII DNA plasmids were highly immunogenic as measured by ELISA and IFA. The anti-RII antibodies blocked the binding of native EBA-175 to erythrocytes, and rosetting of erythrocytes on COS-7 cells expressing RII. Most important, murine and rabbit anti-RII antibodies inhibited the invasion of merozoites into erythrocytes. We immunized nonhuman primates and showed that the RII-DNA plasmids were immunogenic and well tolerated in these monkeys. Monkeys were challenged with parasitized erythrocytes; one of three monkeys that received RII DNA plasmid was protected from fulminant disease. After challenge with live parasites, anti-RII antibody titers were boosted in the immunized monkeys. CONCLUSIONS: By proving the hypothesis that anti-RII antibodies can block merozoite invasion of erythrocytes, these studies pave the way for the clinical evaluation of EBA-175 as a receptor-blockade vaccine.  相似文献   

12.
Antigen preparations of Plasmodium chabaudi parasites enriched in merozoites and schizonts, obtained from in vitro culture, and combined with saponin protected C57BL/6J mice from P. chabaudi infection as judged by reduced primary parasitemias and recrudescences. Sera passively transferred from immunized and untreated mice after a challenge infection were more protective in recipients than serum from normal mice. Mice treated with antilymphocyte serum during immunization did not develop as strong an immunity to infection as did controls treated with normal serum. Immunized mice had depressed delayed-type hypersensitivity reactions to malarial antigen but increased serum titers of malarial antibody (measured by imniunofluorescence) after challenge with P. chabaudi when compared to immunized mice which remained unchallenged. The protective activity of sera from various groups of mice did not necessarily correlate with the serum antibody titers.  相似文献   

13.
Mills  Anne  Lubell  Yoel  Hanson  Kara 《Malaria journal》2008,7(1):1-13

Background

Plasmodium falciparum infection causes cerebral malaria (CM) in a subset of patients with anti-malarial treatment protecting only about 70% to 80% of patients. Why a subset of malaria patients develops CM complications, including neurological sequelae or death, is still not well understood. It is believed that host immune factors may modulate CM outcomes and there is substantial evidence that cellular immune factors, such as cytokines, play an important role in this process. In this study, the potential relationship between the antibody responses to the merozoite surface protein (MSP)-1 complex (which consists of four fragments namely: MSP-183, MSP-130, MSP-138 and MSP-142), MSP-636 and MSP-722 and CM was investigated.

Methods

Peripheral blood antibody responses to recombinant antigens of the two major allelic forms of MSP-1 complex, MSP-636 and MSP-722 were compared between healthy subjects, mild malaria patients (MM) and CM patients residing in a malaria endemic region of central India. Total IgG and IgG subclass antibody responses were determined using ELISA method.

Results

The prevalence and levels of IgG and its subclasses in the plasma varied for each antigen. In general, the prevalence of total IgG, IgG1 and IgG3 was higher in the MM patients and lower in CM patients compared to healthy controls. Significantly lower levels of total IgG antibodies to the MSP-1f38, IgG1 levels to MSP-1d83, MSP-119 and MSP-636 and IgG3 levels to MSP-1f42 and MSP-722 were observed in CM patients as compared to MM patients.

Conclusion

These results suggest that there may be some dysregulation in the generation of antibody responses to some MSP antigens in CM patients and it is worth investigating further whether perturbations of antibody responses in CM patients contribute to pathogenesis.  相似文献   

14.
We have previously developed a new malaria vaccine delivery system based on the baculovirus dual expression system (BDES). In this system, expression of malaria antigens is driven by a dual promoter consisting of the baculovirus-derived polyhedrin and mammal-derived cytomegalovirus promoters. To test this system for its potential as a vaccine against human malaria parasites, we investigated immune responses against the newly developed BDES-based Plasmodium falciparum circumsporozoite protein vaccines (BDES-PfCSP) in mice and Rhesus monkeys. Immunization of mice with BDES-PfCSP induced Th1/Th2-mixed type immune responses with high PfCSP-specific antibody (Ab) titers, and provided significant protection against challenge from the bites of mosquitoes infected with a transgenic P. berghei line expressing PfCSP. Next, we evaluated the immunogenicity of the BDES-PfCSP vaccine in a rhesus monkey model. Immunization of BDES-PfCSP elicited high levels of anti-PfCSP Ab responses in individual monkeys. Moreover, the sera from the immunized monkeys remarkably blocked sporozoite invasion of HepG2 cells. Taken together with two animal models, our results indicate that this novel vaccine platform (BDES) has potential clinical application as a vaccine against malaria.  相似文献   

15.
An indirect fluorescent antibody test was used to analyze the antigenic relationships between Babesia argentina, a parasite of cattle, and two human malaria parasites, Plasmodium falciparum and Plasmodium vivax. Elevated antibody titers to P. falciparum were found in cattle infected with B. argentina. Some persons infected with P. falciparum or P. vivax were found to produce antibodies to B. argentina. Explanations for the occurrence of these cross reactions are considered.  相似文献   

16.
A methoxypolyethylene glycol (PEG)-coupled and several N-carboxymethylated (N-CM) derivatives of antigen E, the major allergenic protein of ragweed pollen, were prepared. The PEG derivative contained seven residues of PEG groups (residue weight about 2100) per molecule of protein and the groups were linked to the lysyl residues of antigen via the 2,6-positions of 4-hydroxy-triazine nucleus. The maximally N-CM derivative contained, respectively, 10, 6, and 2 residues of mono-CM, di-CM, and unmodified lysyl residues per molecule of protein. The CM groups were introduced reductively on reaction with glyoxylic and sodium cyanoborohydride and the extent of mono- and dicarboxymethylation was controlled more by the concentration of cyanoborohydride than by that of glyoxylic acid. The molar allergenic activities of the PEG and the N-CM derivatives in man were, respectively, 0.02 and 0.5 of that of the native antigen. Rabbits immunized with the PEG derivative gave antibody titers about 18th of those obtained with animals immunized with the native antigen. However, the rabbits preimmunized with the PEG derivative gave a vigorous secondary response on challenge with the native antigen and their titers approached those of rabbits preimmunized with the native antigen. The immunogenicity of the reduced and S-carboxymethylated derivative of antigen E which has the denatured conformation was studied as a control. Rabbits immunized with the S-CM derivative gave antibody titers 134th of those obtained with animals immunized with the native antigen; on secondary challenge with the native antigen, these rabbits gave antibody titers about 16th of those of animals preimmunized with the native antigen.  相似文献   

17.
Apical Membrane Antigen 1 (AMA1) is a leading malaria vaccine candidate and a target of naturally-acquired human immunity. Plasmodium falciparum AMA1 is polymorphic and in vaccine trials it induces strain-specific protection. This antigenic diversity is a major roadblock to development of AMA1 as a malaria vaccine and understanding how to overcome it is essential. To assess how AMA1 antigenic diversity limits cross-strain growth inhibition, we assembled a panel of 18 different P. falciparum isolates which are broadly representative of global AMA1 sequence diversity. Antibodies raised against four well studied AMA1 alleles (W2Mef, 3D7, HB3 and FVO) were tested for growth inhibition of the 18 different P. falciparum isolates in growth inhibition assays (GIA). All antibodies demonstrated substantial cross-inhibitory activity against different isolates and a mixture of the four different AMA1 antibodies inhibited all 18 isolates tested, suggesting significant antigenic overlap between AMA1 alleles and limited antigenic diversity of AMA1. Cross-strain inhibition by antibodies was only moderately and inconsistently correlated with the level of sequence diversity between AMA1 alleles, suggesting that sequence differences are not a strong predictor of antigenic differences or the cross-inhibitory activity of anti-allele antibodies. The importance of the highly polymorphic C1-L region for inhibitory antibodies and potential vaccine escape was assessed by generating novel transgenic P. falciparum lines for testing in GIA. While the polymorphic C1-L epitope was identified as a significant target of some growth-inhibitory antibodies, these antibodies only constituted a minor proportion of the total inhibitory antibody repertoire, suggesting that the antigenic diversity of inhibitory epitopes is limited. Our findings support the concept that a multi-allele AMA1 vaccine would give broad coverage against the diversity of AMA1 alleles and establish new tools to define polymorphisms important for vaccine escape.  相似文献   

18.

Background

Malaria immunity is commonly believed to wane in the absence of Plasmodium falciparum exposure, based on limited epidemiological data and short-lived antibody responses in some longitudinal studies in endemic areas.

Methods

A cross-sectional study was conducted among sub-Saharan African adults residing in Spain for 1 up to 38 years (immigrants) with clinical malaria (n=55) or without malaria (n=37), naïve adults (travelers) with a first clinical malaria episode (n=20) and life-long malaria exposed adults from Mozambique (semi-immune adults) without malaria (n=27) or with clinical malaria (n=50). Blood samples were collected and IgG levels against the erythrocytic antigens AMA-1 and MSP-142 (3D7 and FVO strains), EBA-175 and DBL-α were determined by Luminex. IgG levels against antigens on the surface of infected erythrocytes (IEs) were measured by flow cytometry.

Results

Immigrants without malaria had lower IgG levels than healthy semi-immune adults regardless of the antigen tested (P≤0.026), but no correlation was found between IgG levels and time since migration. Upon reinfection, immigrants with malaria had higher levels of IgG against all antigens than immigrants without malaria. However, the magnitude of the response compared to semi-immune adults with malaria depended on the antigen tested. Thus, immigrants had higher IgG levels against AMA-1 and MSP-142 (P≤0.015), similar levels against EBA-175 and DBL-α, and lower levels against IEs (P≤0.016). Immigrants had higher IgG levels against all antigens tested compared to travelers (P≤0.001), both with malaria.

Conclusions

Upon cessation of malaria exposure, IgG responses to malaria-specific antigens were maintained to a large extent, although the conservation and the magnitude of the recall response depended on the nature of the antigen. Studies on immigrant populations can shed light on the factors that determine the duration of malaria specific antibody responses and its effect on protection, with important implications for future vaccine design and public health control measures.  相似文献   

19.

Background and Objectives

Co-trimoxazole prophylaxis, currently recommended in HIV-exposed, uninfected (HEU) children as protection against opportunistic infections, also has some anti-malarial efficacy. We determined whether daily co-trimoxazole prophylaxis affects the natural development of antibody-mediated immunity to blood-stage Plasmodium falciparum malaria infection.

Methods

Using an enzyme-linked immunosorbent assay, we measured antibodies to 8Plasmodium falciparum antigens (AMA-1, MSP-119, MSP-3, PfSE, EBA-175RII, GLURP R0, GLURP R2 and CSP) in serum samples from 33 HEU children and 31 HIV-unexposed, uninfected (HUU) children, collected at 6, 12 and 18 months of age.

Results

Compared to HIV-uninfected children, HEU children had significantly lower levels of specific IgG against AMA-1 at 6 months (p = 0.001), MSP-119 at 12 months (p = 0.041) and PfSE at 6 months (p = 0.038), 12 months (p = 0.0012) and 18 months (p = 0.0097). No differences in the IgG antibody responses against the rest of the antigens were observed between the two groups at all time points. The breadth of specificity of IgG response was reduced in HEU children compared to HUU children during the follow up period.

Conclusions

Co-trimoxazole prophylaxis seems to reduce IgG antibody responses to P. falciparum blood stage antigens, which could be as a result of a reduction in exposure of those children under this regime. Although antibody responses were regarded as markers of exposure in this study, further studies are required to establish whether these responses are correlated in any way to clinical immunity to malaria.  相似文献   

20.
To determine whether antibodies to the 19-kDa fragment of merozoite surface protein 1 (MSP1(19)) help to control blood-stage Plasmodium falciparum infection, we performed a rechallenge experiment of previously infected Aotus monkeys. Monkeys previously exposed to the FVO strain of P. falciparum that did or did not develop high antibody titers to MSP1(19) and malaria-na?ve monkeys were challenged with erythrocytes infected with the same strain. Prepatent periods were prolonged in previously infected monkeys compared with malaria-na?ve monkeys. Previously infected monkeys with preexisting anti-MSP1(19) antibodies showed low peak parasitemias that cleared spontaneously. Previously infected monkeys that had no or low levels of pre-existing anti-MSP1(19) antibodies also showed low peak parasitemias, but because of low hematocrits, all of these animals required treatment with mefloquine. All previously malaria-na?ve animals were treated because of high parasitemias. The results of this study suggest that antibody to the 19-kDa carboxy-terminal fragment of MSP1 plays a role in preventing the development of anemia, an important complication often associated with malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号