首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction of naringenin (Nar) and its neohesperidoside, naringin (Narn), with calf thymus deoxyribonucleic acid (ctDNA) in the absence and the presence of β-cyclodextrin (β-CD) was investigated. The interaction of Nar and Narn with β-CD/ctDNA was analyzed by using absorption, fluorescence, and molecular modeling techniques. Docking studies showed the existence of hydrogen bonding, electrostatic and phobic interaction of Nar and Narn with β-CD/DNA. 1:2 stoichiometric inclusion complexes were observed for Nar and Narn with β-CD. With the addition of ctDNA, Nar and Narn resulted into the fluorescence quenching phenomenon in the aqueous solution and β-CD solution. The binding constant K b and the number of binding sites were found to be different for Nar and Narn bindings with DNA in aqueous and β-CD solution. The difference is attributed to the structural difference between Nar and Narn with neohesperidoside moiety present in Narn.  相似文献   

2.
3.
4.
DNA intercalators bind nucleic acids by stacking between adjacent basepairs. This causes a considerable elongation of the DNA backbone as well as untwisting of the double helix. In the past few years, single-molecule mechanical experiments have become a common tool to characterize these deformations and to quantify important parameters of the intercalation process. Parameter extraction typically relies on the neighbor-exclusion model, in which a bound intercalator prevents intercalation into adjacent sites. Here, we challenge the neighbor-exclusion model by carefully quantifying and modeling the force-extension and twisting behavior of single ethidium-complexed DNA molecules. We show that only an anticooperative ethidium binding that allows for a disfavored but nonetheless possible intercalation into nearest-neighbor sites can consistently describe the mechanical behavior of intercalator-bound DNA. At high ethidium concentrations and elevated mechanical stress, this causes an almost complete occupation of nearest-neighbor sites and almost a doubling of the DNA contour length. We furthermore show that intercalation into nearest-neighbor sites needs to be considered when estimating intercalator parameters from zero-stress elongation and twisting data. We think that the proposed anticooperative binding mechanism may also be applicable to other intercalating molecules.  相似文献   

5.
Ingestion or inhalation of botulinum neurotoxin (BoNT) results in botulism, a severe and frequently fatal disease. Current treatments rely on antitoxins, which, while effective, cannot reverse symptoms once BoNT has entered the neuron. For treatments that can reverse intoxication, interest has focused on developing inhibitors of the enzymatic BoNT light chain (BoNT Lc). Such inhibitors typically mimic substrate and bind in or around the substrate cleavage pocket. To explore the full range of binding sites for serotype A light chain (BoNT/A Lc) inhibitors, we created a library of non-immune llama single-domain VHH (camelid heavy-chain variable region derived from heavy-chain-only antibody) antibodies displayed on the surface of the yeast Saccharomyces cerevisiae. Library selection on BoNT/A Lc yielded 15 yeast-displayed VHH with equilibrium dissociation constants (Kd) from 230 to 0.03 nM measured by flow cytometry. Eight of 15 VHH inhibited the cleavage of substrate SNAP25 (synaptosome-associated protein of 25,000 Da) by BoNT/A Lc. The most potent VHH (Aa1) had a solution Kd for BoNT/A Lc of 1.47 × 10− 10 M and an IC50 (50% inhibitory concentration) of 4.7 × 10− 10 M and was resistant to heat denaturation and reducing conditions. To understand the mechanism by which Aa1 inhibited catalysis, we solved the X-ray crystal structure of the BoNT/A Lc-Aa1 VHH complex at 2.6 Å resolution. The structure reveals that the Aa1 VHH binds in the α-exosite of the BoNT/A Lc, far from the active site for catalysis. The study validates the utility of non-immune llama VHH libraries as a source of enzyme inhibitors and identifies the BoNT/A Lc α-exosite as a target for inhibitor development.  相似文献   

6.
7.
In Escherichia coli, the γ complex clamp loader loads the β-sliding clamp onto DNA. The β clamp tethers DNA polymerase III to DNA and enhances the efficiency of replication by increasing the processivity of DNA synthesis. In the presence of ATP, γ complex binds β and DNA to form a ternary complex. Binding to primed template DNA triggers γ complex to hydrolyze ATP and release the clamp onto DNA. Here, we investigated the kinetics of forming a ternary complex by measuring rates of γ complex binding β and DNA. A fluorescence intensity-based β binding assay was developed in which the fluorescence of pyrene covalently attached to β increases when bound by γ complex. Using this assay, an association rate constant of 2.3 × 107 m−1 s−1 for γ complex binding β was determined. The rate of β binding was the same in experiments in which γ complex was preincubated with ATP before adding β or added directly to β and ATP. In contrast, when γ complex is preincubated with ATP, DNA binding is faster than when γ complex is added to DNA and ATP at the same time. Slow DNA binding in the absence of ATP preincubation is the result of a rate-limiting ATP-induced conformational change. Our results strongly suggest that the ATP-induced conformational changes that promote β binding and DNA binding differ. The slow ATP-induced conformational change that precedes DNA binding may provide a kinetic preference for γ complex to bind β before DNA during the clamp loading reaction cycle.  相似文献   

8.
9.
The underlying principles of binding equilibria of arsenazo III with Ca2+ and Mg2+ are presented. Ca2+ and Mg2+ can bind arsenazo III in several different protonated forms depending on pH. The binding affinities of these different protonated forms of arsenazo III with Ca2+ increase in the order of H4A4- <H3A5- >H2A6- and with Mg2+, H4A4- > H3A5- > H2A6-. Arsenazo III is not membrane bound. The sensitivity ratio of arsenazo III with Ca2+ to arsenazo III with Mg2+ is close to two orders of magnitude. Arsenazo III and its complexes are extremely sensitive to pH changes. With 5 μM arsenazo III, the minimum detectable amount of Ca2+ can be as low as 0.08 μM. Contrary to current belief, we found that Mg2+ can bind to arsenazo III in a slightly acidic medium. Potential applications of arsenazo III to the study of membrane Ca2+ transport are also discussed.  相似文献   

10.
Although the amyloid dye thioflavin-T (ThT) is among the most widely used tools in the study of amyloid fibrils, the mechanism by which ThT binds to fibrils and other β-rich peptide self-assemblies remains elusive. The development of the water-soluble peptide self-assembly mimic (PSAM) system has provided a set of ideal model proteins for experimentally exploring the properties and minimal dye-binding requirements of amyloid fibrils. PSAMs consist of a single-layer β-sheet (SLB) capped by two globular domains, which capture the flat, extended β-sheet features common among fibril-like surfaces. Recently, a PSAM that binds to ThT with amyloid-like affinity (low micromolar Kd) has been designed, and its crystal structure in the absence of bound ThT was determined. This PSAM thus provides a unique opportunity to examine the interactions of ThT with a β-rich structure. Here, we present molecular dynamics simulations of the binding of ThT to this PSAM β-sheet. We show that the primary binding site for ThT is along a shallow groove formed by adjacent Tyr and Leu residues on the β-sheet surface. These simulations provide an atomic-scale rationale for this PSAM's experimentally determined dye-binding properties. Together, our results suggest that an aromatic-hydrophobic groove spanning across four consecutive β-strands represents a minimal ThT binding site on amyloid fibrils. Grooves formed by aromatic-hydrophobic residues on amyloid fibril surfaces may therefore offer a generic mode of recognition for amyloid dyes.  相似文献   

11.
The β-subunit of the voltage-sensitive K+ channels shares 15–30% amino acid identity with the sequences of aldo–keto reductases (AKR) genes. However, the AKR properties of the protein remain unknown. To begin to understand its oxidoreductase properties, we examine the pyridine coenzyme binding activity of the protein in vitro. The cDNA of Kvβ2.1 from rat brain was subcloned into a prokaryotic expression vector and overexpressed in Escherichia coli. The purified protein was tetrameric in solution as determined by size exclusion chromatography. The protein displayed high affinity binding to NADPH as determined by fluorometric titration. The KD values for NADPH of the full-length wild-type protein and the N-terminus deleted protein were 0.1±0.007 and 0.05±0.006 M, respectively — indicating that the cofactor binding domain is restricted to the C-terminus, and is not drastically affected by the absence of the N-terminus amino acids, which form the ball and chain regulating voltage-dependent inactivation of the α-subunit. The protein displayed poor affinity for other coenzymes and the corresponding values of the KD for NADH and NAD were between 1–3 μM whereas the KD for FAD was >10 μM. However, relatively high affinity binding was observed with 3-acetyl pyridine NADP, indicating selective recognition of the 2′ phosphate at the binding site. The selectivity of Kvβ2.1 for NADPH over NADP may be significant in regulating the K+ channels as a function of the cellular redox state.  相似文献   

12.
Chlamydiae are obligate intracellular pathogens that are sensitive to pro-inflammatory cytokine interferon-γ. IFN-γ-inducible murine p47 GTPases have been demonstrated to function in resistance to chlamydia infection in vivo and in vitro. Because the human genome does not encode IFN-γ-inducible homologues of these proteins, the significance of the p47 GTPase findings to chlamydia pathogenesis in humans is unclear. Here we report a pair of IFN-γ-inducible proteins, the human guanylate binding proteins (hGBPs) 1 and 2 that potentiate the anti-chlamydial properties of IFN-γ. hGBP1 and 2 localize to the inclusion membrane, and their anti-chlamydial functions required the GTPase domain. Alone, hGBP1 or 2 have mild, but statistically significant and reproducible negative effects on the growth of Chlamydia trachomatis, whilst having potent anti-chlamydial activity in conjunction with treatment with a sub-inhibitory concentration of IFN-γ. Thus, hGBPs appear to potentiate the anti-chlamydial effects of IFN-γ. Indeed, depletion of hGBP1 and 2 in cells treated with IFN-γ led to an increase in inclusion size, indicative of better growth. Interestingly, chlamydia species/strains harboring the full-length version of the putative cytotoxin gene, which has been suggested to confer resistance to IFN-γ was not affected by hGBP overexpression. These findings identify the guanylate binding proteins as potentiators of IFN-γ inhibition of C. trachomatis growth, and may be the targets of the chlamydial cytotoxin.  相似文献   

13.
The large-conductance Ca2+-activated potassium (BKCa) channel of smooth muscle is unusually sensitive to Ca2+ as compared with the BKCa channels of brain and skeletal muscle. This is due to the tissue-specific expression of the BKCa auxiliary subunit β1, whose presence dramatically increases both the potency and efficacy of Ca2+ in promoting channel opening. β1 contains no Ca2+ binding sites of its own, and thus the mechanism by which it increases the BKCa channel''s Ca2+ sensitivity has been of some interest. Previously, we demonstrated that β1 stabilizes voltage sensor activation, such that activation occurs at more negative voltages with β1 present. This decreases the work that Ca2+ must do to open the channel and thereby increases the channel''s apparent Ca2+ affinity without altering the real affinities of the channel''s Ca2+ binding sites. To explain the full effect of β1 on the channel''s Ca2+ sensitivity, however, we also proposed that there must be effects of β1 on Ca2+ binding. Here, to test this hypothesis, we have used high-resolution Ca2+ dose–response curves together with binding site–specific mutations to measure the effects of β1 on Ca2+ binding. We find that coexpression of β1 alters Ca2+ binding at both of the BKCa channel''s two types of high-affinity Ca2+ binding sites, primarily increasing the affinity of the RCK1 sites when the channel is open and decreasing the affinity of the Ca2+ bowl sites when the channel is closed. Both of these modifications increase the difference in affinity between open and closed, such that Ca2+ binding at either site has a larger effect on channel opening when β1 is present.  相似文献   

14.
The structure of the single LE module between residues 791 and 848 of the laminin γ1 chain, which contains the high affinity binding site for nidogen, has been probed using NMR methods. The module folds into an autonomous domain which has a stable and unique three-dimensional (3D) structure in solution. The 3D structure was determined on the basis of 362 interproton distance constraints derived from nuclear Overhauser enhancement measurements and 39 π angles, supplemented by 5 ψ and 22 χ1angles. The main features of the NMR structures are two-stranded antiparallel β-sheets which are separated by loops and cross-connected by four disulfide bridges. The N-terminal segment which contains the first three disulfide bridges is similar to epidermal growth factor. The C-terminal segment has an S-like backbone profile with a crossover at the last disulfide bridge and comprises two three-residue long β-strands that form an antiparallel β-sheet. The LE module possesses an exposed nidogen binding loop that projects away from the main body of the protein. The side-chains of three amino acids which are crucial for binding (Asp, Asn, Val) are all exposed at the domain surface. An inactivating Asn-Ser mutation in this region showed the same 3D structure indicating that these three residues, and possibly an additional Tyr in an adjacent loop, provide direct contacts in the interaction with nidogen.  相似文献   

15.
Washing spinach PSII oxygen-evolution complex (OEC) with 2 mmol/L EGTA or extraction medium caused a 28.4% and 25.0% loss of oxygen evolution activities respectively, but the loss of polypeptide components of OEC did not take place, whereas washing with 1 mol/L NaCI caused both a 90.0% loss of oxygen evolution activity and loss of 17, 23kD polypeptides. Adding 5–10 mmol/L CaC12 could restore oxygen evolution activities of OEC by various washing to a great extent, but had no effect on control OEC, whereas adding 5–10 mmol/L EGTA had no effect on the OEC by various' washing, but caused the loss of oxygen evolution mixtures, which could induce the release of of 17, 23kD polypeptides from OEC, caused 54.3% loss of oxygen evolution activity, under this circumstance, adding 2 mmol/L of EGTA could only maintain a weak oxygen evolution activity of OEC, but adding 10 mmol/L of CaCl2 could restore oxygen evolution activity of OEC to the control level. These findings' suggest a two way loose binding of Ga2+ to PSⅡ OEC in one way Ca2+ is loose bound to the surface of PSⅡOEC and in other, the Ca2+-binding site is wrapped by 17, 23kD polypeptides. Both of them have effect on oxygen evolution activity of PSⅡ OEC. By way, Mn2+ can antagonize the restoration of oxygen evolution activity by Ca2+ to the NaCl-washing PSⅡ OEC.  相似文献   

16.
17.
Electroendocytosis involves the exposure of cells to pulsed low electric field and is emerging as a complementary method to electroporation for the incorporation of macromolecules into cells. The present study explores the underlying mechanism of electroendocytosis and its dependence on electrochemical byproducts formed at the electrode interface. Cell suspensions were exposed to pulsed low electric field in a partitioned device where cells are spatially restricted relative to the electrodes. The cellular uptake of dextran-FITC was analyzed by flow cytometery and visualized by confocal microscopy. We first show that uptake occurs only in cells adjacent to the anode. The enhanced uptake near the anode is found to depend on electric current density rather than on electric field strength, in the range of 5 to 65 V/cm. Electrochemically produced oxidative species that impose intracellular oxidative stress, do not play any role in the stimulated uptake. An inverse dependence is found between electrically induced uptake and the solution’s buffer capacity. Electroendocytosis can be mimicked by chemically acidifying the extracellular solution which promotes the enhanced uptake of dextran polymers and the uptake of plasmid DNA. Electrochemical production of protons at the anode interface is responsible for inducing uptake of macromolecules into cells exposed to a pulsed low electric field. Expanding the understanding of the mechanism involved in electric fields induced drug-delivery into cells, is expected to contribute to clinical therapy applications in the future.  相似文献   

18.
Epilepsy is one of the most common neurological disorders. Even though antiepileptic drugs can afford a reasonably satisfactory treatment for 80% of diagnosed patients, chronic intractable epilepsy still affects a significant number of people and more effective and less harmful antiepileptic drugs are needed. Previous studies have shown that -decanolactone has dose-dependent sedative effects, including hypnotic, anticonvulsant and hypothermic properties in mice. The present study reports an inhibitory effect of -decanolactone on glutamate binding (96.8% with 5 mM) in rat cortex membranes. The non competitive nature of glutamate binding inhibition as a neurochemical correlate of the anticonvulsant activity of -decanolactone may be a relevant mode of action for further drug development.  相似文献   

19.
A number of small organic molecules have been developed that bind to amyloid fibrils, a subset of which also inhibit fibrillization. Among these, the benzothiol dye Thioflavin-T (ThT) has been used for decades in the diagnosis of protein-misfolding diseases and in kinetic studies of self-assembly (fibrillization). Despite its importance, efforts to characterize the ThT-binding mechanism at the atomic level have been hampered by the inherent insolubility and heterogeneity of peptide self-assemblies. To overcome these challenges, we have developed a minimalist approach to designing a ThT-binding site in a "peptide self-assembly mimic” (PSAM) scaffold. PSAMs are engineered water-soluble proteins that mimic a segment of β-rich peptide self-assembly, and they are amenable to standard biophysical techniques and systematic mutagenesis. The PSAM β-sheet contains rows of repetitive amino acid patterns running perpendicular to the strands (cross-strand ladders) that represent a ubiquitous structural feature of fibril-like surfaces. We successfully designed a ThT-binding site that recapitulates the hallmarks of ThT-fibril interactions by constructing a cross-strand ladder consisting of contiguous tyrosines. The X-ray crystal structures suggest that ThT interacts with the β-sheet by docking onto surfaces formed by a single tyrosine ladder, rather than in the space between adjacent ladders. Systematic mutagenesis further demonstrated that tyrosine surfaces across four or more β-strands formed the minimal binding site for ThT. Our work thus provides structural insights into how this widely used dye recognizes a prominent subset of peptide self-assemblies, and proposes a strategy to elucidate the mechanisms of fibril-ligand interactions.  相似文献   

20.
Binding of histamine to the G-protein coupled histamine H1 receptor plays an important role in the context of allergic reactions; however, no crystal structure of the resulting complex is available yet. To deduce the histamine binding site, we performed unbiased molecular dynamics (MD) simulations on a microsecond time scale, which allowed to monitor one binding event, in which particularly the residues of the extracellular loop 2 were involved in the initial recognition process. The final histamine binding pose in the orthosteric pocket is characterized by interactions with Asp1073.32, Tyr1083.33, Thr1945.43, Asn1985.46, Trp4286.48, Tyr4316.51, Phe4326.52, and Phe4356.55, which is in agreement with existing mutational data. The conformational stability of the obtained complex structure was subsequently confirmed in 2 μs equilibrium MD simulations, and a metadynamics simulation proved that the detected binding site represents an energy minimum. A complementary investigation of a D107A mutant, which has experimentally been shown to abolish ligand binding, revealed that this exchange results in a significantly weaker interaction and enhanced ligand dynamics. This finding underlines the importance of the electrostatic interaction between the histamine ammonium group and the side chain of Asp1073.32 for histamine binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号