首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The anterior lobe of the pituitary gland is composed of five types of endocrine cells and of non-endocrine folliculo-stellate cells that produce various local signaling molecules. The TtT/GF cell line is derived from pituitary tumors, produces no hormones and has folliculo-stellate cell-like characteristics. The biological function of TtT/GF cells remains elusive but several properties have been postulated (support of endocrine cells, control of cell proliferation, scavenger function). Recently, we observed that TtT/GF cells have high resistance to the antibiotic G418 and low influx for Hoechst 33342, indicating the presence of ATP-binding cassette (ABC) transporters that efflux multiple drugs, i.e., a property similar to that of stem/progenitor cells. Therefore, we examine TtT/GF cells for the presence of ABC transporters, for the efflux ability of Hoechst 33342 and for those genes characteristic of TtT/GF cells. Real-time polymerase chain reaction (PCR) for ABC transporters demonstrated that Abcb1a, Abcb1b and Abcg2, regarded as stem cell markers, were characteristically expressed in TtT/GF cells but not in Tpit/F1 and LβT2 cells. Furthermore, the remarkable low-efflux ability of Hoechst 33342 from TtT/GF cells was confirmed by using inhibitors and contrasted with the abilities of Tpit/F1 and LβT2 cells. The high and specific expression of stem cell antigen 1 (Sca1) in TtT/GF cells was confirmed by real-time PCR. We also demonstrated those genes that are expressed abundantly and characteristically in TtT/GF, suggesting that TtT/GF cells have unique characteristics similar to those of stem/progenitor cells of endothelial or mesenchymal origin. Thus, the present study has revealed an intriguing property of TtT/GF cells, providing a new clue for an understanding of the function of this cell line.  相似文献   

2.
3.
4.
5.
Hepatic ABC efflux transporters control the cellular uptake (in basolateral membranes) and excretion (in apical membranes) of many substrates. Since type‐1 diabetes mellitus (T1DM) is associated with altered hepatobiliary excretion of many endogenous and exogenous substances, we examined key hepatic ABC transporters and levels of the endogenous substrate glutathione in rats with acute streptozotocin‐induced T1DM. Renal transporters and inflammatory markers were also examined. Abcb1, Abcc1–4, and Abcg2 were measured using qRT‐PCR. Glutathione was measured in liver tissue, plasma, and urine. Inflammatory markers, including C‐reactive protein (CRP), were measured in plasma via ELISA. In diabetic rats, Abcb1a, Abcc2, and Abcg2 (apical) were decreased, while Abcc4 (basolateral) was increased. Abcb1a and Abcc2 inversely correlated with plasma CRP. Diabetic and control rats exhibited similar hepatic glutathione, but levels in diabetic plasma were lower. When standardized to urinary output, diabetic rats excreted 6.7‐fold more glutathione in urine than controls. Renal transporter levels were normal in diabetic rats. Results show apical transporters involved in hepatobiliary excretion are downregulated in T1DM, possibly through an inflammation‐mediated process. Findings suggest that there may be a vectorial shift from hepatic to renal excretion for some substrates in T1DM.  相似文献   

6.
Some chemicals are ligands to efflux transporters which may result in high concentrations in milk. Limited knowledge is available on the influence of maternal exposure to chemicals on the expression and function of transporters in the lactating mammary gland. We determined gene expression of ABC and SLC transporters in murine mammary tissue of different gestation and lactation stages, in murine mammary cells (HC11) featuring resting and secreting phenotypes and in bovine mammary tissue and cells (BME-UV). Effects on transporter expression and function of the imidazole fungicide prochloraz, previously reported to influence BCRP in mammary cells, was investigated on transporter expression and function in the two cell lines. Transporters studied were BCRP, MDR1, MRP1, OATP1A5/OATP1A2, OCTN1 and OCT1. Gene expressions of BCRP and OCT1 in murine mammary glands were increased during gestation and lactation, whereas MDR1, MRP1, OATP1A5 and OCTN1 were decreased, compared to expressions in virgins. All transporters measured in mammary glands of mice were detected in bovine mammary tissue and in HC11 cells, while only MDR1 and MRP1 were detected in BME-UV cells. Prochloraz treatment induced MDR1 gene and protein expression in both differentiated HC11 and BME-UV cells and increased protein function in HC11 cells, resulting in decreased accumulation of the MDR1 substrate digoxin. In conclusion, our results demonstrate that murine (HC11) and bovine (BME-UV) mammary epithelial cells can be applied to characterize expression and function of transporters as well as effects of contaminants on the mammary transporters. An altered expression, induced by a drug or toxic chemical, on any of the transporters expressed in the mammary epithelial cells during lactation may modulate the well-balanced composition of nutrients and/or secretion of contaminants in milk with potential adverse effects on breast-fed infants and dairy consumers.  相似文献   

7.
In yeast cells such as those of Saccharomyces cerevisiae, expression of ATP-binding cassette (ABC) transporter proteins has been found to be increased and correlates with a concomitant elevation in azole drug resistance. In this study, we investigated the roles of two Aspergillus fumigatus proteins that share high sequence similarity with S. cerevisiae Pdr5, an ABC transporter protein that is commonly overproduced in azole-resistant isolates in this yeast. The two A. fumigatus genes encoding the ABC transporters sharing the highest sequence similarity to S. cerevisiae Pdr5 are called abcA and abcB here. We constructed deletion alleles of these two different ABC transporter-encoding genes in three different strains of A. fumigatus. Loss of abcB invariably elicited increased azole susceptibility, while abcA disruption alleles had variable phenotypes. Specific antibodies were raised to both AbcA and AbcB proteins. These antisera allowed detection of AbcB in wild-type cells, while AbcA could be visualized only when overproduced from the hspA promoter in A. fumigatus. Overproduction of AbcA also yielded increased azole resistance. Green fluorescent protein fusions were used to provide evidence that both AbcA and AbcB are localized to the plasma membrane in A. fumigatus. Promoter fusions to firefly luciferase suggested that expression of both ABC transporter-encoding genes is inducible by azole challenge. Virulence assays implicated AbcB as a possible factor required for normal pathogenesis. This work provides important new insights into the physiological roles of ABC transporters in this major fungal pathogen.  相似文献   

8.

Background

Tumor tissue resembles chronically inflamed tissue. Since chronic inflammatory conditions are a strong stimulus for bone marrow-derived cells (BMDCs) it can be assumed that recruitment of BMDCs into cancer tissue should be a common phenomenon. Several data have outlined that BMDC can influence tumor growth and metastasis, e.g., by inducing a paracrine acting feedback loop in tumor cells. Likewise, cell fusion and horizontal gene transfer are further mechanisms how BMDCs can trigger tumor progression.

Results

Hygromycin resistant murine 67NR-Hyg mammary carcinoma cells were co-cultivated with puromycin resistant murine BMDCs from Tg(GFPU)5Nagy/J mice. Isolation of hygromycin/puromycin resistant mBMDC/67NR-Hyg cell clones was performed by a dual drug selection procedure. PCR analysis revealed an overlap of parental markers in mBMDC/67NR-Hyg cell clones, suggesting that dual resistant cells originated by cell fusion. By contrast, both STR and SNP data analysis indicated that only parental 67NR-Hyg alleles were found in mBMDC/67NR-Hyg cell clones favoring horizontal gene transfer as the mode of origin. RealTime-PCR-array analysis showed a marked up-regulation of Abcb1a and Abcb1b ABC multidrug transporters in mBMDC/67NR-Hyg clones, which was verified by Western Blot analysis. Moreover, the markedly increased Abcb1a/Abcb1b expression was correlated to an efficient Rhodamine 123 efflux, which was completely inhibited by verapamil, a well-known Abcb1a/Abcb1b inhibitor. Likewise, mBMDCs/67NR-Hyg clones revealed a marked resistance towards chemotherapeutic drugs including 17-DMAG, doxorubicin, etoposide and paclitaxel. In accordance to Rhodamine 123 efflux data, chemotherapeutic drug resistance of mBMDC/67NR-Hyg cells was impaired by verapamil mediated blockage of Abc1a/Abcb1b multidrug transporter function.

Conclusion

Co-cultivation of mBMDCs and mouse 67NR-Hyg mammary carcinoma cells gave rise to highly drug resistant cells. Even though it remains unknown whether mBMDC/67NR-Hyg clones originated by cell fusion or horizontal gene transfer, our data indicate that the exchange of genetic information between two cellular entities is crucial for the origin of highly drug resistant cancer (hybrid) cells, which might be capable to survive chemotherapy.  相似文献   

9.
Molecular interactions of tumor cells with the microenvironment are regarded as onset of chemotherapy resistance, referred to as cell adhesion mediated drug resistance (CAM-DR). Here we elucidate a mechanism of CAM-DR in breast cancer cells in vitro. We show that human MCF-7 and MDA-MB-231 breast cancer cells decrease their sensitivity towards cisplatin, doxorubicin, and mitoxantrone cytotoxicity upon binding to collagen type 1 (COL1) or fibronectin (FN). The intracellular concentrations of doxorubicin and mitoxantrone were decreased upon cell cultivation on COL1, while cellular cisplatin levels remained unaffected. Since doxorubicin and mitoxantrone are transporter substrates, this refers to ATP binding cassette (ABC) efflux transporter activities. The activation of the transporters BCRP, P-gp and MRP1 was shown by fluorescence assays to distinguish the individual input of these transporters to resistance in presence of COL1 and related to their expression levels by western blot. An ABC transporter inhibitor was able to re-sensitize COL1-treated cells for doxorubicin and mitoxantrone toxicity. Antibody-blocking of β1-integrin (ITGB1) induced sensitization towards the indicated cytostatic drugs by attenuating the increased ABC efflux activity. This refers to a key role of ITGB1 for matrix binding and subsequent transporter activation. A downregulation of α2β1 integrin following COL1 binding appears as clear indication for the relationship between ITGB1 and ABC transporters in regulating resistance formation, while knockdown of ITGB1 leads to a significant upregulation of all three transporters. Our data provide evidence for a role of CAM-DR in breast cancer via an ITGB1 – transporter axis and offer promising therapeutic targets for cancer sensitization.  相似文献   

10.
11.
ABC transporters are ubiquitous membrane-bound proteins, present in both prokaryotes and eukaryotes. The major function of eukaryotic ABC transporters is to mediate the efflux of a variety of substrates (including xenobiotics) out of cells. ABC transporters have been widely investigated in humans, particularly for their involvement in multidrug resistance (MDR). Considerably less is known about their roles in transport and/or excretion in insects. ABC transporters are only known to function as exporters in insects. Drosophila melanogaster has 56 ABC transporter genes, including eight which are phylogenetically most similar to the human Mdr genes (ABCB1 clade). We investigated the role of ABC transporters in the ABCB1 clade in modulating the susceptibility to insecticides. We took advantage of the GAL4/UAS system in D. melanogaster to knockdown the expression levels of Mdr65, Mdr50, Mdr49 and ABCB6 using transgenic UAS-RNAi lines and conditional driver lines. The most notable effects were increased sensitivities to nine different insecticides by silencing of Mdr65. Furthermore, a null mutation of Mdr65 decreased the malathion, malaoxon and fipronil LC50 values by a factor of 1.9, 2.1 and 3.9, respectively. Altogether, this data demonstrates the critical role of ABC transporters, particularly Mdr65, in altering the toxicity of specific, structurally diverse, insecticides in D. melanogaster.  相似文献   

12.
13.
14.
Some ABC transporters play a significant role in human health and illness because they confer multidrug resistance (MDR) through their overexpression. Compounds that inhibit the drug efflux mechanism can improve efficacy or reverse resistance. Of the eight described ABC transporter subfamilies, those proteins conferring MDR in humans are in subfamilies A, B, C, and G. In nematodes, transporters in subfamilies B and C are suggested to confer resistance to ivermectin. The Brugia malayi ABC transporter superfamily was examined to assess their potential to influence sensitivity to moxidectin. There was an increase in expression of ABC transporters in subfamilies A, B, C, and G following treatment. Co-administration of moxidectin with inhibitors of ABC transporter function did not enhance sensitivity to moxidectin in males; however, sensitivity was significantly enhanced in females and microfilariae. The work suggests that ABC transporters influence sensitivity to moxidectin and have a potential role in drug resistance.  相似文献   

15.
16.
Extracellular translocation of the polysaccharide, hyaluronan (HA) has been thought to be mediated via its transmembrane synthetic enzyme, hyaluronan synthase (HAS) but recent studies have indicated that the ATP-Binding-Cassette (ABC) transporter, MRP5 contributes to this process. Liberated and cell-associated HA contributes to breast cancer initiation and progression, and therefore the inhibition of ABC transporters and consequently HA transport could provide therapeutic benefit in the treatment of breast cancer. Quantitation of ABC transporter genes, MRP1-5, BCRP and MDR1 were determined in six breast cancer cell lines selected for their differential HA synthetic rates. Low endogenous expression of transporters was detected but no significant correlation existed between ABC transporter and HAS gene expression or HA production. A dose titration of up to ten times the IC50 of ten small molecule ABC transporter inhibitors did not significantly inhibit HA export in four breast cancer cell lines. Unlike the changes observed after inhibition of HA synthesis by the characterised inhibitor 4-MU, inhibition of ABC transporters did not alter the cell morphology, HA glycocalyx or the intracellular quantity or localisation of HA. Collectively these data indicate that ABC transporters do not contribute to the extracellular transport of HA in breast cancer, supporting a role for the hyaluronan synthase in translocation.  相似文献   

17.
ABC transporters pump out from cells a large number of endo- and xenobiotics including signal molecules and toxins; they are molecular markers of stem/progenitor cells as well. Here, we present the study of temporal/spatial patterns of Abcb1 isoforms and Abcg2 transporter expression and efflux activity in pre- and early postimplantation murine embryos. We found in 2-cell embryos abcb1a, abcb1b and abcg2 mRNAs which were believed to be maternally inherited. The expression of abcb1b and abcg2 genes was found in blastocysts and in 7 days postcoitum (dpc) embryos, while in 9dpc embryos beside of abcb1b/abcg2, the abcb1a gene was expressed. The abcb2 mRNA was detectable neither in pre- nor in postimplantation embryos. Moreover, we analysed temporal/spatial patterns of rhodamine 123/Hoechst 33342 efflux, which mirrors the ABC transporter phenotype, from individual cells of pre- and postimplantation murine embryos. The blastomeres of 2-, 4- and 8-cell embryos had efflux-inactive phenotype. Single, efflux-active cells emerged first in the morulae and their number increased in blastocyst inner cell mass. In 6 and 7 dpc embryos, all embryonic cells hold the efflux-active phenotype. Proximal embryonic endoderm of 6-8 dpc embryos contained two sub-domains: one consisted of efflux-active cells and another one of efflux-inactive cells reflecting polarity of an embryo. Between 7 and 8 dpc, at the onset of organogenesis, the vehement surge of efflux-inactive embryonic cells occurred, and their number increased in 9 dpc embryos, which consequently contained few efflux-active cells.  相似文献   

18.
Hydrophilic bile salts, ursodeoxycholate and hyodeoxycholate, have choleretic effects. ABCB4, a member of the ABC transporter family, is essential for the secretion of phospholipids from hepatocytes into bile. In this study, we assessed the effects of taurine- or glycine-conjugated cholate, ursodeoxycholate and hyodeoxycholate on the ABCB4-mediated phosphatidylcholine (PC) efflux using Abcb4 knockout mice and HEK293 cells stably expressing ABCB4. To evaluate the effects of bile salts on bile formation in Abcb4+/+ or Abcb4−/− mice, the bile was collected during intravenous infusion of saline or bile salts. The biliary PC secretion in Abcb4+/+ mice was significantly increased by the infusions of all tested bile salts, especially taurohyodeoxycholate. On the other hand, Abcb4−/− mice exhibited extremely low secretion of PC into bile, which was not altered by bile salt infusions. We also showed that the PC efflux from ABCB4-expressing HEK293 cells was stimulated by taurohyodeoxycholate much more strongly than the other tested bile salts. However, taurohyodeoxycholate did not restore the activities of ABCB4 mutants. Furthermore, light scattering measurements demonstrated a remarkable ability of taurohyodeoxycholate to form mixed micelles with PC. Therefore, the enhancing effect of taurohyodeoxycholate on the ABCB4-mediated PC efflux may be due to the strong mixed micelle formation ability.  相似文献   

19.
Cultured Thalictrum minus cells produce a benzylisoquinoline alkaloid, berberine, in the presence of benzyladenine, and excrete it into the culture medium. T. minus cells excluded berberine, even if berberine was exogenously added to the medium, without benzyladenine treatment. Similarly, T. minus cells excluded a heterocyclic dye (neutral red) and calcein AM, which is used as a fluorescent probe to detect the drug efflux pump activity by ABC transporters. The addition of several inhibitors of P-glycoprotein, a representative ABC transporter, induced the accumulation in of both berberine and calcein AM ATP-dependent manner. The expression of P-glycoprotein-like ABC transporter genes was also demonstrated. The involvement of ABC transporter in the secretion of berberine in T. minus cells is discussed.  相似文献   

20.
In parasites, ATP-binding cassette (ABC) transporters represent an important family of proteins related to drug resistance and other biological activities. Resistance of leishmanial parasites to therapeutic drugs continues to escalate in developing countries, and in many instances, it is due to overexpressed ABC efflux pumps. Progressively adapted baicalein (BLN)-resistant parasites (pB25R) show overexpression of a novel ABC transporter, which was classified as ABCC2 or Leishmania donovani multidrug resistance protein 2 (LdMRP2). The protein is primarily localized in the flagellar pocket region and in internal vesicles. Overexpressed LdABCC2 confers substantial BLN resistance to the parasites by rapid drug efflux. The BLN-resistant promastigotes when transformed into amastigotes in macrophage cells cannot be cured by treatment of macrophages with BLN. Amastigote resistance is concomitant with the overexpression of macrophage MRP2 transporter. Reporter analysis and site-directed mutagenesis assays demonstrated that antioxidant response element 1 is activated upon infection. The expression of this phase II detoxifying gene is regulated by NFE2-related factor 2 (Nrf2)-mediated antioxidant response element activation. In view of the fact that the signaling pathway of phosphoinositol 3-kinase controls microfilament rearrangement and translocation of actin-associated proteins, the current study correlates with the intricate pathway of phosphoinositol 3-kinase-mediated nuclear translocation of Nrf2, which activates MRP2 expression in macrophages upon infection by the parasites. In contrast, phalloidin, an agent that prevents depolymerization of actin filaments, inhibits Nrf2 translocation and Mrp2 gene activation by pB25R infection. Taken together, these results provide insight into the mechanisms by which resistant clinical isolates of L. donovani induce intracellular events relevant to drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号