首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
2.
Induction of translation of the ermC gene product in Bacillus subtilis occurs upon exposure to erythromycin and is a result of ribosome stalling in the ermC leader peptide coding sequence. Another result of ribosome stalling is stabilization of ermC mRNA. The effect of leader RNA secondary structure, methylase translation, and leader peptide translation on induced ermC mRNA stability was examined by constructing various mutations in the ermC leader region. Analysis of deletion mutations showed that ribosome stalling causes induction of ermC mRNA stability in the absence of methylase translation and ermC leader RNA secondary structure. Furthermore, deletions that removed much of the leader peptide coding sequence had no effect on induced ermC mRNA stability. A leader region mutation was constructed such that ribosome stalling occurred in a position upstream of the natural stall site, resulting in induced mRNA stability without induction of translation. This mutation was used to measure the effect of mRNA stabilization on ermC gene expression.  相似文献   

3.
Addition of erythromycin (Em) to a Bacillus subtilis strain carrying the ermC gene results in ribosome stalling in the ermC leader peptide coding sequence. Using Δ ermC , a deletion derivative of ermC that specifies the 254 nucleotide Δ ermC mRNA, we showed previously that ribosome stalling is concomitant with processing of Δ ermC mRNA, generating a 209 nucleotide RNA whose 5' end maps to codon 5 of the Δ ermC coding sequence. Here we probed for peptidyl-tRNA to show that ribosome stalling occurs after incorporation of the amino acid specified by codon 9. Thus, cleavage upstream of codon 5 is not an example of 'A-site cleavage' that has been reported for Escherichia coli . Analysis of Δ ermC mRNA processing in endoribonuclease mutant strains showed that this processing is RNase J1-dependent. Δ ermC mRNA processing was inhibited by the presence of stable secondary structure at the 5' end, demonstrating 5'-end dependence, and was shown to be a result of RNase J1 endonuclease activity, rather than 5'-to-3' exonuclease activity. Examination of processing in derivatives of Δ ermC that had codons inserted upstream of the ribosome stalling site revealed that Em-induced ribosome stalling can occur considerably further from the start codon than would be expected based on previous studies.  相似文献   

4.
5.
The expression of the chloramphenicol-inducible chloramphenicol-acetyltransferase gene (cat), encoded on Staphylococcus aureus plasmid pUB112, is regulated via a translational attenuation mechanism. Ribosomes, which are arrested by chloramphenicol during synthesis of a short leader peptide, activate catmRNA translation by opening a 5'-located stem-loop structure, thus setting free the cat ribosome-binding site. We have determined the 5' and 3' ends of catmRNA and analysed its stability in Bacillus subtilis. In the absence of the antibiotic, the half-life of catmRNA is shorter than 0.5 min; it is enhanced to about 8 min by sub-inhibitory concentrations of the drug. No decay intermediates of catmRNA could be detected, indicating a very fast degradation after an initial rate-limiting step. ochre nonsense mutations in the 5' region of the cat structural gene, which eliminate catmRNA translation, did not affect its chloramphenicol-induced stabilization. Mutations in the leader-peptide coding region, which abolish ribosome stalling and, therefore, cat gene induction, also eliminate catmRNA stabilization. We conclude that catmRNA is stabilized on induction by a chloramphenicol-arrested ribosome, which physically protects a nuclease-sensitive target site in the 5' region of catmRNA against exo- or endonucleolytic initiation of degradation. This protection is analogous to ermA and ermC mRNA and seems to reflect a general mechanism for stabilization of mRNA derived from inducible antibiotic resistance genes in B. subtilis.  相似文献   

6.
7.
8.
Genes encoding chloramphenicol acetyltransferase in gram-positive bacteria are induced by chloramphenicol. Induction reflects an ability of the drug to stall a ribosome at a specific site in cat leader mRNA. Ribosome stalling at this site alters downstream RNA secondary structure, thereby unmasking the ribosome-binding site for the cat coding sequence. Here, we show that ribosome stalling in the cat-86 leader is a function of leader codons 2 through 5 and that stalling requires these codons to be presented in the correct reading frame. Codons 2 through 5 specify Val-Lys-Thr-Asp. Insertion of a second copy of the stall sequence 5' to the authentic stall sequence diminished cat-86 induction fivefold. Thus, the stall sequence can function in ribosome stalling when the stall sequence is displaced from the downstream RNA secondary structure. We suggest that the stall sequence may function in cat induction at two levels. First, the tetrapeptide specified by the stall sequence likely plays an active role in the induction strategy, on the basis of previously reported genetic suppression studies (W. W. Mulbry, N. P. Ambulos, Jr., and P.S. Lovett, J. Bacteriol. 171:5322-5324, 1989). Second, we show that embedded within the stall sequence of cat leaders is a region which is complementary to a sequence internal in 16S rRNA of Bacillus subtilis. This complementarity may guide a ribosome to the proper position on leader mRNA or potentiate the stalling event, or both. The region of complementarity is absent from Escherichia coli 16S rRNA, and cat genes induce poorly, or not at all, in E. coli.  相似文献   

9.
A segment of early RNA from Bacillus subtilis bacteriophage SP82 was shown to function as a 5' stabilizer in B. subtilis. Several heterologous RNA sequences were stabilized by the presence of the SP82 sequence at the 5' end, and expression of downstream coding sequences was increased severalfold. The SP82 RNA segment encodes a B. subtilis RNase III cleavage site, but cleavage by B. subtilis RNase III was not required for stabilization. The sequence that specifies 5' stabilizer function was localized to a polypurine sequence that resembles a ribosome binding site. The ability of the SP82 sequence to stabilize downstream RNA was dependent on its position relative to the 5' end of the RNA. These results demonstrate the existence of a new type of 5' stabilizer in B. subtilis and indicate that attack at the 5' end is a principal mechanism for initiation of mRNA decay in B. subtilis.  相似文献   

10.
H W Stokes  R M Hall 《Plasmid》1991,26(1):10-19
The sequence of the Tn1696 determinant for inducible nonenzymatic chloramphenicol resistance has been determined. The cml region, the fourth insert of the Tn1696 integron, is 1547 bases and includes a 59-base element at the 3' end, as is typical of integron inserts. One gene, designated cmlA and predicting a polypeptide of 44.2 kDa, is encoded in the insert. However, the cmlA region shows one feature not previously found in an integron insert. A promoter is located within the cmlA insert, and translational attenuation signals related to those of the inducible cat and ermC genes found in gram-positive organisms are also present. The regulatory region includes a leader peptide of nine amino acids, a ribosome stall sequence related to those preceding cat genes, and two alternative pairs of stem-loop structures which either sequester or disclose the ribosome binding site and start codon preceding the cmlA gene.  相似文献   

11.
A phosphate-dependent exonuclease activity was identified in purified protein fractions from Bacillus subtilis that were selected for binding to poly(I)-poly(C) agarose. Based on the characteristics of the degradation products and the absence of this activity in a pnpA strain, which contains a transposon insertion in the B. subtilis PNPase gene (Luttinger et al ., 1996 — accompanying paper), this exonuclease activity was shown to be due to polynucleotide phosphorylase (PNPase). Processive 3'-to-5' exonucleolytic degradation of an SP82 phage RNA substrate was stalled at a particular site. Structure probing of the RNA showed that the stall site was downstream of a particular stem-loop structure. A similar stall site was observed for an RNA that comprised the intergenic region between the B. subtilis rpsO and pnpA genes. The ability to initiate degradation of a substrate that had a stem structure at its 3' end differed for the B. subtilis and Escherichia coli PNPase enzymes.  相似文献   

12.
13.
14.
Expression of the plasmid gene cat-86 is induced in Bacillus subtilis by two antibiotics, chloramphenicol and the nucleoside antibiotic amicetin. We proposed that induction by either drug causes the destabilization of a stem-loop structure in cat-86 mRNA that sequesters the ribosome-binding site for the cat coding sequence. The destabilization event frees the ribosome-binding site, permitting the initiation of translation of cat-86 mRNA. cat-86 induction is due to the stalling of a ribosome in a leader region of cat-86 mRNA, which is located 5' to the RNA stem-loop structure. A stalled ribosome that is active in cat-86 induction has its aminoacyl site occupied by leader codon 6. To test the hypothesis that a leader site 5' to codon 6 permits a ribosome to stall in the presence of an inducing antibiotic, we inserted an extra codon between leader codons 5 and 6. This insertion blocked induction, which was then restored by the deletion of leader codon 6. Thus, induction seems to require the maintenance of a precise spatial relationship between an upstream leader site(s) and leader codon 6. Mutations in the ribosome-binding site for the cat-86 leader, RBS-2, which decreased its strength of binding to 16S rRNA, prevented induction. In contrast, mutations that significantly altered the sequence of RBS-2 but increased its strength of binding to 16S rRNA did not block induction by either chloramphenicol or amicetin. We therefore suspected that the proposed leader site that permitted drug-mediated stalling was located between RBS-2 and leader codon 6. This region of the cat-86 leader contains an eight-nucleotide sequence (conserved region I) that is largely conserved among all known cat leaders. The codon immediately 5' to conserved region I differs, however, between amicetin-inducible and amicetin-noninducible cat genes. In amicetin-inducible cat genes such as cat-86, the codon 5' to conserved region I is a valine codon, GTG. The same codon in amicetin-noninducible cat genes is a lysine codon, either AAA or AAG. When the GTG codon immediately 5' to conserved region I in cat-86 was changed to AAA, amicetin was no longer active in cat-86 induction, but chloramphenicol induction was unaffected by the mutation. The potential role of the GTG codon in amicetin induction is discussed.  相似文献   

15.
Induction of ermC requires translation of the leader peptide.   总被引:14,自引:1,他引:13       下载免费PDF全文
D Dubnau 《The EMBO journal》1985,4(2):533-537
ermC confers resistance to macrolide-lincosamide streptogramin B antibiotics by specifying a ribosomal RNA methylase, which results in decreased ribosomal affinity for these antibiotics. ermC expression is induced by exposure to erythromycin. We have previously proposed a translational regulation model in which erythromycin causes stalling of a ribosome, which is translating a leader peptide. Stalling causes a conformation shift in the ermC mRNA which in turn unmasks the methylase ribosomal binding site. A prediction of this translational attenuation model for ermC induction was tested by replacing the second codon of the putative ermC leader peptide coding region by TAA. As expected, the introduction of this mutation resulted in an uninducible phenotype which was suppressible by two ochre suppressor mutations in Bacillus subtilis. It is concluded that translation through the leader peptide coding region, in frame with the predicted leader peptide, is required for ermC induction.  相似文献   

16.
17.
The involvement of the recently characterized 5' exonuclease activity of RNase J1 and endonuclease activity of RNase Y in the turnover of ΔermC mRNA in Bacillus subtilis was investigated. Evidence is presented that both of these activities determine the half-life of ΔermC mRNA.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号