首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Despite evidence that live, attenuated simian immunodeficiency virus (SIV) vaccines can elicit potent protection against pathogenic SIV infection, detailed information on the replication kinetics of attenuated SIV in vivo is lacking. In this study, we measured SIV RNA in the plasma of 16 adult rhesus macaques immunized with a live, attenuated strain of SIV (SIVmac239Δnef). To evaluate the relationship between replication of the vaccine virus and the onset of protection, four animals per group were challenged with pathogenic SIVmac251 at either 5, 10, 15, or 25 weeks after immunization. SIVmac239Δnef replicated efficiently in the immunized macaques in the first few weeks after inoculation. SIV RNA was detected in the plasma of all animals by day 7 after inoculation, and peak levels of viremia (105 to 107 RNA copies/ml) occurred by 7 to 12 days. Following challenge, SIVmac251 was detected in all of the four animals challenged at 5 weeks, in two of four challenged at 10 weeks, in none of four challenged at 15 weeks, and one of four challenged at 25 weeks. One animal immunized with SIVmac239Δnef and challenged at 10 weeks had evidence of disease progression in the absence of detectable SIVmac251. Although complete protection was not achieved at 5 weeks, a transient reduction in viremia (approximately 100-fold) occurred in the immunized macaques early after challenge compared to the nonimmunized controls. Two weeks after challenge, SIV RNA was also reduced in the lymph nodes of all immunized macaques compared with control animals. Taken together, these results indicate that host responses capable of reducing the viral load in plasma and lymph nodes were induced as early as 5 weeks after immunization with SIVmac239Δnef, while more potent protection developed between 10 and 15 weeks. In further experiments, we found that resistance to SIVmac251 infection did not correlate with the presence of antibodies to SIV gp130 and p27 antigens and was achieved in the absence of significant neutralizing activity against the primary SIVmac251 challenge stock.  相似文献   

2.
The live attenuated simian immunodeficiency virus (SIV) SIVmac239Δnef is the most effective SIV/human immunodeficiency virus (HIV) vaccine in preclinical testing. An understanding of the mechanisms responsible for protection may provide important insights for the development of HIV vaccines. Leveraging the uniquely restricted genetic diversity of Mauritian cynomolgus macaques, we performed adoptive transfers between major histocompatibility complex (MHC)-matched animals to assess the role of cellular immunity in SIVmac239Δnef protection. We vaccinated and mock vaccinated donor macaques and then harvested between 1.25 × 109 and 3.0 × 109 mononuclear cells from multiple tissues for transfer into 12 naive recipients, followed by challenge with pathogenic SIVmac239. Fluorescently labeled donor cells were detectable for at least 7 days posttransfer and trafficked to multiple tissues, including lung, lymph nodes, and other mucosal tissues. There was no difference between recipient macaques'' peak or postpeak plasma viral loads. A very modest difference in viral loads during the chronic phase between vaccinated animal cell recipients and mock-vaccinated animal cell recipients did not reach significance (P = 0.12). Interestingly, the SIVmac239 challenge virus accumulated escape mutations more rapidly in animals that received cells from vaccinated donors. These results may suggest that adoptive transfers influenced the course of infection despite the lack of significant differences in the viral loads among animals that received cells from vaccinated and mock-vaccinated donor animals.  相似文献   

3.
Antibodies against CCR5, the major coreceptor for human immunodeficiency virus type 1 (HIV-1), may have antiviral potential as viral fusion inhibitors. In this study, we generated a virus-like particle (VLP)-based vaccine that effectively breaks B-cell tolerance and elicits autoantibodies against CCR5 in pig-tailed macaques. Initial studies in mice identified a polypeptide comprising the N-terminal domain of pig-tailed macaque CCR5 fused to streptavidin that, when conjugated at high density to bovine papillomavirus major capsid protein L1 VLPs, induced high-titer immunoglobulin G (IgG) that bound to a macaque CCR5-expressing cell line in vitro. In macaques, CCR5 peptide-conjugated VLP preparations induced high-avidity anti-CCR5 IgG autoantibody responses, and all five immunized macaques generated IgG that could block infection of CCR5-tropic simian/human immunodeficiency virus SHIV(SF162P3) in vitro. Although the anti-CCR5 IgG titers declined with time, autoantibody levels were boosted upon revaccination. Vaccinated macaques remained healthy for a period of over 3 years after the initial immunization, and no decline in the number of CCR5-expressing T cells was detected. To test the prophylactic efficacy of CCR5 autoantibodies, immunized macaques were challenged with SHIV(SF162P3). Although the plasma-associated virus in half of six control macaques declined to undetectable levels, viral loads were lower, declined more rapidly, and eventually became undetectable in all five macaques in which CCR5 autoantibodies had been elicited. In addition, in the four vaccinated macaques with higher autoantibody titers, viral loads and time to control of viremia were significantly decreased relative to controls, indicating the possibility that CCR5 autoantibodies contributed to the control of viral replication.  相似文献   

4.

Background

Oral infection of infant macaques with simian immunodeficiency virus (SIV) is a useful animal model to test interventions to reduce postnatal HIV transmission via breast-feeding. We previously demonstrated that immunization of infant rhesus macaques with either modified vaccinia virus Ankara (MVA) expressing SIV Gag, Pol and Env, or live-attenuated SIVmac1A11 resulted in lower viremia and longer survival compared to unimmunized controls after oral challenge with virulent SIVmac251 (Van Rompay et al., J. Virology 77:179–190, 2003). Here we evaluate the impact of these vaccines on oral transmission and evolution of SIV envelope variants.

Results

Limiting dilution analysis of SIV RNA followed by heteroduplex mobility assays of the V1–V2 envelope (env) region revealed two major env variants in the uncloned SIVmac251 inoculum. Plasma sampled from all infants 1 week after challenge contained heterogeneous SIV env populations including one or both of the most common env variants in the virus inoculum; no consistent differences in patterns of env variants were found between vaccinated and unvaccinated infants. However, SIV env variant populations diverged in most vaccinated monkeys 3 to 5 months after challenge, in association with the development of neutralizing antibodies.

Conclusions

These patterns of viral envelope diversity, immune responses and disease course in SIV-infected infant macaques are similar to observations in HIV-infected children, and underscore the relevance of this pediatric animal model. The results also support the concept that neonatal immunization with HIV vaccines might modulate disease progression in infants infected with HIV by breast-feeding.  相似文献   

5.
A better understanding of the host and viral factors associated with human immunodeficiency virus (HIV) transmission is essential to developing effective strategies to curb the global HIV epidemic. Here we used the rhesus macaque-simian immunodeficiency virus (SIV) animal model of HIV infection to study the range of viral genotypes that are transmitted by different routes of inoculation and by different types of viral inocula. Analysis of transmitted variants was undertaken in outbred rhesus macaques inoculated intravenously (IV) or intravaginally (IVAG) with a genetically heterogeneous SIVmac251 stock derived from a well-characterized rhesus macaque viral isolate. In addition, we performed serial IV and IVAG passage experiments using plasma from SIV-infected macaques as the inoculum. We analyzed the V1-V2 region of the SIV envelope gene from virion-associated RNA in plasma from infected animals by the heteroduplex mobility assay (HMA) and by DNA sequence analysis. We found that a more diverse population of SIV genetic variants was present in the earliest virus-positive plasma samples from all five IV SIVmac251-inoculated monkeys and from two of five IVAG SIVmac251-inoculated monkeys. In contrast, we found a relatively homogeneous population of SIV envelope variants in three of five monkeys inoculated IVAG with SIVmac251 stock and in two monkeys infected after IVAG inoculation with plasma from an SIV-infected animal. In some IVAG-inoculated animals, the transmitted SIV variant was the most common variant in the inoculum. However, a specific viral variant in the SIVmac251 stock was not consistently transmitted by IVAG inoculation. Thus, it is likely that host factors or stochastic processes determine the specific viral variants that infect an animal after IVAG SIV exposure. In addition, our results clearly demonstrate that the route of inoculation is associated with the extent and breadth of the genetic complexity of the viral variant population in the earliest stages of systemic infection.  相似文献   

6.
Recent recombinant viral vector-based AIDS vaccine trials inducing cellular immune responses have shown control of CXCR4-tropic simian-human immunodeficiency virus (SHIV) replication but difficulty in containment of pathogenic CCR5-tropic simian immunodeficiency virus (SIV) in rhesus macaques. In contrast, controlled infection of live attenuated SIV/SHIV can confer the ability to contain SIV superchallenge in macaques. The specific immune responses responsible for this control may be induced by live virus infection but not consistently by viral vector vaccination, although those responses have not been determined. Here, we have examined in vitro anti-SIV efficacy of CD8+ cells in rhesus macaques that showed prophylactic viral vector vaccine-based control of CXCR4-tropic SHIV89.6PD replication. Analysis of the effect of CD8+ cells obtained at several time points from these macaques on CCR5-tropic SIVmac239 replication in vitro revealed that CD8+ cells in the chronic phase after SHIV challenge suppressed SIV replication more efficiently than those before challenge. SIVmac239 superchallenge of two of these macaques at 3 or 4 years post-SHIV challenge was contained, and the following anti-CD8 antibody administration resulted in transient CD8+ T-cell depletion and appearance of plasma SIVmac239 viremia in both of them. Our results indicate that CD8+ cells acquired the ability to efficiently suppress SIV replication by controlled SHIV infection, suggesting the contribution of CD8+ cell responses induced by controlled live virus infection to containment of HIV/SIV superinfection.  相似文献   

7.
Sooty mangabeys naturally infected with simian immunodeficiency virus (SIV) do not develop immunodeficiency despite the presence of viral loads of 105 to 107 RNA copies/ml. To investigate the basis of apathogenic SIV infection in sooty mangabeys, three sooty mangabeys and three rhesus macaques were inoculated intravenously with SIVmac239 and evaluated longitudinally for 1 year. SIVmac239 infection of sooty mangabeys resulted in 2- to 4-log-lower viral loads than in macaques and did not reproduce the high viral loads observed in natural SIVsmm infection. During acute SIV infection, polyclonal cytotoxic T-lymphocyte (CTL) activity coincident with decline in peak plasma viremia was observed in both macaques and mangabeys; 8 to 20 weeks later, CTL activity declined in the macaques but was sustained and broadly directed in the mangabeys. Neutralizing antibodies to SIVmac239 were detected in the macaques but not the mangabeys. Differences in expression of CD38 on CD8+ T lymphocytes or in the percentage of naive phenotype T cells expressing CD45RA and CD62L-selection did not correlate with development of AIDS in rhesus macaques. In macaques, the proportion of CD4+ T lymphocytes expressing CD25 declined during SIV infection, while in mangabeys, CD25-expressing CD4+ T lymphocytes increased. Longitudinal evaluation of cytokine secretion by flow cytometric analysis of unstimulated lymphocytes revealed elevation of interleukin-2 and gamma interferon in a macaque and only interleukin-10 in a concurrently infected mangabey during acute SIV infection. Differences in host responses following experimental SIVmac239 infection may be associated with the divergent outcome in sooty mangabeys and rhesus macaques.  相似文献   

8.
HIV is shed in semen but the anatomic site of virus entry into the genital secretions is unknown. We determined viral RNA (vRNA) levels and the envelope gene sequence in the SIVmac 251 viral populations in the genital tract and semen of 5 adult male rhesus monkeys (Macaca mulatta) that were infected after experimental penile SIV infection. Paired blood and semen samples were collected from 1–9 weeks after infection and the monkeys were necropsied eleven weeks after infection. The axillary lymph nodes, testes, epididymis, prostate, and seminal vesicles were collected and vRNA levels and single-genome analysis of the SIVmac251 env variants was performed. At the time of semen collection, blood vRNA levels were between 3.09 and 7.85 log10 vRNA copies/ml plasma. SIV RNA was found in the axillary lymph nodes of all five monkeys and in 3 of 5 monkeys, all tissues examined were vRNA positive. In these 3 monkeys, vRNA levels (log10 SIVgag copies/ug of total tissue RNA) in the axillary lymph node (6.48±0.50) were significantly higher than in the genital tract tissues: testis (3.67±2.16; p<0.05), epididymis (3.08±1.19; p<0.0001), prostate (3.36±1.30; p<0.01), and seminal vesicle (2.67±1.50; p<0.0001). Comparison of the SIVmac251 env viral populations in blood plasma, systemic lymph node, and genital tract tissues was performed in two of the macaques. Visual inspection of the Neighbor-Joining phylograms revealed that in both animals, all the sequences were generally distributed evenly among all tissue compartments. Importantly, viral populations in the genital tissues were not distinct from those in the systemic tissues. Our findings demonstrate striking similarity in the viral populations in the blood and male genital tract tissues within 3 months of penile SIV transmission.  相似文献   

9.
10.
T-cell-mediated immune effector mechanisms play an important role in the containment of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) replication after infection. Both vaccination- and infection-induced T-cell responses are dependent on the host major histocompatibility complex classes I and II (MHC-I and MHC-II) antigens. Here we report that both inherent, host-dependent immune responses to SIVmac251 infection and vaccination-induced immune responses to viral antigens were able to reduce virus replication and/or CD4+ T-cell loss. Both the presence of the MHC-I Mamu-A*01 genotype and vaccination of rhesus macaques with ALVAC-SIV-gag-pol-env (ALVAC-SIV-gpe) contributed to the restriction of SIVmac251 replication during primary infection, preservation of CD4+ T cells, and delayed disease progression following intrarectal challenge exposure of the animals to SIV(mac251 (561)). ALVAC-SIV-gpe immunization induced cytotoxic T-lymphocyte (CTL) responses cumulatively in 67% of the immunized animals. Following viral challenge, a significant secondary virus-specific CD8+ T-cell response was observed in the vaccinated macaques. In the same immunized macaques, a decrease in virus load during primary infection (P = 0.0078) and protection from CD4 loss during both acute and chronic phases of infection (P = 0.0099 and P = 0.03, respectively) were observed. A trend for enhanced survival of the vaccinated macaques was also observed. Neither boosting the ALVAC-SIV-gpe with gp120 immunizations nor administering the vaccine by the combination of mucosal and systemic immunization routes increased significantly the protective effect of the ALVAC-SIV-gpe vaccine. While assessing the role of MHC-I Mamu-A*01 alone in the restriction of viremia following challenge of nonvaccinated animals with other SIV isolates, we observed that the virus load was not significantly lower in Mamu-A*01-positive macaques following intravenous challenge with either SIV(mac251 (561)) or SIV(SME660). However, a significant delay in CD4+ T-cell loss was observed in Mamu-A*01-positive macaques in each group. Of interest, in the case of intravenous or intrarectal challenge with the chimeric SIV/HIV strains SHIV(89.6P) or SHIV(KU2), respectively, MHC-I Mamu-A*01-positive macaques did not significantly restrict primary viremia. The finding of the protective effect of the Mamu-A*01 molecule parallels the protective effect of the B*5701 HLA allele in HIV-1-infected humans and needs to be accounted for in the evaluation of vaccine efficacy against SIV challenge models.  相似文献   

11.
A synthetic cycloimmunogen targeting the HIV-1 coreceptor CCR5 was evaluated for its capacity to induce CCR5-specific Abs with anti-HIV-1 activity in cynomolgus macaques. The cyclic closed-chain dodecapeptide (cDDR5) mimicking the conformation-specific domain of human CCR5 was chemically prepared, in which the Gly-Glu dipeptide links the amino and carboxy termini of the decapeptidyl linear chain (Arg168 to Thr177) derived from the undecapeptidyl arch (Arg168 to Cys178) of extracellular loop-2 in CCR5. The immunization of cynomolgus macaques with the cDDR5-conjugated multiple-Ag peptide (cDDR5-MAP) induced anti-cDDR5 serum production for approximately 15 wk after the third immunization. The antisera raised against cDDR5-MAP reacted with both human and macaque CCR5s, and potently suppressed infection by the R5 HIV-1 laboratory isolate (HIV JRFL), R5 HIV-1 primary isolates (clade A:HIV 93RW004 and clade C:HIV MJ4), and a pathogenic simian/HIV (SHIV SF162P3) bulk isolate in vitro. To examine the prophylactic efficacy of anti-CCR5 serum Ab for acute HIV-1 infection, cynomolgus macaques were challenged with SHIV SF162P3. The cDDR5-MAP immunization attenuated the acute phase of SHIV SF162P3 replication. The geometric mean plasma viral load in the vaccinated macaques was 217.10 times lower than that of the control macaques at 1 wk postchallenge. Taken together, these results suggest that cDDR5-MAP immunization is an effective prophylactic vaccine strategy that suppresses and delays viral propagation during the initial HIV-1 transmission for the containment of HIV-1 replication subsequent to infection.  相似文献   

12.
The role of CD4(+) T cells in the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication is not well understood. Even though strong HIV- and SIV-specific CD4(+) T-cell responses have been detected in individuals that control viral replication, major histocompatibility complex class II (MHC-II) molecules have not been definitively linked with slow disease progression. In a cohort of 196 SIVmac239-infected Indian rhesus macaques, a group of macaques controlled viral replication to less than 1,000 viral RNA copies/ml. These elite controllers (ECs) mounted a broad SIV-specific CD4(+) T-cell response. Here, we describe five macaque MHC-II alleles (Mamu-DRB*w606, -DRB*w2104, -DRB1*0306, -DRB1*1003, and -DPB1*06) that restricted six SIV-specific CD4(+) T-cell epitopes in ECs and report the first association between specific MHC-II alleles and elite control. Interestingly, the macaque MHC-II alleles, Mamu-DRB1*1003 and -DRB1*0306, were enriched in this EC group (P values of 0.02 and 0.05, respectively). Additionally, Mamu-B*17-positive SIV-infected rhesus macaques that also expressed these two MHC-II alleles had significantly lower viral loads than Mamu-B*17-positive animals that did not express Mamu-DRB1*1003 and -DRB1*0306 (P value of <0.0001). The study of MHC-II alleles in macaques that control viral replication could improve our understanding of the role of CD4(+) T cells in suppressing HIV/SIV replication and further our understanding of HIV vaccine design.  相似文献   

13.
The mucosal events of HIV transmission have been extensively studied, but the role of infected cells present in the genital and rectal secretions, and in the semen, in particular, remains a matter of debate. As a prerequisite to a thorough in vivo investigation of the early transmission events through infected cells, we characterized in detail by multi-parameter flow cytometry the changes in macaque seminal leukocytes during SIVmac251 infection, focusing on T cells, macrophages and dendritic cells. Using immunocytofluorescence targeting SIV proteins and real-time quantitative PCR targeting SIV DNA, we investigated the nature of the infected cells on sorted semen leukocytes from macaques at different stages of infection. Finally, we cocultured semen CD4+ T cells and macrophages with a cell line permissive to SIV infection to assess their infectivity in vitro. We found that primary infection induced strong local inflammation, which was associated with an increase in the number of leukocytes in semen, both factors having the potential to favor cell-associated virus transmission. Semen CD4+ T cells and macrophages were productively infected at all stages of infection and were infectious in vitro. Lymphocytes had a mucosal phenotype and expressed activation (CD69 & HLA-DR) and migration (CCR5, CXCR4, LFA-1) markers. CD69 expression was increased in semen T cells by SIV infection, at all stages of infection. Macrophages predominated at all stages and expressed CD4, CCR5, MAC-1 and LFA-1. Altogether, we demonstrated that semen contains the two major SIV-target cells (CD4+ T cells and macrophages). Both cell types can be productively infected at all stages of SIV infection and are endowed with markers that may facilitate transmission of infection during sexual exposure.  相似文献   

14.
15.
Among the many simian immunodeficiency virus (SIV) immunogens, only live attenuated viral vaccines have afforded strong protection to a natural pathogenic isolate. Since the promoter is crucial to the tempo of viral replication in general, it was reasoned that promoter exchange might confer a novel means of attenuating SIV. The core enhancer and promoter sequences of the SIV macaque 239nefstop strain (NF-κB/Sp1 region from −114 bp to mRNA start) have been exchanged for those of the human cytomegalovirus immediate-early promoter (CMV-IE; from −525 bp to mRNA start). During culture of the resulting virus, referred to as SIVmegalo, on CEMx174 or rhesus macaque peripheral blood mononuclear cells, deletions arose in distal regions of the CMV-IE sequences that stabilized after 1 or 2 months of culture. However, when the undeleted form of SIVmegalo was inoculated into rhesus macaques, animals showed highly controlled viremia during primary and persistent infection. Compared to parental virus infection in macaques, primary viremia was reduced by >1,000-fold to undetectable levels, with little sign of an increase of cycling cells in lymph nodes, CD4+ depletion, or altered T-cell activation markers in peripheral blood. Moreover, in contrast to wild-type infection in most infected animals, the nef stop mutation did not revert to the wild-type codon, indicating yet again that replication was dramatically curtailed. Despite such drastic attenuation, antibody titers and enzyme-linked immunospot reactivity to SIV peptides, although slower to appear, were comparable to those seen in a parental virus infection. When animals were challenged intravenously at 4 or 6 months with the uncloned pathogenic SIVmac251 strain, viremia was curtailed by ~1,000-fold at peak height without any sign of hyperactivation in CD4+- or CD8+-T-cell compartment or increase in lymph node cell cycling. To date, there has been a general inverse correlation between attenuation and protection; however, these findings show that promoter exchange constitutes a novel means to highly attenuate SIV while retaining the capacity to protect against challenge virus.  相似文献   

16.
Characterization of immune responses induced by live attenuated simian immunodeficiency virus (SIV) strains may yield clues to the nature of protective immunity induced by this vaccine approach. We investigated the ability of CD8+ T lymphocytes from rhesus macaques immunized with the live, attenuated SIV strain SIVmac239Δnef or SIVmac239Δ3 to inhibit SIV replication. CD8+ T lymphocytes from immunized animals were able to potently suppress SIV replication in autologous SIV-infected CD4+ T cells. Suppression of SIV replication by unstimulated CD8+ T cells required direct contact and was major histocompatibility complex (MHC) restricted. However, CD3-stimulated CD8+ T cells produced soluble factors that inhibited SIV replication in an MHC-unrestricted fashion as much as 30-fold. Supernatants from stimulated CD8+ T cells were also able to inhibit replication of both CCR5- and CXCR4-dependent human immunodeficiency virus type 1 (HIV-1) strains. Stimulation of CD8+ cells with cognate cytotoxic T-lymphocyte epitopes also induced secretion of soluble factors able to inhibit SIV replication. Production of RANTES, macrophage inhibitory protein 1α (MIP-1α), or MIP-1β from stimulated CD8+ T cells of vaccinated animals was almost 10-fold higher than that from stimulated CD8+ T cells of control animals. However, addition of antibodies that neutralize these β-chemokines, either alone or in combination, only partly blocked inhibition of SIV and HIV replication by soluble factors produced by stimulated CD8+ T cells. Our results indicate that inhibition of SIV replication by CD8+ T cells from animals immunized with live attenuated SIV strains involves both MHC-restricted and -unrestricted mechanisms and that MHC-unrestricted inhibition of SIV replication is due principally to soluble factors other than RANTES, MIP-1α, and MIP-1β.  相似文献   

17.
Gag-specific cytotoxic T lymphocytes (CTLs) exert strong suppressive pressure on human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. However, it has remained unclear whether they can actually contain primary viral replication. Recent trials of prophylactic vaccines inducing virus-specific T-cell responses have indicated their potential to confer resistance against primary SIV replication in rhesus macaques, while the immunological determinant for this vaccine-based viral control has not been elucidated thus far. Here we present evidence implicating Gag-specific CTLs as responsible for the vaccine-based primary SIV control. Prophylactic vaccination using a Gag-expressing Sendai virus vector resulted in containment of SIVmac239 challenge in all rhesus macaques possessing the major histocompatibility complex (MHC) haplotype 90-120-Ia. In contrast, 90-120-Ia-positive vaccinees failed to contain SIVs carrying multiple gag CTL escape mutations that had been selected, at the cost of viral fitness, in SIVmac239-infected 90-120-Ia-positive macaques. These results show that Gag-specific CTL responses do play a crucial role in the control of wild-type SIVmac239 replication in vaccinees. This study implies the possibility of Gag-specific CTL-based primary HIV containment by prophylactic vaccination, although it also suggests that CTL-based AIDS vaccine efficacy may be abrogated in viral transmission between MHC-matched individuals.  相似文献   

18.

Background

In a previous study, progesterone treatment of female monkeys immunized with live, attenuated SHIV89.6 abrogated the generally consistent protection from vaginal simian immunodeficiency virus (SIV) challenge. The mechanisms responsible for the loss of protection remain to be defined. The objective of the present study was to determine whether Depo-Provera® administration alters protection from intravenous SIV challenge in SHIV-immunized female macaques.

Methods and Findings

Two groups of female macaques were immunized with attenuated SHIV89.6 and then challenged intravenously with SIVmac239. Four weeks before challenge, one animal group was treated with Depo-Provera®, a commonly used injectable contraceptive progestin. As expected, SHIV-immunized monkeys had significantly lower peak and set-point plasma viral RNA levels compared to naïve controls, but in contrast to previously published findings with vaginal SIV challenge, the Depo-Provera® SHIV-immunized animals controlled SIV replication to a similar, or even slightly greater, degree than did the untreated SHIV-immunized animals. Control of viral replication from week 4 to week 20 after challenge was more consistent in the progesterone-treated, SHIV-immunized animals than in untreated, SHIV-immunized animals. Although levels of interferon-γ production were similar, the SIV-specific CD8+ T cells of progesterone-treated animals expressed more functions than the anti-viral CD8+ T cells from untreated animals.

Conclusions

Depo-Provera® did not diminish the control of viral replication after intravenous SIV challenge in female macaques immunized with a live-attenuated lentivirus. This result contrasts with the previously reported effect of Depo-Provera® on protection from vaginal SIV challenge and strongly implies that the decreased protection from vaginal challenge is due to effects of progesterone on the genital tract rather than to systemic effects. Further, these results demonstrate that the effects of hormonal contraceptives on vaccine efficacy need to be considered in the context of testing and use of an AIDS vaccine.  相似文献   

19.
Infection of macaque monkeys with simian immunodeficiency virus (SIV) is probably the best animal model currently available for studying acquired immunodeficiency syndrome. In this report, we describe three infectious molecular clones of SIVmac and one of human immunodeficiency virus type 2 (HIV-2) and their use in the study of cell and species specificity, animal infection, and the relationship of gene sequence to function. Replication of the cloned viruses in different cell lines varied dramatically. Some human CD4+ cell lines (HUT 78 and MT-4) supported the replication of SIVmac and HIV-2, while others (CEM and Jurkat-T) supported the replication of HIV-2 but not SIVmac. Growth of cloned virus in macaque lymphocytes in vitro was predictive of macaque infection in vivo. Macaque lymphocytes supported the replication of SIVmac239 and SIVmac251 but not SIVmac142 or HIV-2ROD. Using virus recovery and antibody response as criteria for infection, macaques that received cloned SIVmac251 and SIVmac239 became infected, while macaques receiving cloned SIVmac142 and HIV-2ROD did not become infected. Nucleotide sequences from the envelope region of all four cloned viruses demonstrated that there is considerable flexibility in the location of the translational termination (stop) signal. These infectious molecular clones will be very useful for future studies directed at the molecular basis for persistence, pathogenicity, tropism, and cell and species specificity.  相似文献   

20.
Simian immunodeficiency virus (SIV) infection of rhesus macaques (RMs) provides a reliable model to study the relationship between lentivirus replication, cellular immune responses, and CD4+ T-cell dynamics. Here we investigated, using SIVmac251-infected RMs of a Chinese genetic background (which experience a slower disease progression than Indian RMs), the dynamics of CD4+ CCR5+ T cells, as this subset of memory/activated CD4+ T cells is both a preferential target of virus replication and a marker of immune activation. As expected, we observed that the number of circulating CD4+ CCR5+ T cells decreases transiently at the time of peak viremia. However, at 60 days postinfection, i.e., when set-point viremia is established, the level of CD4+ CCR5+ T cells was increased compared to the baseline level. Interestingly, this increase correlated with faster disease progression, higher plasma viremia, and early loss of CD4+ T-cell function, as measured by CD4+ T-cell count, the fraction of memory CD4+ T cells, and the recall response to purified protein derivative. Taken together, these data show a key difference between the dynamics of the CD4+ CCR5+ T-cell pool (and its relationship with disease progression) in Chinese RMs and those described in previous reports for Indian SIVmac251-infected RMs. As the SIV-associated changes in the CD4+ CCR5+ T-cell pool reflect the opposing forces of SIV replication (which reduces this cellular pool) and immune activation (which increases it), our data suggest that in SIV-infected Chinese RMs the impact of immune activation is more prominent than that of virus replication in determining the size of the pool of CD4+ CCR5+ T cells in the periphery. As progression of HIV infection in humans also is associated with a relative expansion of the level of CD4+ CCR5+ T cells, we propose that SIV infection of Chinese RMs is a very valuable and important animal model for understanding the pathogenesis of human immunodeficiency virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号