首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melanoma depends on, interacts with and reacts to the stroma in which it is embedded, including fibroblasts, extracellular matrix, endothelial cells and immune cells. However, the impact of melanoma on the epidermal tumor microenvironment—the multilayered epithelium of the skin—is poorly understood. Gap junctions are essential for intercellular communication and involved in proliferation, differentiation and homeostasis of keratinocytes. We have shown previously that the gap junction proteins connexin 26 and 30 (Cx26 and Cx30) are induced in the epidermal tumor microenvironment of skin cancers including melanoma. This study compares the extent of Cx26, Cx30 and Cx43 expression in the epidermal microenvironment of melanocytic nevi and melanomas and its association with melanoma thickness, proliferative index of the tumor and its microenvironment, and with 5-year metastasis and survival. We found that induction of Cx26 and Cx30 cell–cell border expression in the epidermal tumor microenvironment correlates to malignancy. Importantly, there was a significant correlation of tumor thickness with the vertical epidermal Cx26 and Cx30 expression pattern and the horizontal Cx26 dissemination. Furthermore, horizontal Cx26 expression correlated with metastasis. Vertical epidermal expression patterns of Cx26 and Cx30 significantly correlated with the proliferative index in the epidermal tumor microenvironment but not with the proliferative index in the tumor. In contrast, Cx43 did not correlate with malignancy, thickness or proliferative index. In summary, here we show for the first time a significant association between the progression of melanoma and alterations in its epithelial tumor microenvironment.  相似文献   

2.
MicroRNA 211 (miR-211) negatively regulates genes that drive invasion of metastatic melanoma. Compared to normal human melanocytes, miR-211 expression is significantly reduced or absent in nonpigmented melanoma cells and lost during human melanoma progression. To investigate the molecular mechanism of its tumor suppressor function, miR-211 was ectopically expressed in nonpigmented melanoma cells. Ectopic expression of miR-211 reduced hypoxia-inducible factor 1α (HIF-1α) protein levels and decreased cell growth during hypoxia. HIF-1α protein loss was correlated with the downregulation of a miR-211 target gene, pyruvate dehydrogenase kinase 4 (PDK4). We present evidence that resumption of miR-211-mediated downregulation of PDK4 in melanoma cells causes inhibition of invasion by nonpigmented melanomas via HIF-1α protein destabilization. Thus, the tumor suppressor miR-211 acts as a metabolic switch, and its loss is expected to promote cancer hallmarks in human melanomas. Melanoma, one of the deadliest forms of skin cancer, kills nearly 10,000 people in the United States per year. We had previously shown that a small noncoding RNA, termed miR-211, suppresses invasion and the growth of aggressive melanoma cells. The results presented here support the hypothesis that miR-211 loss in melanoma cells causes abnormal regulation of energy metabolism, which in turn allows cancer cells to survive under low oxygen concentrations—a condition that generally kills normal cells. These findings highlight a novel mechanism of melanoma formation: miR-211 is a molecular switch that is turned off in melanoma cells, raising the hope that in the future we might be able to turn the switch back on, thus providing a better treatment option for melanoma.  相似文献   

3.
Malignant melanoma is a life-threatening skin cancer increasingly diagnosed in the western world. In advanced disease the prognosis is grave. Growth and metastasis formation in melanomas are regulated by a network of cytokines, cytokine-receptors, and adhesion molecules. However, little is known about surface antigens and target expression profiles in human melanomas. We examined the cell surface antigen profile of human skin melanoma cells by multicolor flow cytometry, and compared their phenotype with 4 melanoma cell lines (A375, 607B, Mel-Juso, SK-Mel28). Melanoma cells were defined as CD45−/CD31− cells co-expressing one or more melanoma-related antigens (CD63, CD146, CD166). In most patients, melanoma cells exhibited ErbB3/Her3, CD44/Pgp-1, ICAM-1/CD54 and IGF-1-R/CD221, but did not express CD20, ErbB2/Her2, KIT/CD117, AC133/CD133 or MDR-1/CD243. Melanoma cell lines were found to display a similar phenotype. In most patients, a distinct subpopulation of melanoma cells (4–40%) expressed the erythropoietin receptor (EPO-R) and ErbB4 together with PD-1 and NGF-R/CD271. Both the EPO-R+ and EPO-R− subpopulations produced melanoma lesions in NOD/SCID IL-2Rgammanull (NSG) mice in first and secondary recipients. Normal skin melanocytes did not express ErbB4 or EPO-R, but expressed a functional KIT receptor (CD117) as well as NGF-R, ErbB3/Her3, IGF-1-R and CD44. In conclusion, melanoma cells display a unique composition of surface target antigens and cytokine receptors. Malignant transformation of melanomas is accompanied by loss of KIT and acquisition of EPO-R and ErbB4, both of which are co-expressed with NGF-R and PD-1 in distinct subfractions of melanoma cells. However, expression of EPO-R/ErbB4/PD-1 is not indicative of a selective melanoma-initiating potential.  相似文献   

4.
A major problem in evaluating the effectiveness of tumor cell vaccination and other biological therapies is the variability of experimental models. In this study we have further developed and characterized a model for metastatic melanoma that approximates the major clinical stages of metastatic dissemination: stage I-growth of the primary (local) tumor, stage II-dissemination to regional lymph nodes, and stage III-metastasis to distant organs (lungs). C57BL/6 mice were challenged subcutaneously with B16 F10 murine melanoma cells in the midtail, and within 3 weeks 100% of the mice had local tumors growing in their tails. By 5–7 weeks after challenge, most of the mice had developed metastases to the inguinal lymph nodes and subsequently had metastatic colonies in the lungs and in the bone marrow. Preimmunization of mice with a formalinized extracellular antigen vaccine, derived from B16F10 melanoma cells, provided partial inhibition of the growth of the primary melanoma tumors, as well as reducing the number of metastases to the regional (inguinal) lymph nodes and lungs along with concomitantly increasing survival time. This model for melanoma metastasis provides a reasonable and reproducible test system for the study of anti-melanoma immunity and the different cellular and humoral mechanisms involved.This work was supported in part by National Institutes of Health grants R37 CA45148 and R30 CA13943  相似文献   

5.
Despite existing vaccination strategies targeting TRP-2, its function is not yet fully understood. TRP-2 is an enzyme involved in melanin biosynthesis and therefore discussed as a differentiation antigen. However, in mice Trp-2 was shown to be expressed in melanocyte stem cells of the hair follicle and therefore also considered as an indicator of stemness. A proper understanding of the TRP-2 function is crucial, considering a vaccination targeting cells with stemness properties would be highly effective in contrast to a therapy targeting differentiated melanoma cells.Analysing over 200 melanomas including primaries, partly matched metastases and patients’ cell cultures we show that TRP-2 is correlated with Melan A expression and decreases with tumor progression. In mice it is expressed in differentiated melanocytes as well as in stem cells. Furthermore, we identify a TRP-2 negative, proliferative, hypoxia related cell subpopulation which is significantly associated with tumor thickness and diseases progression. Patients with a higher percentage of those cells have a less favourable tumor specific survival.Our findings underline that TRP-2 is a differentiation antigen, highlighting the importance to combine TRP-2 vaccination with other strategies targeting the aggressive undifferentiated hypoxia related subpopulation.  相似文献   

6.
Melanoma is the most aggressive form of skin cancer, and its incidence has increased dramatically over the years. The murine B16F10 melanoma in syngeneic C57Bl/6 mice has been used as a highly aggressive model to investigate tumor development. Presently, we demonstrate in the B16F10-Nex2 subclone that silencing of SOCS-1, a negative regulator of Jak/Stat pathway, leads to reversal of the tumorigenic phenotype and inhibition of melanoma cell metastasis. SOCS-1 silencing with short hairpin RNA affected tumor growth and cell cycle regulation with arrest at the S phase with large-sized nuclei, reduced cell motility, and decreased melanoma cell invasion through Matrigel. A clonogenic assay showed that SOCS-1 acted as a modulator of resistance to anoikis. In addition, downregulation of SOCS-1 decreased the expression of epidermal growth factor receptor (mainly the phosphorylated-R), Ins-Rα, and fibroblast growth factor receptor. In vivo, silencing of SOCS-1 inhibited subcutaneous tumor growth and metastatic development in the lungs. Because SOCS-1 is expressed in most melanoma cell lines and bears a relation with tumor invasion, thickness, and stage of disease, the present results on the effects of SOCS-1 silencing in melanoma suggest that this regulating protein can be a target of cancer therapy.  相似文献   

7.
Talebian F  Liu JQ  Liu Z  Khattabi M  He Y  Ganju R  Bai XF 《PloS one》2012,7(2):e31442
CD200 is a cell surface glycoprotein that functions through engaging CD200 receptor on cells of the myeloid lineage and inhibits their functions. Expression of CD200 has been implicated in a variety of human cancer cells including melanoma cells and has been thought to play a protumor role. To investigate the role of cancer cell expression of CD200 in tumor formation and metastasis, we generated CD200-positive and CD200-negative B16 melanoma cells. Subcutaneous injection of CD200-positive B16 melanoma cells inhibited tumor formation and growth in C57BL/6 mice but not in Rag1−/−C57BL/6 mice. However, i.v. injection of CD200-positive B16 melanoma cells dramatically inhibited tumor foci formation in the lungs of both C57BL/6 and Rag1−/−C57BL6 mice. Flow cytometry analysis revealed higher expression of CD200R in Gr1+ myeloid cells in the lung than in peripheral myeloid cells. Depletion of Gr1+ cells or stimulation of CD200R with an agonistic antibody in vivo dramatically inhibited tumor foci formation in the lungs. In addition, treatment with tumor antigen specific CD4 or CD8 T cells or their combination yielded a survival advantage for CD200 positive tumor bearing mice over mice bearing CD200-negative tumors. Taken together, we have revealed a novel role for CD200-CD200R interaction in inhibiting tumor formation and metastasis. Targeting CD200R may represent a novel approach for cancer immunotherapy.  相似文献   

8.
Fusion hybrids between normal macrophages and Cloudman S91 melanoma cells were shown earlier to have increased metastatic potential, along with high expression of β1,6‐N‐acetylglucosaminyltransferase  V and β1,6‐branched oligosaccharides. Curiously, hybrids, but not parental melanoma cells, also produced ‘coarse melanin’– autophagic vesicles with multiple melanosomes. As β1,6‐branched oligosaccharides were known to be associated with metastasis, and coarse melanin had been described in invasive human melanomas, we looked for potential relationships between the two. Using lectin‐ and immunohistochemistry, we analyzed cell lines producing coarse melanin for β1,6‐branched oligosaccharides: gp100/pmel‐17 (a melanosomal structural component) and CD63 (a late endosome/lysosome component associated with melanoma and certain other human cancers). Cell lines used in this study were (i) hybrid 94‐H48, a highly metastatic, macrophage–melanoma experimental fusion hybrid; (ii) 6neo mouse melanoma cells, the weakly metastatic, parental fusion partner; and (iii) SKmel‐23, a human melanoma cell line derived from a metastasis. Coarse melanin granules were prominent both in hybrids and in SKmel‐23 cells, and co‐localized with stains for β1,6‐branched oligosaccharides, gp100/pmel 17, and CD63. This is the first report of this phenotype being expressed in vitro, although co‐expression of β1,6‐branched oligosaccharides and coarse melanin was recently shown to be a common and pervasive characteristic in archival specimens of human melanomas, and was most prominent in metastases. The results suggest that pathways of melanogenesis in melanoma may differ significantly from those in normal melanocytes. In vitro expression of this phenotype provides new biological systems for more detailed analyses of its genesis and regulation at the molecular genetic level.  相似文献   

9.
Arsenic is a well established human carcinogen and is associated with a variety of cancers including those of the skin. Paradoxically, arsenic has also been used, amid at low doses, in the treatment of leukemia for over a century. Here we demonstrate that low to moderate concentrations of arsenite (2-10 microm) that has little or no effect on normal melanocytes may induce apoptosis of human melanomas including highly metastatic ones despite their low surface Fas levels. The two prerequisites that dictate apoptotic response of melanomas upon arsenite treatment are low nuclear NF-kappaB activity and an endogenous expression of tumor necrosis factor alpha. Under these conditions, melanoma cells acquired sensitivity to tumor necrosis factor alpha-mediated killing. On the other hand, signaling pathways including those of phosphatidylinositol 3-kinase-AKT, MEK-ERK, and JNK play a protective role against arsenite-induced oxidative stress and apoptosis in melanoma cells. Suppression of these pathways dramatically accelerates arsenite-induced apoptosis. Taken together, these data could provide potential approaches to sensitize melanomas to the cytotoxic effects of arsenite through modulating the signaling pathways.  相似文献   

10.
Sinclair swine provide a unique model for studying mechanisms of tumor regression because they are born with melanomas that spontaneously regress approximately 10 weeks after birth. To examine whether an antitumor immune response is present in these animals, and, if so, to study its relation to tumor regression, 38 sera specimens collected at different times from 13 swine born with melanomas were tested for melanoma antibodies by immunoprecipitation and SDS-PAGE analysis of 125I labelled swine melanoma macromolecules. Antibodies to melanoma were present in 13 (100%) of the swine versus 1 of 3 control swine. The antibodies were directed to antigens of approximately 45, 68–75, or 100 kDa. These antigens were also expressed on human melanomas and normal melanocytes but on only one of five unrelated tumors. The incidence and level of these antibodies increased with time. Antibodies to the 45, 68–75, and 100 kDa antigens were present in 36%, 55%, and 9%, respectively, of sera collected prior to 7 weeks of age, but in 80%, 100%, and 37% of sera collected between 7 and 20 weeks (P<0.05). The rise in melanoma antibodies usually preceded or appeared together with tumor regression and loss of pigmentation. These findings indicate that Sinclair swine with melanomas have antibodies to antigens preferentially expressed on pigment cells, and support the hypothesis that the regression phenomenon and the vitiligo-like skin depigmentation result from immune responses to common antigens shared by normal and malignant swine pigment cells.  相似文献   

11.
12.
Melanoma remains the most lethal skin cancer, mainly because of high resistance to therapy. Side population (SP) cells are found in many types of cancer and are usually enriched in therapy-resistant as well as tumorigenic cells. Here, we identified a Hoechst dye-effluxing SP in a large series of human melanoma samples representing different progression phases. The SP size did not change with disease stage but was correlated with the prognostic “Breslow’s depth” in the primary (cutaneous) tumors. When injected into immunodeficient mice, the SP generated larger tumors than the bulk “main population” (MP) melanoma cells in two consecutive generations, and showed tumorigenic capacity at lower cell numbers than the MP. In addition, the SP reconstituted the heterogeneous composition of the human A375 melanoma cell line, and its clonogenic activity was 2.5-fold higher than that of the MP. Gene-expression analysis revealed upregulated expression in the melanoma SP (versus the MP) of genes associated with chemoresistance and anti-apoptosis. Consistent with these molecular characteristics, the SP increased in proportion when A375 cells were exposed to the melanoma standard chemotherapeutic agent dacarbazine, and to the aggravating condition of hypoxia. In addition, the SP showed enhanced expression of genes related to cell invasion and migration, as well as to putative (melanoma) cancer stem cells (CSC) including ABCB1 and JARID1B. ABCB1 immunoreactivity was detected in a number of tumor cells in human melanomas, and in particular in clusters at the invasive front of the primary tumors. Together, our findings support that the human melanoma SP is enriched in tumorigenic and chemoresistant capacity, considered key characteristics of CSC. The melanoma SP may therefore represent an interesting therapeutic target.  相似文献   

13.
14.
GATA2 deficiency is a recently described genetic disorder affecting hematopoietic stem cells and is associated with immunodeficiency, hematologic malignancy, and various cutaneous pathologies including cutaneous tumors. To explore the incidence and clinical course of melanoma in patients with germline GATA2 deficiencies, we conducted a retrospective chart review of 71 such patients and identified two with invasive melanoma. One melanoma was diagnosed early because it was associated with pruritus due to a graft‐versus‐tumor effect following bone marrow transplantation. The other one, a lentigo maligna melanoma, was locally excised but progressed to widespread metastasis and death several years later. Our observations and published studies of melanoma biology suggest an association between decreased GATA2 expression and melanoma progression. These findings suggest that GATA2 deficient patients may have an increased risk of melanoma and should be observed closely for new or changing skin lesions.  相似文献   

15.
The expression of melanotransferrin (MTf), a membrane-bound glycoprotein highly expressed in melanomas, is correlated with tumor vascularization and progression, suggesting a proinvasive function associated with MTf in malignant tumors. To test this hypothesis, we silenced MTf in human melanoma SK-MEL-28 cells using small interfering RNA (siRNA) and examined the plasmin activity and invasiveness of MTf-silenced melanoma. In vitro, the siRNA-mediated MTf knockdown inhibited by 58% the cell surface activation of plasminogen into plasmin. In addition, decreased expression of MTf in melanoma cells reduced cell migration. In vivo, we used a nude mice invasion model in which tissue factor (TF) induces vascular [125I]-fibrin deposition following injection. Using this metastasis model, the invasive potential of MTf-silenced cells into the lungs was reduced by fivefold. Altogether, these findings strongly suggest that MTf overexpression in melanoma cells contributes to tumor progression by stimulating plasmin generation as well as cell migration and invasion.  相似文献   

16.
《Translational oncology》2020,13(9):100802
MicroRNA (miRNA) dysregulation in cancer causes changes in gene expression programs regulating tumor progression and metastasis. Candidate metastasis suppressor miRNA are often identified by differential expression in primary tumors compared to metastases. Here, we performed comprehensive analysis of miRNA expression in The Cancer Genome Atlas (TCGA) skin cutaneous melanoma (SKCM) tumors (97 primary, 350 metastatic), and identified candidate metastasis-suppressor miRNAs. Differential expression analysis revealed miRNA significantly downregulated in metastatic tumors, including miR-205, miR-203, miR-200a-c, and miR-141. Furthermore, sequential feature selection and classification analysis identified miR-205 and miR-203 as the miRNA best able to discriminate between primary and metastatic tumors. However, cell-type enrichment analysis revealed that gene expression signatures for epithelial cells, including keratinocytes and sebocytes, were present in primary tumors and significantly correlated with expression of the candidate metastasis-suppressor miRNA. Examination of miRNA expression in cell lines revealed that candidate metastasis-suppressor miRNA identified in the SKCM tumors, were largely absent in melanoma cells or melanocytes, and highly restricted to keratinocytes and other epithelial cell types. Indeed, the differences in stromal cell composition between primary and metastatic tumor tissues is the main basis for identification of differential miRNA that were previously classified as metastasis-suppressor miRNAs. We conclude that future studies must consider tumor-intrinsic and stromal sources of miRNA in their workflow to identify bone fide metastasis-suppressor miRNA in cutaneous melanoma and other cancers.  相似文献   

17.
18.
Tumor-derived exosomes are emerging mediators of tumorigenesis. We explored the function of melanoma-derived exosomes in the formation of primary tumors and metastases in mice and human subjects. Exosomes from highly metastatic melanomas increased the metastatic behavior of primary tumors by permanently 'educating' bone marrow progenitors through the receptor tyrosine kinase MET. Melanoma-derived exosomes also induced vascular leakiness at pre-metastatic sites and reprogrammed bone marrow progenitors toward a pro-vasculogenic phenotype that was positive for c-Kit, the receptor tyrosine kinase Tie2 and Met. Reducing Met expression in exosomes diminished the pro-metastatic behavior of bone marrow cells. Notably, MET expression was elevated in circulating CD45(-)C-KIT(low/+)TIE2(+) bone marrow progenitors from individuals with metastatic melanoma. RAB1A, RAB5B, RAB7 and RAB27A, regulators of membrane trafficking and exosome formation, were highly expressed in melanoma cells. Rab27A RNA interference decreased exosome production, preventing bone marrow education and reducing, tumor growth and metastasis. In addition, we identified an exosome-specific melanoma signature with prognostic and therapeutic potential comprised of TYRP2, VLA-4, HSP70, an HSP90 isoform and the MET oncoprotein. Our data show that exosome production, transfer and education of bone marrow cells supports tumor growth and metastasis, has prognostic value and offers promise for new therapeutic directions in the metastatic process.  相似文献   

19.
Cutaneous malignant melanoma is the fastest increasing malignancy in humans. Hepatoma-derived growth factor (HDGF) is a novel growth factor identified from human hepatoma cell line. HDGF overexpression is correlated with poor prognosis in various types of cancer including melanoma. However, the underlying mechanism of HDGF overexpression in developing melanoma remains unclear. In this study, human melanoma cell lines (A375, A2058, MEL-RM and MM200) showed higher levels of HDGF gene expression, whereas human epidermal melanocytes (HEMn) expressed less. Exogenous application of HDGF stimulated colony formation and invasion of human melanoma cells. Moreover, HDGF overexpression stimulated the degree of invasion and colony formation of B16–F10 melanoma cells whereas HDGF knockdown exerted opposite effects in vitro. To evaluate the effects of HDGF on tumour growth and metastasis in vivo, syngeneic mouse melanoma and metastatic melanoma models were performed by manipulating the gene expression of HDGF in melanoma cells. It was found that mice injected with HDGF-overexpressing melanoma cells had greater tumour growth and higher metastatic capability. In contrast, mice implanted with HDGF-depleted melanoma cells exhibited reduced tumor burden and lung metastasis. Histological analysis of excised tumors revealed higher degree of cell proliferation and neovascularization in HDGF-overexpressing melanoma. The present study provides evidence that HDGF promotes tumor progression of melanoma and targeting HDGF may constitute a novel strategy for the treatment of melanoma.  相似文献   

20.
Equine melanoma shows striking features particularly with regard to clinical development in grey horses: in contrast to malignant melanoma in humans and in solid coloured horses that are characterized by early onset of metastasis, pigment cell tumours display almost benign clinical features in ageing grey horses. Through evolution, grey horses appear to be in a favourable position in regard to the biological behaviour of melanomas. Yet unknown factors inhibiting or retarding early melanoma metastasis may be responsible for this phenomenon. In this study, immunostaining profiles and histopathologic patterns of equine vs. human melanotic tumours were compared. In addition, the expression of melanoma markers currently used in human melanoma detection and characterization were evaluated for their applicability in equine melanoma diagnosis. Immunohistopathologic investigations revealed that benign grey horse melanomas share common features with human blue nevi and with human malignant desmoplastic melanomas, whereas their resemblance to other types of human cutaneous malignant melanomas is less pronounced. Our data equally underline that S‐100, proliferating cell nuclear antigen (PCNA), HMB‐45, Ki‐67, T‐311 and CD44 can serve as reliable markers for horse melanomas. Further investigations aiming at identifying factors retarding metastasis in affected grey horses are needed, as they may contribute to the development of novel treatment strategies for human malignant melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号