首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Isolates of Pseudomonas syringae pv. tabaci, including 21 strains of the wildfire pathogen and 2 strains of the angular leafspot pathogen, were isolated from 143 rhizosphere and soil samples collected from 11 tobacco fields in Wisconsin. These pathogens were isolated by inoculating rhizosphere and soil washings into tobacco leaves and isolating the bacteria from wildfire or angular leafspot lesions that developed on the leaves. The wildfire isolates were from the rhizospheres of tobacco and Panicum capillare and from soil. While the majority of these were from wildfire-diseased fields, one isolate was from a field without disease symptoms; both angular leafspot isolates were from fields without angular leafspot symptoms. The majority of wildfire isolates were race 1, but three were race 0, and one was a new race. In three fields multiple races of wildfire were found. Both angular leafspot isolates were race 1. Two wildfire and one angular leafspot isolates were from fields where the cultivars were resistant to the races isolated.  相似文献   

2.
Compost sustaining a multitude of chitinase-producing bacteria was evaluated in a greenhouse study as a soil amendment for the control of late blight (Phytophthora capsici L.) in pepper (Capsicum annuum L.). Microbial population and exogenous enzyme activity were measured in the rhizosphere and correlated to the growth and health of pepper plant. Rice straw was composted with and without a chitin source, after having been inoculated with an aliquot of coastal area soil containing a known titer of chitinase-producing bacteria. P. capsici inoculated plants cultivated in chitin compost-amended soil exhibited significantly higher root and shoot weights and lower root mortality than plants grown in pathogen-inoculated control compost. Chitinase and β-1,3-glucanase activities in rhizosphere of plants grown in chitin compost-amended soil were twice that seen in soil amended with control compost. Colony forming units of chitinase-producing bacteria isolated from rhizosphere of plants grown in chitin compost-amended soil were 103 times as prevalent as bacteria in control compost. These results indicate that increasing the population of chitinase-producing bacteria and soil enzyme activities in rhizosphere by compost amendment could alleviate pathogenic effects of P. capsici.  相似文献   

3.
Infection of cucumber (Cucumis sativus L.) with the bacterial pathogen Erwinia tracheiphila E. F. Smith causes vascular wilt disease in leaves, which may alter the suitability of the host plant for insects and other pathogens. In this study, densities of spotted (Diabrotica undecimpunctata howardi Barber) and striped (Acalymma vittata (Fab.) cucumber beetles (Coleoptera: Chrysomelidae) were higher on wilted leaves of mature and seedling field plants inoculated with E. tracheiphila. Bacterial infection or feeding by D. undecimpunctata howardii beetles increased total peroxidase enzyme activity in inoculated or infested leaves of greenhouse seedlings, but only beetle feeding induced higher activities in untreated systemic leaves on the same plants. Neither bacterial infection nor beetle infestation led to the development of systemic acquired resistance (SAR) to the fungal pathogen Colletotrichum orbiculare (Berk & Mont.) Arx. Susceptibility to this fungus was greater on E. tracheiphila-infected plants than on controls. The positive association between leaf wilt symptom development and beetle occurrence thus occurs in the presence of an oxidative but not anti-pathogenic response induced by both the insect and the pathogen.  相似文献   

4.
Greenhouse and laboratory experiments were conducted to determine the effects of various physical factors on the assessment of disease caused by Sclerotium rolfsii using field and artificially infested soils. Lentil(Lens esculenta Moench) seedlings growing in trays or pots with sand were inoculated by surrounding them with a layer of soil infested with the pathogen. The number of dead plants was maximal within a 10-day period following inoculation. Seedling mortality increased with the number of sclerotia in the soil to a maximum that depended on seedling spacing, depth of the soil layer, and soil type.  相似文献   

5.
The interactions between the mycorrhizal fungusGlomus mosseae, the plant pathogenPythium ultimum, and a pathogen-antagonistTrichoderma aureoviride in the rhizosphere ofTagetes erecta (marigold) were studied for their effects on plant growth in a peat-perlite substrate. Mycorrhizal fungus inoculation protected the plant againstP. ultimum, since both phytomass production and foliar development were higher in mycorrhizal plants.T. aureoviride had no effect on nonmycorrhizal plants in the presence or absence ofP. ultimum. However, more biomass was produced by mycorrhizal plants whenT. aureoviride was present, whether or not soil was infested withP. ultimum. ei]R Rodriguez-Kabana  相似文献   

6.
Leaf scald of sugarcane, caused by Xanthomonas albilineans, is thought to be spread mainly in infected cuttings and transmitted on infested cutting implements. Several observations made in Guadeloupe indicated that other means of spreading also occur. The dispersal of the pathogen outside sugarcane was investigated with plants inoculated by an antibiotic-resistant marked strain of X. albilineans and with plants naturally infested with wild strains of the pathogen. The bacteria were isolated in water droplets (rain or dew) on the surface of sugarcane leaves at dawn. It was also detected on the surface of dry leaves during the day by leaf imprinting onto a selective culture medium. The bacteria were much more frequently isolated from the surface of symptomatic leaves than from symptomless ones. Aerial dispersal of X. albilineans was investigated by placing Petri dishes containing selective culture medium between sugarcane plants but without direct contact with the leaves. The pathogen was isolated in four out of 270 dishes which were randomly set 3-14 h in a diseased field. These results indicated that the pathogen exuded from the leaves and then was spread by aerial means (rain, insects,…) or by leaf contact. The bacteria were also found in roots and rhizospheric soil of infested sugarcane stools suggesting that X. albilineans could be transmitted by root to root contact or by the soil. Finally, isolations of the pathogen in sugarcane inflorescences were positive. So, fuzz transmission may also occur.  相似文献   

7.
Leaf scald of sugarcane, caused by Xanthomonas albilineans, is thought to be spread mainly in infected cuttings and transmitted on infested cutting implements. Several observations made in Guadeloupe indicated that other means of spreading also occur. The dispersal of the pathogen outside sugarcane was investigated with plants inoculated by an antibiotic-resistant marked strain of X. albilineans and with plants naturally infested with wild strains of the pathogen. The bacteria were isolated in water droplets (rain or dew) on the surface of sugarcane leaves at dawn. It was also detected on the surface of dry leaves during the day by leaf imprinting onto a selective culture medium. The bacteria were much more frequently isolated from the surface of symptomatic leaves than from symptomless ones. Aerial dispersal of X. albilineans was investigated by placing Petri dishes containing selective culture medium between sugarcane plants but without direct contact with the leaves. The pathogen was isolated in four out of 270 dishes which were randomly set 3–14 h in a diseased field. These results indicated that the pathogen exuded from the leaves and then was spread by aerial means (rain, insects, …) or by leaf contact. The bacteria were also found in roots and rhizospheric soil of infested sugarcane stools suggesting that X. albilineans could be transmitted by root to root contact or by the soil. Finally, isolations of the pathogen in sugarcane inflorescences were positive. So, fuzz transmission may also occur.  相似文献   

8.
Summary Numbers of autotrophic nitrifiers in the rhizosphere, and thein vivo nitrate reductase activity (NRA) in the leaves of individual plants ofPlantago lanceolata were determined in plants at two contrasting sites. In a dune grassland, high numbers of nitrifiers were present in the rhizosphere, and significant NRA was detected in the leaves. During dry periods nitrate utilization sometimes was depressed. In a wet hayfield, on peat soil, very low numbers of nitrifiers were found in the rhizosphere. Also the NRA was low. In the wet habitat, the NRA in the leaves of some fen species, containing aerenchyma in the roots, was higher than that ofP. lanceolata, not containing aerenchyma.Grassland Species Research Group. Publication No. 105.  相似文献   

9.
Two biological control agents, Pythium nunn and Trichoderma harzianum isolate T-95, were combined to reduce Pythium damping-off of cucumber in greenhouse experiments lasting 3–4 weeks. T. harzianum T-95, a rhizosphere competent mutant, was applied to seeds and P. nunn was applied to pasteurized and raw soils naturally and artificially infested with Pythium ultimum. Some treatments were also amended with bean leaves to enhance the activity of P. nunn. The biological control of Pythium damping-off was evaluated in a Colorado soil (Nunn sandy loam) and an Oregon soil mix, which were replanted twice after 2 and 3 months. Interactions between P. nunn and T-95 were detected in the Colorado but not the Oregon soil. No consistent evidence of antagonism between P. nunn and T. harzianum was seen, and significant interactions were detected in the Colorado, but not the Oregon soil. In the first planting of some treatments, the combination of P. nunn and T. harzianum gave greater control of damping-off than either applied alone. P. nunn was most effective in soils that were pasteurized or amended with bean leaves. T. harzianum controlled Pythium damping-off in the Colorado, but not the Oregon soil. In both soils, disease declined over time in treatments amended with bean leaves but without P. nunn or T. harzianum added. This suppression was greater in the Colorado soil, which contained an indigenous population of P. nunn. This work demonstrates that two compatible biological control agents can be combined to give additional control of a soil-borne plant pathogen.  相似文献   

10.
Phytophthora blight is one of the most important devastating diseases of red pepper plants. Forty-one bacterial isolates were obtained from rhizosphere soil and subsequently tested for antagonistic activity under in vitro and in vivo conditions. Among the 41 isolates tested, 12 exhibited a maximum antagonistic activity in dual culture assay. These 12 isolates were further screened for disease suppression on red pepper plants in both natural and greenhouse conditions. All the antagonists showed varying levels of antagonism, whereas the isolates R33 and R13 exhibited the maximum (86.8 and 71%) ability to reduce the disease severity in in vivo conditions. Based on the 16S rDNA sequencing, the most effective isolates were identified as Bacillus subtilis. In addition, the isolates were also screened for siderophores, hydrogen cyanide and hydrolytic enzymes. Further, the isolates increased the root and shoot length of the red pepper, which is an added advantage of the isolates while performing the desired function.  相似文献   

11.
We studied the induced response of tomato plants to the green strain and the red strain of the spider mite Tetranychus urticae. We focused on the olfactory response of the predatory mite Phytoseiulus persimilis to volatiles from T. urticae-infested tomato leaves in a Y-tube olfactometer. Tomato leaves attracted the predatory mites when slightly infested with the red strain, or moderately or heavily infested with the green strain. In contrast, neither leaves that were slightly infested with green-strain mites, nor leaves that were moderately or heavily infested with the red strain attracted the predators. We discuss the specific defensive responses of tomato plants to each of the two strains.  相似文献   

12.
Anagrus atomus L. is an important egg parasitoid of the green leafhopper Empoasca decipiens Paoli. In this study the ability of the parasitoid to locate and parasitize its host was investigated on four host plants, i.e., broad beans (Vicia faba L.), sweet pepper (Capsicum annuum L.), cucumber (Cucumis sativus L.), and French beans (Phaseolus vulgaris L.). For each plant species, the behavior of the parasitoid was observed on E. decipiens infested and noninfested plants. Searching and oviposition behavior were characterized by drumming, probing, and resting. Parasitoids spent significantly less time on non-infested than infested plants, 274.5 and 875.7 s, respectively, and no probing behavior was observed on non-infested plants. Frequency of resting behavior was significantly greater on non-infested than on infested plants. Total foraging time was significantly longer on infested than on non-infested plants, indicating that A. atomus females can efficiently discriminate between leaves with and without infestation. Parasitism of A. atomus was influenced by parasitoid density, with the highest parasitism rate (64.0%) obtained at a density of 10 A. atomus females/0.1356 m2 but the number of parasitized eggs per female and the searching efficiency decreased with increasing parasitoid density.  相似文献   

13.
One of the factors that may complicate biological control of the greenhouse whitefly on Gerbera jamesonii by Encarsia formosa is the rosette shape of this ornamental, which differs from the vertical shape of most vegetable plants (cucumber, egg plant, tomato, etc.). Therefore, host-habitat location and the behaviour prior to landing on uninfested and infested leaves was studied. Attraction of E. formosa from a short distance by infested leaves could not be detected: the parasitoid females landed at random on uninfested and infested leaves. After the first landing, a redistribution of the wasps occurred on the leaves. After 24 h three times as many wasps were found on the infested leaves than on uninfested ones. In a dispersal experiment with four plants, E. formosa appeared to have no preference for landing on leaves of the medium age class, which is the age class on which most of the whiteflies in a suitable stage for parasitism occur. Twenty percent of the parasitoids were found on the plants 20 min after releasing them. These results were independent of the plant cultivar and the host density on the plants. In the course of 8 h, the number of E. formosa females recovered from plants increased linearly, and this increase was greater on plants where hosts were present and also greater on the plant cultivar with the lowest trichome density. After 24 h, the percentage of females was highest (56%) on plants with the highest host density. E. formosa females were arrested on leaves where hosts were present. Contrary to our expectation, the results from the two G. jamesonii cultivars that differed strongly in leaf hairiness were not significantly different in most experiments. Only at the high host density was parasitism found to be lower on the cultivar with the higher hair density. Parasitoids may walk on top of the `hair coverlet' of cultivars with high trichome density and, therefore, be hampered less than expected.  相似文献   

14.
Colonization of rye (Secale cereale) tissues by nonpathogenic rhizosphere Fusarium culmorum isolates DEMFc2 and DEMFc5 and a pathogenic strain DEMFc37, and their effect on plant fresh weight were studied in pot experiments. Both rhizosphere isolates colonized the epidermis and the cortex but were not found in vessels, while the pathogen colonized all three layers of root cells. The numbers of pathogen CFU isolated from plant tissues were much higher than those of the rhizosphere isolates in spite of the same number of macroconidia used as inoculum (1 × 105 g−1 of soil). Inoculation of seedlings with DEMFc2 resulted in a 20% increase, with DEMFc5 in more than a 20% reduction, and with DEMFc37 in a 38% reduction of shoot fresh weight of 14-day-old plants. Pre-colonization of plants with (either of) the rhizosphere isolates and subsequent inoculation with the pathogen resulted in plant weights the same as those observed in plants inoculated with the rhizosphere strain alone. The disease severity index for shoots of plants pre-colonized with DEMFc2 was reduced from class 4 (86% diseased plants) observed for plants inoculated with the pathogen alone to class 2 (average of 8% diseased plants) when pre-treated with the rhizosphere strain. The CFU number of the pathogen isolated from the interior of roots of plants pre-colonized with the rhizosphere isolates was as low as 10% of the number isolated from plants inoculated with the pathogen alone. A study of in vitro interactions between the rhizosphere isolates and the pathogen suggests that changes in plant colonization by the pathogen and its effect on fresh weight of plants pre-colonized with the rhizosphere isolates were not connected with inhibition of its growth by a direct action of the rhizosphere isolates. The results suggest that strain DEMFc2 can be considered as a potential biocontrol agent.  相似文献   

15.
The influence of rhizosphere microorganisms and vesicular-arbuscular (VA) mycorrhiza on manganese (Mn) uptake in maize (Zea mays L. cv. Tau) plants was studied in pot experiments under controlled environmental conditions. The plants were grown for 7 weeks in sterilized calcareous soil in pots having separate compartments for growth of roots and of VA mycorrhizal fungal hyphae. The soil was left either uninoculated (control) or prior to planting was inoculated with rhizosphere microorganisms only (MO-VA) or with rhizosphere microorganisms together with a VA mycorrhizal fungus [Glomus mosseae (Nicol and Gerd.) Gerdemann and Trappe] (MO+VA). Mycorrhiza treatment did not affect shoot dry weight, but root dry weight was slightly inhibited in the MO+VA and MO-VA treatments compared with the uninoculated control. Concentrations of Mn in shoots decreased in the order MO-VA > MO+VA > control. In the rhizosphere soil, the total microbial population was higher in mycorrhizal (MO+VA) than nonmycorrhizal (MO-VA) treatments, but the proportion of Mn-reducing microbial populations was fivefold higher in the nonmycorrhizal treatment, suggesting substantial qualitative changes in rhizosphere microbial populations upon root infection with the mycorrhizal fungi. The most important microbial group taking part in the reduction of Mn was fluorescent Pseudomonas. Mycorrhizal treatment decreased not only the number of Mn reducers but also the release of Mn-solubilizing root exudates, which were collected by percolation from maize plants cultivated in plastic tubes filled with gravel quartz sand. Compared with mycorrhizal plants, the root exudates of nonmycorrhizal plants had two fold higher capacity for reduction of Mn. Therefore, changes in both rhizosphere microbial population and root exudation are probably responsible for the lower acquisition of Mn in mycorrhizal plants.  相似文献   

16.
17.
According to the present practice of Hungarian greenhouse sweet pepper production, only exotic agents are used for biological control purposes against thrips pests. The suitability for biological control of the second instars of an indigenous species, the common crab spider, Xysticus kochi Thorell (Araneae: Thomisidae) was tested on thrips species, Frankliniella occidentalis (Pergande) and Frankliniella intonsa (Trybom) (Thysanoptera: Thripidae) using a cage set-up on greenhouse sweet pepper plants. Effects of introducing second instars of X. kochi on thrips infested plants were judged by assessing the degree of aesthetical damage, the commercial value of the fruits (degree of economic loss) and the quality composition of the harvested peppers. The estimated damaged surface unit was significantly lower in control plants than in plants infested by F. occidentalis. A significant effect of the spider introduction was observed in all of the pepper quality indicators applied. We suspect that direct Xysticus predation or any other predator-induced effect resulted in reduced levels of damage on harvested peppers. However, further investigation is needed to detect the origin (e.g., predation and non-predation effects) of the suppression of thrips damage. Our results suggest that X. kochi could be an effective component of greenhouse antagonistic fauna and the application of mulch may encourage the effectiveness of spiderlings. An erratum to this article can be found at  相似文献   

18.
Previous studies have described that arbuscular mycorrhizal fungi (AMF) can reduce the deleterious effect of Verticillium dahliae Kleb. on pepper growth and yield. In mycorrhizal plants, the bioprotection against soil-borne pathogens can result from the preactivation of defence responses that include some structural modifications and the accumulation of Pathogenesis-Related (PR) proteins. Our first objective was to study if V. dahliae induced defence mechanisms in roots before infected pepper developed visible symptoms of disease. The second aim was to determine if AMF induced defence-related enzymatic activities in pepper roots before or after pathogen’s attack. Results showed that the colonization of pepper roots by Glomus deserticola (Trappe, Bloss and Menge) induced the appearance of new isoforms of acidic chitinases, superoxide dismutase (SOD) and, at early stages, peroxidases. In contrast, V. dahliae neither stimulated the phenylpropanoid pathway nor elicited hydrolytic activities in infected pepper roots. Only in mycorrhizal plants, the inoculation with V. dahliae slightly increased both phenylalanine ammonia-lyase (PAL) and peroxidase activities two weeks later. Mycorrhizal-specific induction of new isoforms of acidic chitinases and SOD together with enhanced peroxidase and PAL activities 2 weeks after pathogen inoculation could be involved in the biocontrol of Verticillium-induced wilt in pepper by AMF.  相似文献   

19.
【目的】了解健康烟株与感染青枯病烟株在根际土壤、茎杆发病部位、茎杆病健交界部位以及未发病茎杆的细菌群落结构与多样性。【方法】分别对土壤与茎杆样品中细菌的16S rRNA基因V3-V4区进行扩增,采用Illumina MiSeq测序技术对扩增片段进行高通量测序,然后对健康烟株与感染青枯病烟株不同部位细菌群落结构与多样性进行分析。【结果】感染青枯病烟株发病茎杆及根际土壤的细菌群落多样性高于健康烟株茎杆及其根际土壤样品,病健交界茎杆样品细菌群落多样性低于健康烟株。变形菌门(Proteobacteria)在所有样品中均为优势菌门;所有烟株根际土壤的优势菌门为拟杆菌门(Bacteroidetes)、酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)和绿弯菌门(Chloroflexi);健康烟株茎杆部位的优势菌门为蓝细菌门(Cyanobacteria);感染青枯病烟株发病茎杆和病健交界茎杆部位的优势菌门为蓝细菌门(Cyanobacteria)和厚壁菌门(Firmicutes)。所有根际土壤样品的优势菌属为劳尔氏菌属(Ralstonia)、假单胞菌属(Pseudomonas)、鞘脂单胞菌属(Sphingomonas)、黄杆菌属(Flavobacterium)和代尔夫特菌属(Delftia),而感染青枯病烟株根际土壤的劳尔氏菌属(Ralstonia)和假单胞菌属(Pseudomonas)相对丰度显著高于健康烟株根际土壤,鞘脂单胞菌属相对丰度显著低于健康烟株根际土壤。烟株茎杆的优势菌属为劳尔氏菌属和假单胞菌属等。感染青枯病烟株病健交界茎杆中劳尔氏菌属、肠杆菌属(Enterobacter)和泛菌属(Pantoea)相对丰度显著低于健康烟株样品。【结论】健康与感染青枯病烟株茎杆样品细菌群落的丰富度和多样性明显低于相应的根际土壤样品。较健康烟株而言,感染青枯病烟株根际土壤和茎杆样品细菌群落丰富度和多样性均表现出不同程度地增加,且根际土壤细菌群落结构变化较茎杆样品明显,而病健交界茎杆样品细菌群落丰富度和多样性降低。烟草青枯病为典型土传病害,其病原茄科劳尔氏菌尽管能在烟株维管束中蔓延扩增,但主要还是分布于土壤中;它的存在似乎对土壤细菌群落的影响大于茎杆样品的。该研究结果提示对于青枯病的防治不能局限于烟株本身,田间土壤也应加大防治力度。  相似文献   

20.
【目的】转Bt基因和Bar基因植物的微生态效应是环境安全评价的重要因素,但关于Bt基因和Bar基因转化引起的水稻基因型改变对水稻不同组织生态位微生物群落组成和潜在功能的影响还无系统研究。【方法】以转Bt基因和Bar基因水稻T1C-1及其亲本对照Minghui63为研究对象,基于细菌16S rRNA基因和真菌ITS高通量测序技术,分析抽穗期T1C-1和Minghui63根际土壤微生物以及根、茎、叶内生菌的群落结构和潜在功能。【结果】细菌和真菌群落多样性在水稻不同组织生态位之间发生显著变化,地下部分组织生态位(根际土壤和根系)微生物多样性显著高于地上部分(叶和茎)。T1C-1显著影响叶片内生真菌的香农指数和辛普森指数,而对茎和根的内生菌以及根际土壤微生物多样性无显著影响。叶片内生真菌曲霉菌属(Aspergillus)和篮状菌属(Talaromyces)相对丰度在T1C-1显著增加,推测其参与碳素代谢、能量代谢和转录作用酶合成等过程。T1C-1和Minghui63微生物群落关联网络分析表明,T1C-1的平均聚类系数和平均度显著高于Minghui63,因而T1C-1提高了相关微生物群落网络复杂程度。通过重建未观测状态对群落进行系统发育研究(phylogenetic investigation of communities by reconstruction of unobserved states, PICRUSt2),对叶片内生真菌功能酶基因进行功能预测,相对于Minghui63,T1C-1显著改变了碳素代谢、脂类代谢和能量代谢等途径。【结论】相较于根际土壤,叶片内生真菌的群落组成和潜在功能对T1C-1更敏感。尽管如此,T1C-1并未导致叶片内生真菌的多样性指数降低。为了更准确地评估转基因植物的微生态效应,我们需要加强对不同组织生态位内生菌多样性的关注。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号