首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has previously been indicated that the inhibitory power of the granulocytic chalone is not influenced by adrenalin. It is now shown that this is true both in absence and in presence of exogenous hydrocortisone. It is also shown that hydrocortisone itself does not cause significant inhibition of DNA synthesis in rat bone marrow cells in vitro, but that it does act to augment the inhibitory effect which the granulocytic chalone induces. It is suggested that the primary action of hydrocortisone may be on the cell membrane which changes the cell wall permeability to chalone, perhaps by reducing its rate of loss from the cells.  相似文献   

2.
Extracts of skin with sebaceous glands contain a substance which inhibits mitotic activity in sebaceous glands both in vivo and in vitro. This substance is neither the epidermal chalone nor the melanocyte chalone, both of which are also present in skin extracts. However, it resembles these other chalones in that it is water soluble, is precipitated by ethanol, is activated by the two stress hormones adrenalin and hydrocortisone, and is not species specific. It is present within the sebaceous glands, and it is evidently a sebaceous gland chalone.  相似文献   

3.
SYNOPSIS Chalones,inhibitors of cell dmsion have been isolatedand studied from a number of mammalian tissues, most notably,the epidermis The epidermal rhalone is a glycoprotein It exhibitsconsiderable, but not complete specificity The epidermal chalone decreases mitotic activity by inhibitingcells in the G 2 phase of the cell cycle from entering mitosis,and probably also by inhibiting ceils in the G 1 phase of thecell cycle from entering mitosis To inhibit cells in G 2 fromentering mitosis the chilone requnes adrenalin, and for maximalactivity hydrocortisone It is not known if idrenalin and hydrocortisoneare required for chalone inhibition of cells in G 1 In addition to inhibiting cell division in normal epidermalcells the epidermal chalone can inhibit cell division in regeneratingepidermal cells induced to proliferate by chemical damage Thephase of the cell cycle in which the chalone inhibits legeneratingepidermal cells from entering mitosis is not known Epidermal tumors contain a decreased amount of chalone Mitosisin epidermal tumors is inhibited by treatment with epidermalchalone Tumor cells are inhibitedfrom entering mitosis fromeither the G 1 or G 2 phases of the cell cycle Chalones are said to inhibit mitosis by a negative feedbackmechanism However, experiments which presumably result in adecrease in chalone concentration do not result in an increasein mitotic activity It is suggested that if chalones are physiological controllers of cell division they do not act by a simplenegative feedback mechanism but require the action of a substanceto decrease their concentration  相似文献   

4.
A high-molecular glycoprotein (epidermal G2 chalone) shown to be homogeneous by electrophoresis and immunochemistry was isolated from rat skin. It exerts a strong tissue-rather than species-specific antimitotic effect on the keratinizing epithelium. The paper is concerned with its quantitative immunodiffusion determination in some tissues by means of monospecific antiserum. A clear-cut correlation between the mitotic index and the epidermal G2 chalone level in the mucosa is shown with special reference to vaginal epithelium of rats during the estrual cycle.  相似文献   

5.
MITOTIC CONTROL IN ADULT MAMMALIAN TISSUES   总被引:1,自引:0,他引:1  
Mitotic homeostasis: Mitotic control is maintained by the interaction of a tissue-specific mitosis-inhibiting chalone, which permeates the whole tissue, and a non-tissue-specific mitosis-promoting mesenchymal factor, which originates in the connective tissue and acts only on connective-tissue-adjacent cells. In the basal layer of the epidermis the mitotic rate is determined by the relative concentrations of these two substances; in the distal layers the chalone is dominant so that all cells must become post-mitotic, age, and die. Thus the perfect balance between cell gain and cell loss that is maintained equally in hypoplasia, normality, and hyperplasia is ensured by the fact that all cells forced distally by mitotic pressure enter a chalone concentration that is high enough to direct them into post-mitosis and so to their deaths. The mitotic rate of the basal epidermal cells and the ageing rate of the distal cells are both inversely related to the chalone concentration. A change in the mitotic rate is matched by an equal change in the ageing rate so that, within limits, epidermal thickness (or mass) remains constant. Epidermal thickness is determined by the tissue-specific ratio, mitotic rate: ageing rate; it is influenced by the mitotic rate only when this exceeds a certain critical level. Evidently all epithelial tissues, even when these form solid masses (e.g. liver hepato-cytes), have a similar control mechanism, the ‘basal cells’ being those that are connective-tissue-adjacent and the ‘distal cells' those that are not. Tissues that are not connective-tissue-based (e.g. erythrocytes and granulocytes) have specialized mechanisms involving differentiation from relatively undifferentiated stem cell populations, as also do the connective tissues themselves. Local tissue damage leads via local chalone loss to a temporarily and locally increased mitotic rate; chronic damage leads via chronic chalone loss to hyperplasia, the increase in tissue mass being limited by the reduced life-span of the post-mitotic cells. Compensatory hypertrophy When a tissue mass is so large (e.g. the hepatocytes) in relation to the total body mass that the escaping chalone forms a significant systemic concentration, extensive damage leads to compensatory hypertrophy. The reduced tissue mass (e.g. after partial hepatectomy) produces less chalone, leading to a reduced systemic concentration, and therefore a higher chalone loss from the surviving tissue. This results in a general mitotic response in that tissue, as the relative power of the mesenchymal factor increases, and thus to an increase in tissue mass. Growth ceases when the normal tissue mass is attained. When a large tissue suffers chronic damage (e.g. liver cirrhosis) the chronic chalone lack results in hypertrophy, which is limited by the reduced life-span of the post-mitotic cells. Tumour growth Mitotic control is lost when the chalone concentration falls so low that the ‘distal cells’ remain mitotic; cell gain then exceeds cell loss and a tumour appears. Such chalone loss is related to permanent membrane damage, which may be the central event in carcinogenesis. The evidence is that a tumour continues to produce and to respond to the chalone of its tissue of origin. As a tumour grows the systemic concentration of its chalone rises steadily so that there is an increasing mitotic inhibition, first, in the parent tissue, and second, in the tumour itself. Thus tumour growth may be described as an exponential process limited by an exponential retardation. This means that, if the host survives, the tumour growth will cease and the tumour mass will reach a plateau. This is a negative feedback mechanism which differs from compensatory hypertrophy only in that, at the plateau, the mass attained is greater than normal, and also in that, at any time, further cell damage may cause the tumour to ‘progress’. When this happens the new and higher plateau may be unattainable before the host is killed. Tumour growth is normally slower than would be expected if the mitotic advantage were the only factor involved; clearly tumour growth is usually inhibited by factors other than the chalone, in particular perhaps by the immune response to the altered cell membrane. It is an especial pleasure to acknowledge the constant help and encouragement that has been given by Johanna U. R. Deol.  相似文献   

6.
Balb/c/nu nude mice transplanted with a moderately differentiated squamous cell carcinoma were injected intraperitoneally with different doses of aqueous skin extracts containing the epidermal G2 chalone. The mitotic counts and the mitotic rates were determined in histological sections using a stathmokinetic method with vinblastine sulphate. The mitotic duration was calculated from the mitotic rates and counts. Skin extracts containing epidermal G2 chalone increased the mitotic duration in the epidermis, and a similar trend was seen in the tumour. The higher the dose of chalone, the longer the mitotic duration tended to be. A straight line of best fit used to indicate the dose/response relationship was steeper for the epidermis than for the tumour. The study thus shows that the epidermal G2 chalone not only prevents epidermal cells from entering mitosis, it also prolongs the mitotic duration. Further, the results do not contradict the theory that tumour cells may be less sensitive to chalone than normal cells.  相似文献   

7.
Mechanical stimulation of dorsal mouse skin by skin massage or removal of the horny layer results in a mutually comparable increase in DNA-labelling and mitotic activity. However, only after injury such as removal of the horny layer hyperplasia develops. This phenomenon, called ‘hyperplastic transformation’ is characterized by a transient abolition of the epidermal G1 chalone responsiveness. There is some indication that the susceptibility to a heat labile factor, probably the epidermal G2 chalone, is not affected. Skin massage neither interferes with the responsiveness to epidermal G1 chalone nor induces ‘hyperplastic transformation’. Mouse tail epidermis shows a ‘functional hyperplasia’ and responds to the G1 chalone. To explain these observations, it is assumed that the epidermal stem cell population is heterogeneous consisting of G1 chalone-sensitive and G1 chalone-insensitive cells.  相似文献   

8.
Mechanical stimulation of dorsal mouse skin by skin massage or removal of the horny layer results in a mutually comparable increase in DNA-labelling and mitotic activity. However, only after injury such as removal of the horny layer hyperplasia develops. This phenomenon, called "hyperplastic transformation" is characterized by a transient abolition of the epidermal G1 chalone responsiveness. There is some indication that the susceptibility to a heat labile factor, probably the epidermal G2 chalone, is not affected. Skin massage neither interferes with the responsiveness to epidermal G1 chalone nor induces "hyperplastic transformation". Mouse tail epidermis shows a "functional hyperplasia" and responds to the G1 chalone. To explain these observations, it is assumed that the epidermal stem cell population is heterogeneous consisting of G1 chalone-sensitive and G1 chalone-insensitive cells.  相似文献   

9.
In order to test the mitosis-inhibiting effect and the tissue specificity of the epidermal G2 chalone for tumour cells, extracts from hairless mouse epidermis were tested in short-term tissue cultures of cells from human respiratory tract epidermoid carcinomas and adenocarcinomas. The chalone inhibited strongly the mitotic activity in two cases of histologically proven epidermoid carcinoma, and had no effect in two cases of adenocarcinoma. In one case of a supposed epidermoid carcinoma, the chalone had no effect. Revision of the histology, and the result of autopsy 11 months later, showed that in this case the lesion in the lung had been a poorly differentiated metastasis from an adenocarcinoma of the ovary. Liver extracts produced in the same way as the epidermal extracts showed no mitotic inhibition in any of the cultures. These results indicate that epidermal G2 chalone produced from mouse skin is tissue specific for human epidermoid tumour cells, and also indicate that a chalone test might be used as a diagnostic tool for poorly differentiated carcinomas to see whether they are of epidermoid origin or not.  相似文献   

10.
Balb/c/nu nude mice that had been transplanted with a moderately differentiated squamous cell carcinoma were injected i.p. with different doses of epidermal chalone, and control animals were injected with saline. The labelling indices (H3TdR) and the mitotic rate (stathmokinetic method with vinblastine sulphate) were determined. In the untreated animals, both the labelling index and the mitotic rate of the tumor were considerably higher than in the epidermis, and the rate of cell birth was almost twice that of the epidermis. Higher doses of chalone were needed to reduce the labelling index for the tumour than for the epidermis, and there was generally a less pronounced dose/response relationship in the tumours than in the epidermis. The same was true of the mitotic rate but here the results were not as obvious as for the labelling index. A possible explanation of the results may be that the tumour cells are less sensitive than epidermal cells to the injected chalones, or that reduced vascularization of the transplanted tumour may lead to reduced access of chalone, or that tumour necrosis may pay a role. However, it is evident that the tumour cells react less than the epidermis to both the G1 and the G2 chalone, and thus the findings of this study do not provide any evidence against the theory that epidermoid transplanted tumours are less sensitive to epidermal chalones than normal tissue of the same histogenetic origin.  相似文献   

11.
In order to test the mitosis-inhibiting effect and the tissue specificity of the epidermal G2 chalone for tumour cells, extracts from hairless mouse epidermis were tested in short-term tissue cultures of cells from human respiratory tract epidermoid carcinomas and adenocarcinomas. the chalone inhibited strongly the mitotic activity in two cases of histologically proven epidermoid carcinoma, and had no effect in two cases of adenocarcinoma. In one case of a supposed epidermoid carcinoma, the chalone had no effect. Revision of the histology, and the result of autopsy 11 months later, showed that in this case the lesion in the lung had been a poorly differentiated metastasis from an adenocarcinoma of the ovary. Liver extracts produced in the same way as the epidermal extracts showed no mitotic inhibition in any of the cultures. These results indicate that epidermal G2 chalone produced from mouse skin is tissue specific for human epidermoid tumour cells, and also indicate that a chalone test might be used as a diagnostic tool for poorly differentiated carcinomas to see whether they are of epidermoid origin or not.  相似文献   

12.
Control of the rate of cellular proliferation in the erythron seems to be mediated by a tissue-specific mitotic inhibitor, termed the erythrocytic chalone. the function of this substance seems to be to prevent excessive proliferation of the erythrocyte precursor cells by means of a negative feedback and in terms of peripheral cell numbers.
The erythrocytic chalone is present in mature erythrocytes, from which it can be extracted by incubation in a chemically defined medium. It is also present in fresh normal serum and it is possible that in physiological conditions the factor is continuously liberated from mature erythrocytes into the surrounding plasma.
In the rat, in an artificially induced polycythaemia the concentration of the chalone in the serum is increased and this increment appears to be the sole cause of the enhanced inhibitory action of polycythaemic serum on the proliferation of the bone marrow cells in vitro.
The mode of action of the erythrocytic chalone seems to be to prevent the erythrocyte precursor cells from entering the generative cell cycle; the chalone thus regulates the production of erythrocytes by changing the 'proliferation efficiency' in the erythron.
So far, nothing is known about the chemical nature of the erythrocytic chalone. However, in gel filtration it is eluted in the same zone as the granulocytic chalone, its molecular weight thus being about 2000-4000.  相似文献   

13.
The action of hepatic chalone on cell proliferation in inoculated hepatoma 22a of mice was studied in the presence of a changed level of glucocorticoid hormones in experimental animals. Chalone was obtained from the liver of intact rats by ethanol precipitation. The intensity of cell proliferation in hepatoma was evaluated by the colcemide and autoradiography methods. Six hours after chalone injection c-mitosis in the tumor decreased 2.7-fold, and the DNA index 6.8-fold. It may be concluded that the preparation used contains both G1- and G2-chalones. Single or repeated injections of hydrocortisone to mice inhibits cell proliferation to a less degree than administration of chalone alone. Combination of hydrocortisone and chalone produces the same effect as injection of chalone alone. Adrenalectomy diminishes susceptibility of hepatoma cells to exogenous chalone. The degree of tumor proliferative activity in the adrenalectomized animals was half as much after chalone injection, as compared to that in intact animals. Thus, a certain level of glucocorticoid hormones in hepatoma tissue is necessary to reveal the action of chalones.  相似文献   

14.
Extracts of hairless mouse skin were tested for their content of epidermal G1 inhibitor and G2 inhibitor at daily intervals after X-irradiation with 4 500 or 2 250 rad. After either dose the skin extracts lacked G1 inhibitory activity on days 5 and 6 respectively after irradiation. This coincided with the time when the epidermal mitotic rate again became normal and started a period of over-shoot. The time interval of 5-6 days corresponds to the turnover time of the differentiating cells in hairless mouse back epidermis. The findings indicate that the proliferating cells in epidermis can respond to changes in local chalone concentration, even after X-irradiation at the tested doses, and that the irradiated epidermal cell population still retains some important properties inherent in a cybernetically regulated system. The local G2-inhibitory activity also varied after irradiation, but these variations could not be directly related to the corresponding mitotic rates.  相似文献   

15.
Extracts prepared from the 30 % distilled water homogenates of rat liver have been found to contain an anti-mitotic factor(s). In the 15-day-old chick embryo, the antimitotic effect was tissue specific in that only hepatocytes and not control tissues had depressed mitotic indices. The antimitotic effect was observable by 4 h after egg shell air sac injection but abolished by 8 h. These data are consistent with the presence of a G2—M blocking factor. These data also indicate that the 15-day-old chick embryo will be useful as a chalone assay system.  相似文献   

16.
It was shown in the culture of rat bone marrow cells in experimental polycythemia that the chalone activity of erythrocytic chalone considerably drops in the presence of phytohemagglutinin (PHA). The chalone inhibits the agglutinating activity of PHA with respect to bone marrow cells. Absorption of the chalone on the immobilized PHA leads to disappearance from it and of PAS-positive bands recorded electrophoretically and to a strong decrease in PAS-negative band intensity. Experiments with preliminary incubation of rat red cells before preparation of the chalone suggest that in the course of its preparation two polypeptides one of which is PAS-positive are released into the medium. It is suggested that the chalone includes superficial membrane proteins of red cells, possibly, in the form of a combination of PAS-positive and PAS-negative bands. Potential mechanisms of chalone release from the surface of cells and features of their action on the cells are discussed.  相似文献   

17.
The effect of esophageal chalone on epithelial cell reproduction in the esophagus was studied. Lyophilized aqueous extract from the esophagus was used. The following properties of the esophageal preparation have been revealed: it is water-soluble; it is present in the same tissue where it acts; it has tissue-specific effect (the preparation does not act on the mitotic and radioactive index in the epithelial crypts of the small intestine); its action is short-term and reversible; its effect on DNA division and synthesis in the esophageal epithelial cells is dose-dependent. Therefore, it is suggested that the esophageal preparation contains a chalone.  相似文献   

18.
It has been shown that the DNA synthesis inhibitory effect of chalone on the vaginal epithelium of ovariectomized mice administered epidermal chalone three times (8, 4 and 1 h before 17-beta-estradiol injection) is dependent on chalone injection made 1 h before hormone injection. The decrease in the number of DNA synthesizing cells induced by 3-fold injection of chalone during 2 days is linked with the reduction in the level of exogenous estrogen in ovariectomized mice rather than with the duration of epidermal chalone action.  相似文献   

19.
Epidermal DNA synthesis, the epidermal mitotic rate, and the responsiveness to the epidermal G1 and G2 inhibitors were examined in newborn mice at different times after birth. The rate of epidermal cell renewal was in general low during the first two weeks of life. Later the two growth parameters increased and reached very high values at 32-33 days after birth. The rate of epidermal cell proliferation then decreased to a level comparable with that found in adult hairless mouse epidermis at 40-45 days. A single i.p. injection of skin extract containing the two epidermal growth inhibitors induced varying types of responses. The epidermal G2 inhibitor stimulated the mitotic rate on day 2 and day 10, but inhibited it on all other days. The epidermal G1 inhibitor brought about an increase in epidermal DNA synthesis on day 6 and possibly on the following days. No response at all seen at 2, 4, 17, and 32 days after birth. At the other examined times the inhibition was similar to that found in adult mice. These findings differed from those made in vitro on separated newborn mouse epidermal cells (our own unpublished data), and we suggest that the variability of newborn mouse epidermis could be an expression of the immaturity of the skin as a whole, and that dermis in some way modifies the response of epidermis to exogenous epidermal chalone. Our study did not support the theory that the nonresponsiveness of newborn mouse epidermal at certain times could be due to the presence of nonresponsive stem cells in epidermis.  相似文献   

20.
The serum of patients with progressive psoriasis lessens the inhibitory activity of epidermal chalones if it is added to the cultural medium before chalones. On the contrary, chalones inhibit DNA synthesis in epithelial cells if they are added to the cultural medium before psoriatic serum. The blood serum of patients with stationary and regressive psoriasis does not exert any effect on chalone activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号