首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spontaneously active Br neuron from the brain-subesophageal ganglion complex of the garden snail Helix pomatia rhythmically generates regular bursts of action potentials with quiescent intervals accompanied by slow oscillations of membrane potential. We examined the involvement of the Na(+)/K(+) pump in modulating its bursting activity by applying a static magnetic field. Whole snail brains and Br neuron were exposed to the 10-mT static magnetic field for 15?min. Biochemical data showed that Na(+)/K(+)-ATPase activity increased almost twofold after exposure of snail brains to the static magnetic field. Similarly, (31)P NMR data revealed a trend of increasing ATP consumption and increase in intracellular pH mediated by the Na(+)/H(+) exchanger in snail brains exposed to the static magnetic field. Importantly, current clamp recordings from the Br neuron confirmed the increase in activity of the Na(+)/K(+) pump after exposure to the static magnetic field, as the magnitude of ouabain's effect measured on the membrane resting potential, action potential, and interspike interval duration was higher in neurons exposed to the magnetic field. Metabolic pathways through which the magnetic field influenced the Na(+)/K(+) pump could involve phosphorylation and dephosphorylation, as blocking these processes abolished the effect of the static magnetic field.  相似文献   

2.
To characterize the inhibitory effect of a static magnetic field, action potentials (AP) were elicited by intracellular application of 1 ms depolarizing current pulses of constant amplitude to the somata of adult mouse dorsal root ganglion neurons in monolayer dissociated cell culture. During the control period, <5% of stimuli failed to elicit AP. During exposure to an ?11 mT static magnetic field at the cell position produced by an array of four permanent center-charged neodymium magnets of alternating polarity (MAG-4A), 66% of stimuli failed to elicit AP. The number of failures was maximal after about 200-250 s in the field and returned gradually to baseline over 400–600 s. A direct or indirect effect on the conformation of AP generating sodium channels could account for these results because (I) failure was preceded often by reduction of maximal rate of rise, an indirect measure of sodium current; (2) recovery was significantly prolonged in more than one-half of neurons that were not stimulated during exposure to the MAG-4A field; and (3) resting membrane potential, input resistance, and chronaxie were unaffected by the field. The effect was diminished or prevented by moving the MAG-4A array along the X or Z axis away from the neuron under study and by increasing the distance between magnets in the XY plane. Reduction of AP firing during exposure to the ?0.1 mT field produced by a MAG-4A array of micromagnets was about the same as that produced by a MAG-4A array of the large magnets above. The ?28 mT field produced at cell position by two magnets of alternating polarity and the ?88 mT field produced by a single magnet had no significant effect on AP firing. These findings suggest that field strength alone cannot account for AP blockade. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Calcium chloride and snail physiological salt solutions were exposed to static magnetic fields (2.3–350 mT), and the physical properties of the solutions as well as their biologic effects were studied. Our preliminary observations show that these fields alter physicochemical properties of CaCl2 solutions and the functional effects of physiological solutions. Experiments on CaCl2 solutions demonstrated field-dependent changes of electrical conductivity, with the magnitude and the direction of conductivity change being a function of both concentration and field intensity. The changes in conductivity were maintained for periods in excess of 1 h after exposure. Conductivity changes were not found after exposure of physiological solutions to static magnetic fields, but changes of biological consequence did occur. Other experiments showed that there were several changes in cellular function observed in ganglia and isolated neurons of Helix pomatia when the perfusing medium was changed from the normal physiologic solution to the same solution after exposure to magnetic fields. These changes include membrane depolarization and increased action potential discharge, reduced uptake of Ca into cells, altered content of cyclic nucleotides in ganglia, and increased volume of isolated cell bodies. A change in hydration of calcium ions may be one of the consequences of magnetic-field exposure, and in physiological solutions this change may have functional consequences. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Summary 1. Zinc-induced actions were studied on the A-current and neuronal activity in identified and unidentified nerve cells of the snail,Helix pomatia L., under voltage and current clamp conditions.2. Extracellularly applied Zn2+ attenuated the peak amplitude of the A-current in a potential- and dose-dependent way (K i=1.8 mM at –30 mV,n H=0.6).3. Attenuation of the A-currents was initiated as Zn2+ shifted the potential dependence of both activation and inactivation of the currents toward more positive potential values.4. Zinc concomitantly prolonged the time to peak and decay time constant of the A-currents (K d=1.7 mM,n H=1.4) as well.5. Zn2+ decreased the resting membrane potential and the spike amplitude and increased the action potential duration and the input resistance of the cells in current clamp experiments.6. A complex action of zinc increased the neuronal excitability, indicating spontaneous and synaptically evoked spike discharges.7. Common and specific zinc binding sites are supposed on vertebrate and invertebrate A-type potassium channel proteins, where binding Zn2+ can modulate the gating properties and kinetics of the fast outward potassium currents.  相似文献   

5.
The effect of intracellular iontophoretic injection of cyclic AMP on electrical activity of neurons RPa1, RPa3, LPa2, LPa3, and LPl1 in the corresponding ganglia ofHelix pomatia was investigated. Injection of cyclic AMP into neuron LPl1 was found to cause the appearance of rhythmic activity (if the neuron was originally "silent"), an increase in the frequency of spike generation (if the neuron had rhythmic activity), and a decrease in amplitude of waves of membrane potential, in the duration of the interval between bursts, and in the number of action potentials in the burst (if the neuron demonstrated bursting activity). In the remaining "silent" neurons injection of cyclic AMP led to membrane depolarization. Injection of cyclic AMP into neurons whose membrane potential was clamped at the resting potential level evoked the development of an inward transmembrane current (cyclic AMP current), the rate of rise and duration of which increased proportionally to the size and duration of the injection. Theophylline in a concentration of 1 mM led to an increase in the amplitude and duration of the cyclic AMP current by about 50%. It is concluded that a change in the cyclic AMP concentration within the nerve cell may modify the ionic permeability of its membrane and, correspondingly, its electrical activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 517–525, September–October, 1980.  相似文献   

6.
Among the three clusters of dorsal unpaired median neurons of the Periplaneta americana terminal abdominal ganglion, another type of neuron has been characterized by anterograde cobalt stainings and microelectrode technique. These neurons are bilaterally distributed in the ganglion. Their axons ipsilaterally exit the ganglion via the anterior proctodeal nerves, to innervate the proctodeum. They are characterized by a long-duration overshooting action potentials and a low firing frequency. Most often the depolarizing phase is composed of two peaks: a fast spike followed by a slow phase. Tetrodotoxin suppressed the fast peak and blocked the spontaneous activity suggesting that sodium channels are involved in the depolarizing phase as well as in the initiation of the action potential. Calcium channel blockers induced a disappearing of the slow depolarizing phase indicating the participation of calcium ions and a reduction of the afterhyperpolarization reflecting the participation of calcium-activated potassium channels. Furthermore, cadmium, as lanthanum or barium, induced a long-lasting plateau potential, which would be due to a persistent sodium conductance. Tetraethylammonium increased the duration of the action potential indicating that potassium channels are implicated in the falling phase. The results demonstrate that these neurons are different from other cells, especially dorsal unpaired median neurons, of the central nervous system of the cockroach.Abbreviations DUM dorsal unpaired median - SDP slow depolarizing phase - AP action potential - PAP plateau action potential - TAG terminal abdominal ganglion - CNS central nervous system  相似文献   

7.
To characterize the properties of static magnetic fields on firing of action potentials (AP) by sensory neurons in cell culture, we developed a mathematical formalism based on the expression for the magnetic field of a single circular current loop. The calculated fields fit closely the field measurements taken with a Hall effect gaussmeter. The biological effect induced by different arrays of permanent magnets depended principally on the spatial variation of the fields, quantified by the value of the gradient of the field magnitude. Magnetic arrays of different sizes (macroarray: four center-charged neodymium magnets of ?14 mm diameter; microarray: four micromagnets of the same material but of ?0.4 mm diameter) allowed comparison of fields with similar gradients but different intensities at the cell position. These two arrays had a common gradient value of ?1 mT/mm and blocked >70% of AP. Alternatively, cells placed in a field strength of ?0.2 mT and a gradient of ?0.02 mT/mm produced by the macroarray resulted in no significant reduction of firing; a microarray field of the same strength but with a higher gradient of ?1.5 mT/mm caused ?80% AP blockade. The experimental threshold gradient and the calculated threshold field intensity for blockade of action potentials by these arrays were estimated to be ?0.02 mT/mm and ?0.02 mT, respectively. In conclusion, these findings suggest that spatial variation of the magnetic field is the principal cause of AP blockade in dorsal root ganglia in vitro. © 1995 Wiley-Liss, Inc.  相似文献   

8.
To explore possible neurogenic functions of the genes of the Hox/HOM complexes, we injected the mRNA from the leech homeobox genes Lox1 and Lox4 into adult neurons that normally do not express them. The ectopic expression of Lox1 induced a specific transformation in the electrical properties of certain identified neurons: action potential amplitude increased about threefold after the injections. This effect of Lox1 expression was restricted, among cell types examined, to the anterior pagoda neurons (APs) and the nut neurons. This effect was also restricted to Lox1 ectopic expression; the action potentials of APs and nut neurons were not enlarged when the mRNAs of either Lox4, another leech Hox/HOM gene, or β-galactosidase were injected. Lox1 mRNA injection did not affect the resting potential, input resistance, or axonal morphology of the transformed APs, raising the possibility that it acts via the modification of voltage-dependent ion channels. Thus, a specific homeobox gene can transform key neuronal characteristics in a cell-specific manner. We may thus add electrophysiologic properties to other aspects of neuronal identity determined by homeobox gene expression. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 11–17, 1997  相似文献   

9.
Influence of magnetic field on activity of given anaerobic sludge   总被引:1,自引:0,他引:1  
Two modes of magnetic fields were applied in the Cr6+ removal sludge reactors containing two predominated strains—Bacillus sp. and Brevibacillus sp., respectively. The magnetic field mode I* of 0–4.5 or 0–14 mT between pieces was obtained by setting the magnetic pieces with the surface magnetic density of 0–6 or 0–20 mT into the reactor, and the magnetic field mode II* of 6, 20, or 40 mT on the return line was obtained by controlling the working distance of the permanent magnet outside the sludge return line. The effects of different magnetic fields on the activity of the given anaerobic sludge were studied by comparing with the control (absent of magnetic field). The results showed that the magnetic field of 0–4 mT improved the activity of given sludge most effectively, Umax·\textCH4 U_{{\max \cdot {\text{CH}}_{4} }} (the peak methane-producing rate) and the methane producing volume per gCODCr reached 64.3 mlCH4/gVSS.d and 124 mlCH4/gCODCr, which increased by 20.6 and 70.7%, respectively, compared with the control. And the magnetic field of 20 mT took second place. It could be concluded that the input of some magnetic field could improve the activity of anaerobic sludge by increasing the transformation efficiency of CODCr matters to methane, and the total organic wastage did not increase.  相似文献   

10.
Summary In Manduca sexta larvae, sensory neurons innervating planta hairs on the tips of the prolegs make monosynaptic excitatory connections with motoneurons innervating proleg retractor muscles. Tactile stimulation of the hairs evokes reflex retraction of the proleg. In this study we examined activity-dependent changes in the amplitude of the excitatory postsynaptic potentials (EPSPs) evoked in a proleg motoneuron by stimulation of individual planta hair sensory neurons. Deflection of a planta hair caused a phasic-tonic response in the sensory neuron, with a mean peak instantaneous firing frequency of >300 Hz, and a tonic firing rate of 10–20 Hz. Direct electrical stimulation was used to activate individual sensory neurons to fire at a range of frequencies including those observed during natural stimulation of the hair. At relatively low firing rates (e.g., 1 Hz), EPSP amplitude was stable indefinitely. At higher instantaneous firing frequencies (>10 Hz), EPSPs were initially facilitated, but continuous stimulation led rapidly to synaptic depression. High-frequency activation of a sensory neuron could also produce post-tetanic potentiation, in which EPSP amplitude remained elevated for several min following a stimulus train. Facilitation, depression, and post-tetanic potentiation all appeared to be presynaptic phenomena. These activity-dependent changes in sensory transmission may contribute to the behavioral plasticity of the proleg withdrawal reflex observed in intact insects.Abbreviations ACh acetylcholine - AChE acetylcholine esterase - CNS central nervous system - EPSP excitatory postsynaptic potential - I h injected hyperpolarizing current - LTP long-term potentiation - PPR principal planta retractor motoneuron - PTP post-tetanic potentiation - R in input resistance - V h hyperpolarized potential - V m membrane potential - VN ventral nerve - VNA anterior branch of the ventral nerve - V r resting potential.  相似文献   

11.
We investigated the effects of 2 and 4 mM 4-aminopyridine (4-AP, – blocker of the transient outward current Ito) on the electrophysiological response to regional ischemia and reperfusion. Spontaneously beating rat hearts were subjected to coronary occlusion (10 min) followed by reperfusion. The surface electrogram and the membrane potential from subepicardial left ventricular cells were recorded throughout. The basal effect of 4-AP was a dose dependent increase in the action potential duration (APD90) without changes in the resting potential or the heart rate. During early ischemia resting depolarization (from 87.4 ± 1.9–70.1 ± 2.5 mV in the controls) was enhanced by 4 mM, 4-AP (84.3 ± 1.4 mV vs. 61.7 ± 1.3 mV) whereas APD90 increased by 73.5%. These effects resulted in a marked reduction in the duration of diastolic intervals that led to conduction failure and aborted responses. A partial recovery was found by the end of ischemia concomitant with APD90 shortening in both, control and 4-AP treated hearts. On reperfusion, 4-AP did not influence the initial incidence of ventricular tachyarrhythmias but decreased their duration from 531.5 ± 56.3–260.7 ± 100 sec (2 mM) and to 75.6 ± 10.5 sec (4 mM). These data confirm others obtained by Henry et al. [11] in isolated cells indicating that ischemia induces sequential changes in several K+ conductances. In addition, they show that changes in action potential characteristics may exert beneficial effects on reperfusion arrhythmias by acting on the arrhythmic substrate without suppressing the trigger mechanism.  相似文献   

12.
(1) Fluctuations of the membrane potential states are essential for the brain functions from the response of individual neurons to the cognitive function of the brain. It has been reported in slice preparations that the action potential duration is dependent on the membrane potential states. (2) In order to examine whether dependence of action potential duration on the membrane potential could happen in isolated individual neurons that have no network connections, we studied the membrane potential dependence of the action potential duration by artificially setting the membrane potentials to different states in individual cultured rat hippocampal neurons using patch-clamp technique. (3) We showed that the action potential of individual neurons generated from depolarized membrane potentials had broader durations than those generated from hyperpolarized membrane potentials. (4) Furthermore, the membrane potential dependence of the action potential duration was significantly reduced in the presence of voltage-gated K+ channel blockers, TEA, and 4-AP, suggesting involvement of both delayed rectifier I K and transient I A current in the membrane potential dependence of the action potential duration. (5) These results indicated that the dependence of action potential duration on the membrane potential states could be an intrinsic property of individual neurons. Bo Gong and Mingna Liu contributed equally to this work.  相似文献   

13.
Tang  Hengfang  Wang  Peng  Wang  Han  Fang  Zhiwei  Yang  Qiang  Ni  Wenfeng  Sun  Xiaowen  Liu  Hui  Wang  Li  Zhao  Genhai  Zheng  Zhiming 《Bioprocess and biosystems engineering》2019,42(12):1923-1933

Increasing evidence shows that static magnetic fields (SMFs) can affect microbial growth metabolism, but the specific mechanism is still unclear. In this study, we have investigated the effect of moderate-strength SMFs on growth and vitamin K2 biosynthesis of Flavobacterium sp. m1-14. First, we designed a series of different moderate-strength magnetic field intensities (0, 50, 100, 150, 190 mT) and exposure times (0, 24, 48, 72, 120 h). With the optimization of static magnetic field intensity and exposure time, biomass and vitamin K2 production significantly increased compared to control. The maximum vitamin K2 concentration and biomass were achieved when exposed to 100 mT SMF for 48 h; compared with the control group, they increased by 71.3% and 86.8%, respectively. Interestingly, it was found that both the cell viability and morphology changed significantly after SMF treatment. Second, the adenosine triphosphate (ATP) and glucose-6-phosphate dehydrogenase (G6PDH) metabolism is more vigorous after exposed to 100 mT SMF. This change affects the cell energy metabolism and fermentation behavior, and may partially explain the changes in bacterial biomass and vitamin K2 production. The results show that moderate-strength SMFs may be a promising method to promote bacterial growth and secondary metabolite synthesis.

  相似文献   

14.
We have applied static (SMF) or alternating magnetic fields (AMF) to snail (Helix aspersa) single-unit neurons, in the range of those applied in magnetic stimulation (MS)/transcranial magnetic stimulation (TMS). From the experiments we have performed during the past 10 years, we have collected a blind selection of neurons and their responses to either SMF or AMF. Blind selection means that we do not know the nature of neurons. We do not know whether they are sensitive, motor, secretory, pacemaker, or inter-neurons. We have seen that the behavior of single-unit neurons under SMF/AMF exposure (SMF range: 3 mT–0.7 T; AMF range: 1–15 mT) fits well with the electrophysiologic activity described for mammals and human whole brain under MS/TMS (pulsed magnetic field range: 0.3 mT–2.4 T). The neuron experiments shown here have been aleatorily selected from a collection of about 200 neurons studied. Our results could explain some of the effects described induced in mammal neurons under MS/TMS for clinical purposes.  相似文献   

15.
Hemolymph of adultAplysia californica significantly affects neurite outgrowth of identified neurons of the land snailHelix pomatia. The metacerebral giant cell (MGC) and the motoneuron C3 from the cerebral ganglion and the neuron B2 from the buccal ganglion ofH. pomatia were isolated by enzymatic and mechanical dissociation and plated onto poly-l-lysine-coated dishes either containing culture medium conditioned byHelix ganglia, or pre-treated withAplysia hemolymph. To determine the extent of neuronal growth we measured the neurite elongation and the neuritic field of cultured neurons at different time points.Aplysia hemolymph enhances the extent and rate of linear outgrowth and the branching domain ofHelix neurons. With the hemolymph treatment the MGC neuron more consistently forms specific chemical synapses with its follower cell B2, and these connections are more effective than those established in the presence of the conditioned medium.  相似文献   

16.
Summary Electrophysiological and pharmacological properties distinguished subtypes of adult mammalian dorsal root ganglion neurons (DRGn) in monolayer dissociated cell culture. By analogy of action potential waveform and duration, neurons with short duration (SDn) and long duration (LDn) action potentials resembled functionally distinct subtypes of DRGn in intact ganglia. Patch clamp and conventional intracellular recording techniques were combined here to elucidate differences in the ionic basis of excitability of subtypes of DRGn in vitro. Both SDn and LDn were quiescent at the resting potential. Action potentials of SDn were brief (< 2 msec), sensitive to tetrodotoxin (TTX, 5–10 nM), exhibited damped firing during long depolarizations, and did not respond to algesic agents applied by pressure ejection. Action potentials of LDn were 2–6 msec in duration, persisted in 30 µM TTX, and fired repetitively during depolarizing current pulses or exposure to algesic agents (e.g., capsaicin, histamine and bradykinin). Whole-cell recordings from freshly dissociated neurons revealed two inward sodium currents (INa; variable with changes in sodium but not calcium concentration in the superfusate) in various proportions: a rapidly activating and inactivating, TTX-sensitive current; and, a slower, TTX (30 M)-resistant INa. Large neurons, presumable SDn, had predominantly TTX-sensitive current and little TTX-resistant current. The predominent inward current of small neurons, presumably LDn, was TTX-resistant with a smaller TTX-sensitive component. By analogy to findings from intact ganglia, these results suggest that fundamentally different ionic currents controlling excitability of subtypes of DRGn in vitro may contribute to functional differences between subtyes of neurons in situ.  相似文献   

17.
Atrial fibrillation (AF) has been linked to increased inward rectifier potassium current, IK1, either due to AF-induced electrical remodelling, or from functional changes due to the Kir2.1 V93I mutation. The aim of this simulation study was to identify at cell and tissue levels' mechanisms by which increased IK1 facilitates and perpetuates AF. The Courtemanche et al. human atrial cell action potential (AP) model was modified to incorporate reported changes in IK1 induced by the Kir2.1 V93I mutation in both heterozygous (Het) and homozygous (Hom) mutant forms. The modified models for wild type (WT), Het and Hom conditions were incorporated into homogeneous 1D, 2D and 3D tissue models. Restitution curves of AP duration (APD), effective refractory period (ERP) and conduction velocity (CV) were computed and both the temporal and the spatial vulnerability of atrial tissue to re-entry were measured. The lifespan and tip meandering pattern of re-entry were also characterised. For comparison, parallel simulations were performed by incorporating into the Courtmanche et al. model a linear increase in maximal IK1 conductance. It was found that the gain-in-function of V93I ‘mutant’ IK1 led to abbreviated atrial APs and flattened APD, ERP and CV restitution curves. It also hyperpolarised atrial resting membrane potential and slowed down intra-atrial conduction. V93I ‘mutant’ IK1 reduced the tissue's temporal vulnerability but increased spatial vulnerability to initiate and sustain re-entry, resulting in an increased overall susceptibility of atrial tissue to arrhythmogenesis. In the 2D model, spiral waves self-terminated for WT (lifespan < 3.3 s) tissue, but persisted in Het and Hom tissues for the whole simulation period (lifespan > 10 s). The tip of the spiral wave meandered more in WT tissue than in Het and Hom tissues. Increased IK1 due to augmented maximal conductance produced similar results to those of Het and Hom Kir2.1 V93I mutant conditions. In the 3D model the dynamic behaviour of scroll waves was stabilized by increased IK1. In conclusion, increased IK1 current, either by the Kir2.1 V93I mutation or by augmented maximal conductance, increases atrial susceptibility to arrhythmia by increasing the lifespan of re-entrant spiral waves and the stability of scroll waves in 3D tissue, thereby facilitating initiation and maintenance of re-entrant circuits.  相似文献   

18.
Neuron RPa2 ofHelix pomatia can generate rhythmic (beating) or periodic (bursting) activity. A spontaneous switch from beating to bursting activity takes place in the course of tens of minutes. Similar changes in electrical activity can be induced by the addition of the water-soluble fraction obtained from a homogenate of snail ganglia to the experimental chamber. Artificial polarization of the membrane of neuron RPa2 by asteady inward current leads to an increase in the duration of intervals between bursts and to a decrease in the number of action potentials in the burst. With an increase in amplitude of the polarizing current, action potential generation ceases completely, but generation of waves of membrane potential persists. If the voltage on the neuron membrane is clamped, periodic fluctuations of membrane current disappear. It is suggested that action potential generation by neurons RPa2 is determined by the properties of the potential-dependent conductance of its membrane, i.e., that it is endogenous in origin and can be regulated by compounds acting on the membrane. These compounds, secreted by other neurons, resemble neurotransmitters or neurohormones.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 406–412, July–August, 1981.  相似文献   

19.
Patch clamp experiments were conducted on satellite glial cells attached to the cell body of neurons in place within the nervous system of the snail Helix pomatia. The glial cells were studied using cell-attached and whole-cell patch clamp configurations while the underlying neurons were under current or voltage clamp control.The resting potential of the glial cells (–69 mV) was more negative than that of the underlying neurons (–53 mV), due to their high K+ selectivity. Densely packed K+ channels were present, some of which were active at the cell resting potential. Neuronal firing elicited a cumulative depolarization of the glial cells. Large K+ currents flowing from V-clamped neurons depolarized the glial layer by up to 30 mV. The glial depolarization was directly correlated with the size of the neuronal K+ current. The glial cells recovered their resting potential within 2–5 sec. The neuronal depolarization induced a delayed (20–30 sec) and persistent (3–4 min) increase in the glial K+ channel opening probability. Likewise, pulses of K+ (20–50 mM)-rich saline activated the glial channels, unless the underlying neuron was held hyperpolarized. In low Ca2+-high Mg2+ saline, neuron depolarization and K+-rich saline did not activate the glial K+ channels.These data indicate that a calcium-dependent signal released from the neuronal cell body was involved in glial channel regulation. Neuron-induced channel opening may help eliminate the K+ ions flowing from active neurons.I. Gommerat is recipient of a fellowship from the Ministère de la Recherche et de la Technologie.This work was supported by the CNRS and by a grant from the Fondation pour la Recherche Médicale. We would like to thank Mrs. M. André and Mr. G. Jacquet for technical assistance and Mrs. J. Blanc for improving the English.  相似文献   

20.
Changes in the cholesterol levels dynamically alter the microenvironment of the plasma membrane and have been shown to modify functions of ion channels. However, the cellular effect of these modifications is largely unknown. In this report, we demonstrate that cholesterol levels modulate neuronal excitability in rat hippocampal neurons. Reduction of cholesterol levels shortened the duration and increased the firing frequency and peak amplitude of action potentials, while enrichment of cholesterol reversed the effect. Furthermore, we showed that reduction of cholesterol levels increased, while enrichment of cholesterol decreased the amplitude of the delayed rectifier IK currents. On the other hand, reduction of cholesterol levels slowed down the inactivation of the fast transient IA currents, but enrichment of cholesterol had no significant effect on the IA currents. Besides, alteration in cholesterol levels had no significant effect on the action potential in the presence of blockers for both IK and IA currents. These observations demonstrate that cholesterol levels bi-directionally regulate the neuronal excitability mainly through modifications of the IK and IA currents, suggesting an optimum level of cholesterol for the optimum excitability of neurons. Alterations in the neuronal cholesterol levels have been associated with aging, cognitive decline, neurodegenerative diseases, etc. Therefore, our findings are important for a deeper understanding of the relationship between the cholesterol level and dysfunctions of the brain at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号