首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The hydrolysis of corn oil in the presence of a lipase from Pseudomonas sp. immobilized within the walls of a hollow-fiber reactor was studied at 30 degrees C. To assess the selectivity of this immobilized enzyme, the effluent concentrations of five different free fatty acids were measured using high-performance liquid chromatography (HPLC). Several rate expressions associated with a generic ping-pong bi-bi mechanism were used to fit the experimental data for this lipase-catalyzed reaction. A multiresponse nonlinear regression method was employed to determine the kinetic parameters associated with these rate expressions. Quasi-optimum operating conditions corresponded to 30 degrees C and a buffer pH value of 7.0. Under these conditions, the concentration of free linoleic acid (C18:2) (the fatty acid of primary interest) in the effluent oil stream for a fluid residence time of 6 h was approximately 0.5 M.  相似文献   

2.
A lipase from Aspergillus niger, immobilized by physical adsorption on hydrophobic hollow fibers made of microporous polypropylene, was used to effect the hydrolysis of the glycerides of melted butterfat at 40, 50, 55, and 60°C (pH 7.0), and at pH 3.0, 4.0, 5.0, 7.0, 8.0, and 9.0 (40°C). McIlvane buffer and melted butterfat were pumped cocurrently through the hollow fiber reactor. The concentrations of ten different free fatty acids in the effluent oil stream were measured by HPLC. Multiresponse nonlinear regression methods were employed to fit the data to multisubstrate rate expressions derived from a Ping Pong Bi Bi mechanism in which the rate controlling step is deacylation of the enzyme. Thermal deactivation of the immobilized lipase was also included in the mathematical model of reactor performance. A postulated normal distribution of vmax with respect to the number of carbon atoms of the fatty acid residue (with an additive correction for the number of double bonds) was found to provide the best statistical fit of the data. The models developed can be used to independently predict the effects of either the pH or the temperature, as well as the reactor space time and the time elapsed after immobilization, on the free fatty acid profile of the lipolyzed butteroil product.  相似文献   

3.
A lipase from Aspergillus niger immobilized by adsorption on microporous, polypropylene hollow fibers was used to effect the hydrolysis of the glycerides of melted butterfat at 40 degrees C and pH 7.0. Mcllvane buffer was pumped through the lumen and melted butterfat was pumped courrently through the shell side of a shell-and-tube reactor. Nonlinear regression methods were employed to determine the kinetic parameters of three nested rate expressions derived from a Ping Pong Bi Bi enzymatic mechanism coupled with three nested rate expressions for the thermal deactivation of the enzyme. For the reaction conditions used in this research, a four-parameter rate expression (which includes a two-parameter deactivation rate expression and a two-parameter hydrolysis rate expression) is sufficient to model the overall release of free fatty acids from the triglycerides of butterfat as a function of space time and time elapsed after immobilization. At a space time of 3.7 h immediately after immobilization of lipase, 50% of the fatty acid residues esterified in the sn-1,3 positions of the triglycerides can be released in the hollow-fiber reactor.  相似文献   

4.
A lipase from A spergillus niger, immobilized by adsorption on a microporous, polypropylene flat-sheet membrane, was used to effect the continous hydrolysis of the glycerides of melted butterfat at 35°C. For the reaction conditions used in this research, a pseudo-zero order rate expression can be used to model the kinetics of the overall hydrolysis of butterfat. Multiresponse nonlinear regression methods were employed to determine the kinetic parameters of a multisubstrate rate expression derived fro ma mechanism based on the general Michaëlis–Menten approach. For the multiresponse data taken at pH 7.0, the dependence of the maximum rate of release of each fatty acid residue of butterfat on its carbon chain length is accurately described by a skewed, bell-shaped (or Γ-type) distribution. Data taken at five different pH values were fit assuming a Dixon–Webb diprotic model for the pH dependence of the reaction rate. The thermal deactivation of the immobilized lipase obeyed first-order kinetics with a half-life of 19.9 days at 35°C. The multisubstrate model is useful for the prediction of the free fatty acid profile of lipolyzed butterfat, whereas the lumped-substrate model provides an estimate of the overall degree of hydrolysis as a function of the reactor space time.  相似文献   

5.
A lipase from Aspergillus niger immobilized by adsorption on microporous, polypropylene hollow fibers was used to effect the continuous hydrolysis of the glycerides of butter oil at 40 degrees C and pH 7.0. The effluent concentrations of 10 different free fatty acid products were measured by highperformancee liquid chromatography (HPLC). Multiresponse nonlinear regression methods were used to fit the data to a multisubstrate rate expression derived from a Ping Pong Bi Bi mechanism in which the rate-controlling step is deacylation of the lipase. Thermal deactivation of the enzyme was also included in the mathematical model of reactor performance. A postulated normal distribution of v(max) with respect to the chain length of the fatty acid (with an additive correction for the degree of unsaturation) was tested for statistical significance. The model is useful for predicting the free fatty acid profile of the lipolyzed butteroil product over a wide range of flow rates.  相似文献   

6.
A lipase from Aspergillus niger, immobilized by adsorption on microporous polypropylene hollow fibers, was used to effect the hydrolysis of the glycerides of melted butterfat at pH. 7.0 at 40, 50, 55, and 60 degrees C. Mcllvane buffer was pumped upward through the lumen, and melted butterfat was pumped upward through the shell side of a hollow fiber reactor. Nonlinear regression methods were employed to determine the kinetic parameters of models based on combinations of three nested rate expressions for the hydrolysis reaction with three nested rate expressions for thermal deactivation of the enzyme. A rate expression containing four lumped parameters is sufficient to model the release of free fatty acids as a function of reactor space time and time elapsed after immobilization. Nonlinear regression methods were also employed in global fits of the data to rate expressions containing an explicit dependence on temperature. For the reaction conditions used in this research, a 14-parameter rate expression is necessary to accurately model the overall release of free fatty acids as a continuous function of the absolute temperature, initial substrate concentrations, reactor space time, and time elapsed after immobilization of the lipase.  相似文献   

7.
The present communication describes the chemical modification of anhydrous butterfat by interesterification with oleic acid catalyzed by a lipase of Mucor javanicus. Two reactor configurations were tested, a batch-stirred tank reactor containing suspended lipase and a batch-stirred tank reactor in combination with a hollow-fiber membrane module containing adsorbed lipase. The goal of this research was to assess the advantage of using a (hydrophobic) porous support to immobilize the lipase in attempts to engineer butterfat with increased levels of unsaturated fatty acid residues (oleic acid) at the expense of medium-to-long chain saturated fatty acids (myristic and palmitic acids). Reactions were carried out at 40 degrees C in the absence of solvent under controlled water activity, and were monitored by chromatographic assays for free fatty acids. The results obtained indicate that the rate of interesterification using the proposed reactor configuration is enhanced by a factor above 100 relative to that using suspended lipase, for the same protein mass basis. Although hydrolysis of butterfat occurred to some degree, the enzymatic process that uses the hollow-fiber reactor was technically superior to the stirred tank system. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

8.
Menhaden oil, a rich source of n-3 fatty acids, was interesterified with conjugated linoleic acid (CLA) in a reaction medium composed solely of substrates and either free or immobilized commercial lipase preparations. Of five lipases tested, an immobilized preparation from Mucor miehei provided the fastest rate of incorporation of CLA into fish oil acylglycerols; however, and as observed with most of the lipases utilized, a significant proportion of the n-3 fatty acid residues were liberated in the process. A soluble lipase from Candida rugosa converted free CLA to acylglycerol residues while leaving the n-3 fatty acid residues virtually untouched. Even though the reaction rate was slower for this enzyme than for the other four lipase preparations, the specificity of the free C. rugosa lipase gives it the greatest potential for commercial use in preparing fish oils enriched in CLA residues but still retaining their original n-3 fatty acid residues.  相似文献   

9.
The kinetics of esterification of conjugated linoleic acid (CLA) with sorbitol in acetone was investigated. An immobilized lipase from Candida antarctica (Chirazyme L-2) was used as the biocatalyst. A 2(2) x 3 factorial design was employed to find an experimental region in which one obtains a high rate of formation of the diester product. Best results were obtained at 10 degrees C using a CLA to sorbitol molar ratio of 5 and a biocatalyst loading of 150 mg/mL of acetone. Under these conditions, in 72 h one obtains a nearly quantitative yield (ca. 98%) of the diester of sorbitol with CLA. To minimize formation of products with degrees of esterification greater than two, the reaction should be carried out at 10 degrees C. A kinetic model developed using the King-Altman method was employed to fit the data. Use of the steady-state approximation for the monoester and an assumption that the concentration of sorbitol was constant and equal to its solubility limit permit one to minimize the number of parameters necessary to model the reaction network. Nonlinear regression analysis based on either two or three parameters provides very good fits of the multiresponse data in the presence or absence of triesters, respectively.  相似文献   

10.
A simultaneous synthesis of biodiesel, as fatty acid methyl esters, and monoacylglycerols catalysed by the recombinant Rhizopus oryzae lipase immobilized by adsorption on Relizyme OD/403M is presented. The use of this 1(3)-positional specific lipase prevents the formation of glycerol as a by-product, thus avoiding its drawbacks. The synthesis was carried out in a solvent-free system and it has been studied in two different reactor systems: stirred tank and packed-bed reactor. Stirred tank reactor presented a high-initial reaction rate and achieved a 33.6% yield, which corresponds to a value of 50.4% of the maximum yield that can be achieved with a 1(3)-positional specific lipase. In packed-bed reactor there was a smaller initial reaction rate, but it was achieved a 49.1% yield, which corresponds to a 73.6% of the maximum yield. When a second batch is performed, the yield decreased only 4% when packed-bed reactor is employed whereas a drastic decrease is observed in a stirred tank operation. Therefore, packed-bed reactor showed a best performance and minor damage to the biocatalyst.  相似文献   

11.
Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.  相似文献   

12.
Two lipases (Lip A and Lip B), were purified from a commercial lipase preparation produced by Candida rugosa and partially characterized. The purified lipases were immobilized on Duolite A 568 and used in the selective esterification of cholesterol with free fatty acids from sardine fish oil. The results showed that Lip A and Lip B preferentially esterified saturated and monounsaturated fatty acids allowing a 3.4-fold (Lip B, 24 h) and 4-fold (Lip A, 10 h) enrichment of docosahexaenoic acid in the remaining free fatty acid fraction. Selectivity towards eicosapentaenoic acid was less pronounced. By this selective esterification docosahexaenoic acid was concentrated from 7.4 to 32% with a recovery of 95% of its initial content in sardine fish oil.  相似文献   

13.
Lipase-catalyzed synthesis of fatty acid sugar esters through direct esterification was performed in 2-methyl 2-butanol as solvent. Fructose and saturated fatty acids were used as substrates and the reaction was catalyzed by immobilized Candida antarctica lipase. The effect of the initial fructose/acyl donor molar ratio and the carbon-chain length of the acyl donor as well as their reciprocal interactions on the reaction performance were investigated. For this purpose, an experimental design taking into account variations of the molar ratio (from 1:1 to 1:5) and the carbon-chain length of the fatty acid (from C8 to C18) was employed. Statistical analysis of the data indicated that the two factors as well as their interactions had significant effects on the sugar esters synthesis. The obtained results showed that whatever the molar ratio used, the highest concentration (73 g l−1), fructose and fatty acid conversion yields (100% and 80%, respectively) and initial reaction rate (40 g l−1 h−1) were reached when using the C18 fatty acid as acyl donor. Low molar ratios gave the best fatty acid conversion yields and initial reaction rates, whereas the best total sugar ester concentrations and fructose conversion yields were obtained for high molar ratios.  相似文献   

14.
Development of insulin resistance is positively associated with dietary saturated fatty acids and negatively associated with monounsaturated fatty acids. To clarify aspects of this difference we have compared the metabolism of oleic (OA, monounsaturated) and palmitic acids (PA, saturated) in human myotubes. Human myotubes were treated with 100μM OA or PA and the metabolism of [(14)C]-labeled fatty acid was studied. We observed that PA had a lower lipolysis rate than OA, despite a more than two-fold higher protein level of adipose triglyceride lipase after 24h incubation with PA. PA was less incorporated into triacylglycerol and more incorporated into phospholipids after 24h. Supporting this, incubation with compounds modifying lipolysis and reesterification pathways suggested a less influenced PA than OA metabolism. In addition, PA showed a lower accumulation than OA, though PA was oxidized to a relatively higher extent than OA. Gene set enrichment analysis revealed that 24h of PA treatment upregulated lipogenesis and fatty acid β-oxidation and downregulated oxidative phosphorylation compared to OA. The differences in lipid accumulation and lipolysis between OA and PA were eliminated in combination with eicosapentaenoic acid (polyunsaturated fatty acid). In conclusion, this study reveals that the two most abundant fatty acids in our diet are partitioned toward different metabolic pathways in muscle cells, and this may be relevant to understand the link between dietary fat and skeletal muscle insulin resistance.  相似文献   

15.
Acidolysis of butteroil with free conjugated linoleic acid (CLA) was studied in a packed bed reactor containing an immobilized Candida antarctica (fraction B) lipase. Kinetic data were used to develop quantitative reversible rate expressions of the general Michaelis-Menten form that also incorporate a term for first-order deactivation of the enzyme. The extent of incorporation of CLA in the triacylglycerols of butteroil was characterized for reactions carried out at several temperatures (namely 45 degrees, 50 degrees, and 55 degrees C) with different weight ratios of butteroil to CLA (namely 10:1 and 2:1). At the optimum operating temperature of 50 degrees C, similar levels of incorporation of CLA (60% to 85%) were achieved at low space times (<3 h) for both 10:1 and 2:1 (w/w) ratios of butteroil to CLA.  相似文献   

16.
The effects of temperature on the uptake and metabolism of fluorescent labeled palmitic acid (FLC16) and phosphatidylcholine (FLPC) and lipase activities in the oyster protozoan parasite, Perkinsus marinus, meront stage were tested at 10, 18, and 28 degrees C. Temperature significantly affected not only the uptake, assimilation, and metabolism of both FLC16 and FLPC in P. marinus, but also its triacylglycerol (TAG) lipase activities. The incorporation of both FLC16 and FLPC increased with temperature and paralleled the increase in the amount of total fatty acids in P. marinus meront cultures. The incorporation of FLC16 was higher than FLPC at all temperatures. The percentage of FLC16 metabolized to TAG was significantly higher at higher temperatures. Trace amounts of incorporated FLC16 were detected in monoacylglycerol (MAG) and PC at 18 and 28 degrees C. P. marinus meronts metabolized FLPC to TAG, diacylglycerol (DAG), monoacylglycerol (MAG), free fatty acids (FFA), phosphatidylethanolamine (PE), and cardiolipin (CL). The conversion of FLPC to TAG and PE was highest at 28 degrees C. The relative proportions of individual fatty acids and total saturated, monounsaturated and polyunsaturated fatty acids changed with temperatures. While total saturated fatty acids (SAFAs) increased with temperature, total monounsaturated fatty acids (MUFAs) decreased with temperature. Total polyunsaturated fatty acids (PUFAs) increased from 28 to 18 degrees C. The findings of increase of total SAFAs and decrease of total MUFAs with the increase of temperatures and upward shift of total PUFAs from 28 to 18 degrees C suggest that, as in other organisms, P. marinus is capable of adapting to changes in environmental temperatures by modifying its lipid metabolism. Generally, higher lipase activities were noted at higher cultivation temperatures. Both TAG lipase and phospholipase activities were detected in P. marinus cells and their extra cellular products (ECP), but phospholipase activities in both the cell pellets and ECP were very low. Also, lipase activities were much lower in ECP than in the cells. The observations of low metabolism, bioconversion of incorporated fluorescent lipid analogs and lipase activities at low temperatures are consistent with the low in vitro growth rate and low infectivity of P. marinus at low temperatures.  相似文献   

17.
Six commercial lipases, in either free or immobilized forms, were screened for their ability to catalyze acyl exchange between the triacylglycerols of butteroil (milkfat) and conjugated linoleic acid (CLA) in an organic solvent-free medium. Immobilized lipase preparations from Candida antarctica and Mucor miehei demonstrated the ability to increase the CLA content of the milk fat acylglycerols from the native value of 0.6 g/100 g fat to values which were at least an order of magnitude higher. Comparable increases were also obtained with a free enzyme from Candida rugosa.

In addition to the screening studies, the effects of the weight ratio of milkfat to CLA on the product distribution and of the water content on the kinetics and maximum extent of this acidolysis reaction were systematically investigated in a batch reactor: The fatty acids liberated from the butteroil triacylglycerols were primarily short chain fatty acids, especially butyric and caproic acids.

Modified butteroils were also produced via acidolysis of butteroil with CLA in a packed bed reactor containing an immobilized lipase preparation from C. antarctica. Significant enrichment of the butteroil in CLA residues was accomplished at reactor space times (fluid residence times) of 2–4 h at 40–60°C. Under these conditions, approximately 80–90% of the free CLA fed to the reactor is (inter)esterified.  相似文献   


18.
Four commercially available lipases, both free and immobilized, were tested for their ability to catalyze hydrolysis of blackcurrant (Ribes nigrum) oil using two different approaches. The lipase from Mucor miehei was studied free and immobilized in two different ways. The former series of enzymic reactions were performed in tap water at 40 degrees C, but the latter series of enzymic processes were carried out in mixtures of isooctane and phosphate buffer (in a typical 2/1 ratio of the components) at 30 degrees C. These conditions were optimized to increase and/or to maximize the yields of the products, which were priority targets in this study. A rate of hydrolysis and a selective preference of the hydrolytic enzymes towards fatty acids, with a special focus on enrichment of alpha-linolenic acid and/or gamma-linolenic acid, were studied. Higher rates of hydrolysis of the blackcurrant oil in the former series of reactions were observed with the immobilized lipase from Pseudomonas cepacia used as biocatalyst. In the latter approach, the most favorable results of the rate of hydrolysis of the target blackcurrant oil were achieved with the immobilized lipase from Mucor miehei employed as biocatalyst. Only three lipases, selected from a series of lipases tested during this investigation, displayed specificity towards alpha-linolenic acid and gamma-linolenic acid, i.e. the immobilized lipase from P. cepacia, lipase from M. miehei and lipase from P. fluorescens.  相似文献   

19.
Mono- and dilauroyl arabitols, ribitols, xylitols and sorbitols were synthesized batchwise or continuously at 50°C or 60°C by condensation catalyzed by an immobilized Candida antarctica lipase in acetone. Continuous production was realized using a system where a column packed with sugar alcohol and a packed-bed reactor with the immobilized lipase were connected in series. The concentrations of the mono- and dilauroyl esters of each sugar alcohol became almost constant at mean residence times of 15 min or longer in the packed-bed reactor. The monolauroyl, monomyristoyl and monopalmytoyl arabitols, ribitols, xylitols and sorbitols were continuously produced using the reactor system at 60°C, and the productivity was in the range of 1.3-2.0 kg L-1-reactor·day except for the fatty acid esters of sorbitol, the productivity of which was 0.6-0.8 kg L-1-reactor·day.  相似文献   

20.
Lipolysis of butter oil in a hollow fiber reactor containing an immobilized calf pregastric esterase was studied at 40 degrees C, a pH of 6.0, and glycerol concentrations of 0, 150, and 500 g/L in the buffer solution. The concentrations of 10 fatty acid species in the lipolyzed product were determined using high-performance liquid chromatography. The rate of loss of enzyme activity and the relative selectivities of this esterase depended on the glycerol concentration. By contrast, the overall rate of release of fatty acids was not affected by the glycerol concentration. Loss of enzyme activity was modeled using first-order kinetics. The models for deactivation and reaction kinetics were fit simultaneously to the data. The model was successful in describing the rates of release of all 10 fatty acid species for a range of space times from 0 to 25 h. The parameters of the model were tested for dependence on glycerol concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号