首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Vascular endothelial growth factor (VEGF), a potent mediator of endothelial proliferation and migration, has an important role also in brain edema formation during hypoxia and ischemia. VEGF binds to the tyrosine kinase receptors Flt-1 and Flk-1. Yet, their relative importance for hypoxia-induced hyperpermeability is not well understood. We used an in vitro blood-brain barrier (BBB) model consisting of porcine brain microvascular endothelial cells (BMEC) to determine the role of Flt-1 in VEGF-induced endothelial cell (EC) barrier dysfunction. Soluble Flt-1 abolished hypoxia/VEGF-induced hyperpermeability. Furthermore, selective antisense oligonucleotides to Flt-1, but not to Flk-1, inhibited hypoxia-induced permeability changes. Consistent with these data, addition of the receptor-specific homolog placenta-derived growth factor, which binds Flt-1 but not Flk-1, increased endothelial permeability to the same extent as VEGF, whereas adding VEGF-E, a viral VEGF molecule from the orf virus family activating Flk-1 and neuropilin-1, but not Flt-1, did not show any effect. Using the carcinoma submandibular gland cell line (CSG), only expressing Flt-1, it was demonstrated that activation of Flt-1 is sufficient to induce hyperpermeability by hypoxia and VEGF. Hyperpermeability, induced by hypoxia/VEGF, depends on activation of phosphatidylinositol 3-kinase/Akt (PI3-K/Akt), nitric oxide synthase (NOS) and protein kinase G (PKG). The activation of the PI3-K/Akt pathway by hypoxia was confirmed using an in vivo mice hypoxia model. These results demonstrate that hypoxia/VEGF-induced hyperpermeability can be mediated by activation of Flt-1 independently on the presence of Flk-1 and indicate a central role for activation of the PI3-K/Akt pathway, followed by induction of NOS and PKG activity.  相似文献   

2.
Epidermal growth factor (EGF) protects the intestinal epithelial tight junctions from acetaldehyde-induced insult. The role of phospholipase Cgamma (PLCgamma) and protein kinase C (PKC) isoforms in the mechanism of EGF-mediated protection of tight junction from acetaldehyde was evaluated in Caco-2 cell monolayers. EGF-mediated prevention of acetaldehyde-induced decrease in transepithelial electrical resistance and an increase in inulin permeability, and subcellular redistribution of occludin and ZO-1 was attenuated by reduced expression of PLCgamma1 by short hairpin RNA. EGF induced a rapid activation of PLCgamma1 and PLC-dependent membrane translocation of PKCepsilon and PKCbetaI. Inhibition of PKC activity or selective interference of membrane translocation of PKCepsilon and PKCbetaI by RACK interference peptides attenuated EGF-mediated prevention of acetaldehyde-induced increase in inulin permeability and redistribution of occludin and ZO-1. BAPTA-AM and thapsigargin blocked EGF-induced membrane translocation of PKCbetaI and attenuated EGF-mediated prevention of acetaldehyde-induced disruption of tight junctions. EGF-induced translocation of PKCepsilon and PKCbetaI was associated with organization of F-actin near the perijunctional region. This study shows that PLCgamma-mediated activation of PKCepsilon and PKCbetaI and intracellular calcium is involved in EGF-mediated protection of tight junctions from acetaldehyde-induced insult.  相似文献   

3.
Fibroblastic proliferation accompanies many angiogenesis-related retinal and systemic diseases. Since connective tissue growth factor (CTGF) is a potent mitogen for fibrosis, extracellular matrix production, and angiogenesis, we have studied the effects and mechanism by which vascular endothelial growth factor (VEGF) regulates CTGF gene expression in retinal capillary cells. In our study, VEGF increased CTGF mRNA levels in a time- and concentration-dependent manner in bovine retinal endothelial cells and pericytes, without the need of new protein synthesis and without altering mRNA stability. VEGF activated the tyrosine receptor phosphorylation of KDR and Flt1 and increased the binding of phosphatidylinositol 3-kinase (PI3-kinase) p85 subunit to KDR and Flt1, both of which could mediate CTGF gene induction. VEGF-induced CTGF expression was mediated primarily by PI3-kinase activation, whereas PKC and ERK pathways made only minimal contributions. Furthermore, overexpression of constitutive active Akt was sufficient to induce CTGF gene expression, and inhibition of Akt activation by overexpressing dominant negative mutant of Akt abolished the VEGF-induced CTGF expression. These data suggest that VEGF can increase CTGF gene expression in bovine retinal capillary cells via KDR or Flt receptors and the activation of PI3-kinase-Akt pathway independently of PKC or Ras-ERK pathway, possibly inducing the fibrosis observed in retinal neovascular diseases.  相似文献   

4.
Vascular endothelial growth factor (VEGF) induces mild vasodilation and strong increases in microvascular permeability. Using intravital microscopy and digital integrated optical intensity image analysis, we tested, in the hamster cheek pouch microcirculation, the hypothesis that differential signaling pathways in arterioles and venules represent an in vivo regulatory mechanism in the control of vascular diameter and permeability. The experimental design involved blocking specific signaling molecules and simultaneously assessing VEGF-induced changes in arteriolar diameter and microvascular transport of FITC-Dextran 150. Inhibition of Akt [indirectly via phosphatidylinositol 3-kinase with LY-294002 or wortmannin] or PKC (with bisindolylmaleimide) reduced VEGF-induced hyperpermeability. However, phosphatidylinositol 3-kinase/Akt inhibition enhanced the early phase and attenuated the late phase of VEGF-induced vasodilation, whereas blocking PKC had no effect. Inhibition of extracellular signal-regulated kinase (ERK)-1/2 (with PD-98059 or AG-126) also reduced VEGF-induced hyperpermeability but did not block VEGF-induced vasodilation. Blockade of endothelial nitric oxide synthase (with N(omega)-monomethyl-l-arginine) inhibited VEGF-induced changes in both permeability and diameter. Furthermore, immunofluorescence studies with human umbilical vein endothelial cells revealed that bisindolylmaleimide, PD-98059, and l-NMMA attenuate VEGF-induced reorganization of vascular endothelial cadherin. Our data demonstrate that 1) endothelial nitric oxide synthase is a common convergence pathway for VEGF-induced changes in arteriolar diameter and microvascular permeability; 2) PKC and ERK-1/2 do not play a major role in VEGF-induced vasodilation in the hamster cheek pouch microcirculation; and 3) Akt, PKC, and ERK-1/2 are elements of the signaling cascade that regulates VEGF-stimulated microvascular hyperpermeability. Our data provide evidence for differential signaling as a regulatory step in VEGF-stimulated microvascular dynamics.  相似文献   

5.
Stretch-induced expression of vascular endothelial growth factor (VEGF) is thought to be important in mediating the exacerbation of diabetic retinopathy by systemic hypertension. However, the mechanisms underlying stretch-induced VEGF expression are not fully understood. We present novel findings demonstrating that stretch-induced VEGF expression in retinal capillary pericytes is mediated by phosphatidylinositol (PI) 3-kinase and protein kinase C (PKC)-zeta but is not mediated by ERK1/2, classical/novel isoforms of PKC, Akt, or Ras despite their activation by stretch. Cardiac profile cyclic stretch at 60 cpm increased VEGF mRNA expression in a time- and magnitude-dependent manner without altering mRNA stability. Stretch increased ERK1/2 phosphorylation, PI 3-kinase activity, Akt phosphorylation, and PKC-zeta activity. Signaling pathways were explored using inhibitors of PKC, MEK1/2, and PI 3-kinase; adenovirus-mediated overexpression of ERK, PKC-alpha, PKC-delta, PKC-zeta, and Akt; and dominant negative (DN) mutants of ERK, PKC-zeta, Ras, PI 3-kinase and Akt. Although stretch activated ERK1/2 through a Ras- and PKC classical/novel isoform-dependent pathway, these pathways were not responsible for stretch-induced VEGF expression. Overexpression of DN ERK and Ras had no effect on VEGF expression in these cells. In contrast, DN PI 3-kinase as well as pharmacologic inhibitors of PI 3-kinase blocked stretch-induced VEGF expression. Although stretch-induced PI 3-kinase activation increased both Akt phosphorylation and activity of PKC-zeta, VEGF expression was dependent on PKC-zeta but not Akt. In addition, PKC-zeta did not mediate stretch-induced ERK1/2 activation. These results suggest that stretch-induced expression of VEGF involves a novel mechanism dependent upon PI 3-kinase-mediated activation of PKC-zeta that is independent of stretch-induced activation of ERK1/2, classical/novel PKC isoforms, Ras, or Akt. This mechanism may play a role in the well documented association of concomitant hypertension with clinical exacerbation of neovascularization and vascular permeability.  相似文献   

6.
Vascular endothelial growth factor (VEGF) is involved in the promotion of endothelial cell proliferation, migration, and capillary formation. These activities are mainly mediated by the VEGFR2 receptor tyrosine kinase that upon stimulation, promotes the activation of numerous proteins including phospholipase Cgamma (PLCgamma), phosphatidylinositol 3-kinase (PI3K), Akt, Src, and ERK1/2. However, the VEGFR2-proximal signaling events leading to the activation of these targets remain ill defined. We have identified the Gab1 adapter as a novel tyrosine-phosphorylated protein in VEGF-stimulated cells. In bovine aortic endothelial cells, Gab1 associates with VEGFR2, Grb2, PI3K, SHP2, Shc, and PLCgamma, and its overexpression enhances VEGF-dependent cell migration. Importantly, silencing of Gab1 using small interfering RNAs leads to the impaired activation of PLCgamma, ERK1/2, Src, and Akt; blocks VEGF-induced endothelial cell migration; and perturbs actin reorganization and capillary formation. In addition, co-expression of VEGFR2 with Gab1 mutants unable to bind SHP2 or PI3K in human embryonic kidney 293 cells and bovine aortic endothelial cells mimics the defects observed in Gab1-depleted cells. Our work thus identifies Gab1 as a novel critical regulatory component of endothelial cell migration and capillary formation and reveals its key role in the activation of VEGF-evoked signaling pathways required for angiogenesis.  相似文献   

7.
Trefoil factor peptides are highly conserved secreted molecules characterized by heat and enzymatic digestion resistance. Intestinal trefoil factor 3 (TFF3) protects and repairs the gastrointestinal mucosa and restores normal intestinal permeability, which is dependent on the integrity of the tight junction (TJ) barrier and the TJ associated proteins claudin-1, zona occludens-1 (ZO-1) and occludin. Despite the important role of intestinal barrier dysfunction in the pathogenesis of inflammatory bowel diseases, the underlying mechanisms and associated molecules remain unclear. In the present study, we show that TFF3 and toll-like receptor 2 (TLR2) are functionally linked and modulate intestinal epithelial permeability via a mechanism that involves the PI3K/Akt pathway. We used the Caco-2 cell model to show that TLR2 and TFF3 inhibit the IL-1β induced increase in permeability and release of proinflammatory cytokines, and that this effect is mediated by activation of PI3K/Akt signaling. TLR2 silencing downregulated the expression of TFF3 and overexpression of TLR2 and TFF3 increased the levels of phospho-Akt. TFF3 overexpression significantly upregulated the expression of ZO-1, occludin and claudin-1 and this effect was abrogated by inhibition of the PI3K/Akt pathway. Taken together, our results indicate that TLR2 signaling selectively enhances intestinal TJ barrier integrity through a mechanism involving TFF3 and the activation of the PI3K/Akt pathway.  相似文献   

8.
Angiopoietin-2 (Ang2) is a Tie-2 ligand that destabilizes vascular structures, allowing for neovascularization or vessel regression depending on local vascular endothelial cell growth factor (VEGF) concentrations. Although various stimuli have been shown to affect Ang2 expression, information on the underlying mechanisms involved in Ang2 production in endothelial cells (EC) is just beginning to emerge. In the present study, we have used adenovirus-mediated gene transfer and pharmacological inhibitors to examine the role of the PTEN/PI3-K/Akt pathway on Ang2 release. Inhibition of PI3-kinase with wortmannin led to a stimulation of basal Ang2 release in EC, while overexpression of an active form of Akt reduced Ang2. In addition, adenovirus-mediated gene transfer of the phosphatase PTEN stimulated Ang2 release. Incubation of the cells with Ang1, an agent that activates the PI3-K/Akt pathway in EC, reduced Ang2 release. This effect of Ang1 could be prevented by wortmannin and LY-294002 pretreatment. Similarly, in VEGF-treated EC the increase in Ang2 production observed was greater in the presence of a PI3-K inhibitor. Our observations that PTEN acts as a positive modulator of Ang2 release, while activation of the PI3-K/Akt pathway downregulates Ang2, reveal an additional mechanism through which the PTEN/PI3-K/Akt pathway could affect the angiogenic process.  相似文献   

9.
10.
Activation of Lyn, a Src-related nonreceptor tyrosine kinase, in trophoblast cells is associated with trophoblast giant cell differentiation. The purpose of the present work was to use Lyn as a tool to identify signaling pathways regulating the endocrine differentiation of trophoblast cells. The Src homology 3 domain of Lyn was shown to display differentiation-dependent associations with other regulatory proteins, including phosphatidylinositol 3-kinase (PI3-K). PI3-K activation was dependent upon trophoblast giant cell differentiation. The downstream mediator of PI3-K, Akt/protein kinase B, also exhibited differentiation-dependent activation. Lyn is a potential regulator of the PI3-K/Akt signaling pathway, as are receptor tyrosine kinases. Protein tyrosine kinase profiling was used to identify two candidate regulators of the PI3-K/Akt pathway, fibroblast growth factor receptor-1 and Sky. At least part of the activation of Akt in differentiating trophoblast giant cells involves an autocrine growth arrest-specific-6-Sky signaling pathway. Inhibition of PI3-K activities via treatment with LY294002 disrupted Akt activation and interfered with the endocrine differentiation of trophoblast giant cells. In summary, activation of the PI3-K/Akt signaling pathway regulates the development of the differentiated trophoblast giant cell phenotype.  相似文献   

11.
A recent study (Nusrat, A., Chen, J. A., Foley, C. S., Liang, T. W., Tom, J., Cromwell, M., Quan, C., and Mrsny, R. J. (2000) J. Biol. Chem. 275, 29816-29822) suggested that phosphatidylinositol 3-kinase (PI 3-kinase) may interact with occludin; however, there exists no evidence of direct interaction of PI 3-kinase with the tight junctions. Activation of PI 3-kinase by oxidative stress and its role in disruption of tight junctions was examined in Caco-2 cell monolayer. The oxidative stress-induced decrease in electrical resistance, increase in inulin permeability, and redistribution of occludin and ZO-1 were reduced by a PI 3-kinase inhibitor, LY294002. Oxidative stress-induced tyrosine phosphorylation and dissociation from the actin cytoskeleton of occludin and ZO-1 were reduced by LY294002. The regulatory subunit of PI 3-kinase, p85, and the PI 3-kinase activity were co-immunoprecipitated with occludin, which were rapidly increased by oxidative stress. Oxidative stress resulted in increased translocation of p85 from the intracellular compartment into the intercellular junctions. Pair-wise glutathione S-transferase pull-down assay showed that glutathione S-transferase-occludin (C-terminal tail) binds to recombinant p85. This study shows that oxidative stress increases the association of PI 3-kinase with the occludin, and that PI 3-kinase activity is involved in oxidative stress-induced disruption of tight junction.  相似文献   

12.
Vascular endothelial growth factor (VEGF) increases protein synthesis and induces hypertrophy in renal tubular epithelial cells (Senthil, D., Choudhury, G. G., McLaurin, C., and Kasinath, B. S. (2003) Kidney Int. 64, 468-479). We examined the role of Erk1/2 MAP kinase in protein synthesis induced by VEGF. VEGF stimulated Erk phosphorylation that was required for induction of protein synthesis. VEGF-induced Erk activation was not dependent on phosphoinositide (PI) 3-kinase activation but required sequential phosphorylation of type 2 VEGF receptor, PLCgamma and c-Src, as demonstrated by inhibitors SU1498, U73122, and PP1, respectively. c-Src phosphorylation was inhibited by U73122, indicating it was downstream of phospholipase (PL)Cgamma. Studies with PP1/2 showed that phosphorylation of c-Src was required for tyrosine phosphorylation of Raf-1, an upstream regulator of Erk. VEGF also stimulated phosphorylation of Pyk-2; VEGF-induced phosphorylation of Pyk2, c-Src and Raf-1 could be abolished by BAPTA/AM, demonstrating requirement for induction of intracellular calcium currents. We examined the downstream events following the phosphorylation of Erk. VEGF stimulated phosphorylation of Mnk1 and eIF4E and induced Mnk1 to shift from the cytoplasm to the nucleus upon phosphorylation. VEGF-induced phosphorylation of Mnk1 and eIF4E required phosphorylation of PLCgamma, c-Src, and Erk. Expression of dominant negative Mnk1 abrogated eIF4E phosphorylation and protein synthesis induced by VEGF. VEGF-stimulated protein synthesis could be blocked by inhibition of PLCgamma by a chemical inhibitor or expression of a dominant negative construct. Our data demonstrate that VEGF-stimulated protein synthesis is Erk-dependent and requires the activation of VEGF receptor 2, PLCgamma, c-Src, Raf, and Erk pathway. VEGF also stimulates Erk-dependent phosphorylation of Mnk1 and eIF4E, crucial events in the initiation phase of protein translation.  相似文献   

13.
The regulation of intercellular adhesion by hepatocyte growth factor (HGF) was examined on a novel nontumorigenic gastric epithelial cell line (IMGE-5) derived from H-2Kb-tsA58 transgenic mice. IMGE-5 cells constitutively expressed cytokeratin 18 and HGF receptors. Under permissive conditions (33 degrees C + interferon-gamma), IMGE-5 cells proliferated rapidly but did not display membrane expression of adherens and tight junction proteins. Under nonpermissive conditions, their proliferation was decreased and they displayed a strong, localized membrane expression of E-cadherin/beta-catenin and occludin/ZO-1. HGF treatment largely prevented the targeting of ZO-1 to the tight junction and induced a significant decrease of the transepithelial resistance measured across a confluent IMGE-5 cell monolayer. HGF rapidly increased the tyrosine phosphorylation of ZO-1 and decreased its association with occludin in a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent manner. PI 3-kinase was also involved in HGF-induced migration of IMGE-5 cells. Our results demonstrate that 1) HGF prevents the appearance of ZO-1 in the membrane during epithelial cell differentiation; 2) HGF causes partial relocalization of ZO-1 to the cytoplasm and nucleus and concomitantly stimulates cell dissociation and migration; and 3) IMGE-5 cells offer a useful model for the study of gastric epithelial cell differentiation.  相似文献   

14.
The epithelial lining of the intestine serves as a barrier to lumenal bacteria and can be compromised by pathologic Fas-mediated epithelial apoptosis. Phosphatidylinositol (PI)3-kinase signaling has been described to limit apoptosis in other systems. We hypothesized that PI3-kinase-dependent pathways regulate Fas-mediated apoptosis and barrier function in intestiynal epithelial cells (IEC). IEC lines (HT-29 and T84) were exposed to agonist anti-Fas antibody in the presence or absence of chemical inhibitors of PI3-kinase (LY294002 and wortmannin). Apoptosis, barrier function, changes in short circuit current (DeltaI(sc)), and expression of adhesion molecules were assessed. Inhibition of PI3-kinase strongly sensitized IEC to Fas-mediated apoptosis. Expression of constitutively active Akt, a principal downstream effector of the PI3-kinase pathway, protected against Fas-mediated apoptosis to an extent that was comparable with expression of a genetic caspase inhibitor, p35. PI3-kinase inhibition sensitized to apoptosis by increasing and accelerating Fas-mediated caspase activation. Inhibition of PI3-kinase combined with cross-linking Fas was associated with increased permeability to molecules that were <400 Da but not those that were >3,000 Da. Inhibition of PI3-kinase resulted in chloride secretion that was augmented by cross-linking Fas. Confocal analyses revealed polymerization of actin and maintenance of epithelial cell adhesion molecule-mediated interactions in monolayers exposed to anti-Fas antibody in the context of PI3-kinase inhibition. PI3-kinase-dependent pathways, especially Akt, protect IEC against Fas-mediated apoptosis. Inhibition of PI3-kinase in the context of Fas signaling results in increased chloride secretion and barrier dysfunction. These findings suggest that agonists of PI3-kinase such as growth factors may have a dual effect on intestinal inflammation by protecting epithelial cells against immune-mediated apoptosis and limiting chloride secretory diarrhea.  相似文献   

15.
Based on recent studies showing that PLCgamma associates to insulin receptor, we investigated its role in insulin stimulation of glucose transport in brown adipocytes. Insulin stimulation induced rapid PLCgamma association to phosphorylated insulin receptor, and activation of PLCgamma, as assessed by the mobilization of Ca(2+) from intracellular stores and by the production of the second messenger DAG. Both events are dependent on activation of PI3-kinase. Inhibition of PLCgamma activity either with the chemical compound U73122 or with an inhibitor peptide precluded insulin stimulation of glucose uptake, GLUT4 translocation, and actin reorganization, as wortmannin did. In contrast, the inactive analog U73343 did not have an inhibitory effect. Furthermore, translocation of GLUT4-GFP in response to insulin was completely abolished by cotransfection with a PLCgamma-inactive mutant in HeLa cells, a cell model sensitive to insulin that express PLCgamma. U73122 did not affect PI3-kinase nor Akt activation, but impaired PKCzeta activation by insulin, as wortmannin did. PLC activity renders two products, IP(3) and DAG, and DAG can be metabolized to PA by the action of DAG-kinase. Using the compound R54494, a DAG-kinase inhibitor, insulin-induced PKCzeta activation was also suppressed, this activity being restored by addition of PA. In summary, these data indicate that PLCgamma, activated at least partially by PI3-kinase, is a link between insulin receptor and PKCzeta through the production of PA and could mediate insulin-induced glucose uptake and GLUT4 translocation.  相似文献   

16.
The effects of insulin on vascular endothelial growth factor (VEGF) expression in cultured vascular cells and in angiogenesis were characterized. Insulin increased VEGF mRNA levels in mouse aortic smooth muscle cells from 10(-9) to 10(-7) m with an initial peak of 3.7-fold increases at 1 h and a second peak of 2.8-fold after 12 h. The first peak of VEGF expression was inhibited by LY294002, an inhibitor of phosphatidylinositol (PI) 3-kinase, and by the overexpression of dominant negative forms of p85 subunit of PI 3-kinase or Akt. Inhibitors of MEK kinase, PD98059, or overexpression of dominant negative forms of Ras was ineffective. In contrast, the chronic effect of insulin on VEGF expression was partially inhibited by both LY294002 or PD98059 as well as by the overexpression of dominant negatives of PI 3-kinase or Ras. The importance of PI 3-kinase-Akt pathway on VEGF expression was confirmed in mouse aortic smooth muscle cells isolated from insulin receptor substrate -1 knockout (IRS-1-/-) mice that showed parallel reductions of 46-49% in insulin-stimulated VEGF expression and PI 3-kinase-Akt activation. Insulin-induced activation of PI 3-kinase-Akt on hypoxia-induced VEGF expression and neovascularization was reduced by 40% in the retina of neonatal hypoxia model using IRS-1-/- mice. Thus, unlike other cells, insulin can regulate VEGF expression by both IRS-1/PI 3-kinase-Akt cascade and Ras-MAPK pathways in aortic smooth muscle cells. The in vivo results provide direct evidence that insulin can modulate hypoxia-induced angiogenesis via reduction in VEGF expression in vivo.  相似文献   

17.
The anti-angiogenic effect of thrombospondin-1 has been shown to be mediated through binding of the type-1 repeat (TSR) domain to the CD36 transmembrane receptor. We now report that the TSR domain can inhibit VEGF-induced migration in human umbilical vein endothelial cells (HUVEC), cells that lack CD36. Moreover, we identified beta1 integrins as a critical receptor in TSR-mediated inhibition of migration in HUVEC. Using pharmacological inhibitors of downstream VEGF receptor effectors, we found that phosphoinositide 3-kinase (PI3k) was essential for TSR-mediated inhibition of HUVEC migration, but that neither PLCgamma nor Akt was necessary for this response. Furthermore, beta1 integrins were critical for TSR-mediated inhibition of microvascular endothelial cells, cells that express CD36. Together, our results indicate that beta1 integrins mediate the anti-migratory effects of TSR through a PI3k-dependent mechanism.  相似文献   

18.
Vascular endothelial growth factor (VEGF) is not only essential for vasculogenesis and angiogenesis but is also capable of inducing tissue factor, the prime initiator of coagulation, in endothelial cells. In this study we have analyzed the VEGF-elicited pathways involved in the induction of tissue factor in human umbilical cord vein endothelial cells. Using specific low molecular weight inhibitors we could demonstrate a crucial role of the p38 and Erk-1/2 mitogen-activated protein (MAP) kinases. In contrast, treatment with wortmannin or LY294002, inhibitors of phosphatidylinositol 3 (PI3)-kinase, resulted in a strong enhancement of the VEGF-induced tissue factor production, indicating a negative regulatory role of the PI3-kinase on tissue factor-inducing pathways. Accordingly, transduction with constitutively active Akt led to a reduction of VEGF-induced tissue factor production. Western blot analyses using antibodies specific for phosphorylated p38 showed an enhanced activation of this MAP kinase in human umbilical cord vein endothelial cells when stimulated with VEGF in the presence of wortmannin in comparison to either agent alone. Thus, the negative regulation of the PI3-kinase pathway on endothelial tissue factor activity can be explained at least in part by a suppression of this MAP kinase-signaling pathway. This is the first demonstration of a reciprocal relationship between procoagulant activity and the PI3-kinase-Akt signaling pathway, and it reveals a novel mechanism by which tissue factor expression can be controlled in endothelial cells.  相似文献   

19.
Vascular smooth muscle cells (SMCs), one of the major cell types of the vascular wall, play a critical role in the process of angiogenesis under both physiological and pathophysiological conditions, including the cancer microenvironment. Previous studies have shown that VEGF-A 165 augments vascular SMC migration via VEGFR2 (KDR/Flk1) pathways. In this study, we found that VEGF-A 165 (recombinant protein or breast tumor cell-secreted) is also capable of inducing migration of VEGFR2-negative human aortic smooth muscle cells (hAOSMCs), and this induction is mediated through a molecular cross-talk of neuropilin-1 (NRP-1), VEGFR1 (Flt-1), and phosphoinositide 3-kinase (PI3K)/Akt signaling kinase. We found that VEGF-A 165 induces hAOSMC migration parallel with the induction of NRP-1 and VEGFR1 expressions and their associations along with the activation of PI3K/Akt. Neutralization of VEGF action by its antibody or inhibition of VEGF-induced PI3K/Akt kinase activation by wortmannin, a PI3K/Akt specific inhibitor, results in inhibition of VEGF-induced hAOSMC migration. Moreover, RNAi-mediated elimination of the NRP-1 expression or blocking of the activity of VEGFR1 by its antibody in hAOSMCs impairs the VEGF-A 165-induced migration of these cells as well as activation of PI3K/Akt kinase. Collectively, these results establish, for the first time, a mechanistic link among VEGF-A 165, NRP-1, VEGFR1, and PI3K/Akt in the regulation of migration of human vascular smooth muscle cells that eventually could be involved in the angiogenic switch.  相似文献   

20.
Rhinovirus (RV) is a common cause of asthma exacerbations. The signaling mechanisms regulating RV-induced airway epithelial cell responses have not been well studied. We examined the role of phosphatidylinositol (PI) 3-kinase in RV-induced interleukin (IL)-8 expression. Infection of 16HBE14o- human bronchial epithelial cells with RV39 induced rapid activation of PI 3-kinase and phosphorylation of Akt, a downstream effector of PI 3-kinase. RV39 also colocalized with cit-Akt-PH, a citrogen-tagged fluorescent fusion protein encoding the pleckstrin homology domain of Akt, indicating that 3-phosphorylated PI accumulates at the site of RV infection. Inhibition of PI 3-kinase and Akt attenuated RV39-induced NF-kappaB transactivation and IL-8 expression. Inhibition of PI 3-kinase also blocked internalization of labeled RV39 into 16HBE14o- cells, suggesting that the requirement of PI 3-kinase for RV39-induced IL-8 expression, at least in part, relates to its role in viral endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号