首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of Escherichia coli RNA polymerase with poly[d(A-T)] and poly[d-(I-C)] was studied by difference absorption spectroscopy at temperatures, from 5 to 45 degrees C in the absence and presence of Mg2+. The effect of KCl concentration, at a fixed temperature, was studied from 12.5 to 400 mM. Difference absorption experiments permitted calculation of the extent of DNA opening induced by RNA polymerase and estimation of the equilibrium constant associated with the isomerization from a closed to an open RNA polymerase-DNA complex. delta H0 and delta S0 for the closed-to-open transition with poly[d(A-T)] or poly[d(I-C)] complexed with RNA polymerase are significantly lower than the values associated with the helix-to-coil transition for the free polynucleotides. For the RNA polymerase complexes with poly[d(A-T)] and poly[d(I-C)] in 50 mM KCl, delta H0 approximately 15-16 kcal/mol (63-67 kJ/mol) and delta S0 approximately 50-57 cal/K per mol (209-239 J/K per mol). The presence of Mg2+ does not change these parameters appreciably for the RNA polymerase-poly[d(A-T)] complex, but for the RNA polymerase-poly[d(I-C)] complex in the presence of Mg2+, the delta H0 and delta S0 values are larger and temperature-dependent, with delta H0 approximately 22 kcal/mol (92 kJ/mol) and delta S0 approximately 72 cal/K per mol (approx. 300 J/K per mol) at 25 degrees C, and delta Cp0 approximately 2 kcal/K per mol (approx. 8.3 kJ/K per mol). The circular dichroism (CD) changes observed for helix opening induced by RNA polymerase are qualitatively consistent with the thermally induced changes observed for the free polynucleotides, supporting the difference absorption method. The salt-dependent studies indicate that two monovalent cations are released upon helix opening. For poly[d(A-T)], the temperature-dependence of enzyme activity correlates well with the helix opening, implying this step to be the rate-determining step. In the case of poly[d(I-C)], the same is not true, and so the rate-determining step must be a process subsequent to helix opening.  相似文献   

2.
3.
We have investigated the effect of reduced water activity on the pressure-stability of double-stranded DNA polymers, poly[d(A-T)] and poly[d(I-C)]. Water activity was modulated by the addition of ethylene glycol and glycerol. The ionic strength of the medium was such that pressure had a destabilising effect on the polymers in the absence of cosolvents. The molar volume change of the heat-induced helix to coil transition (ΔVT) becomes more positive as the activity of water was reduced, suggesting that the pressure-induced denaturation of DNA polymers would not occur at very low water activity. This would imply that water plays a crucial role in the pressure denaturation of DNA, much like that in pressure denaturation of proteins where the driving force of the process is the penetration of water molecules into the protein core [Hummer et al., Proc Natl Acad Sci USA 1998, 95, 1552–1555].  相似文献   

4.
Summary The effect of Aclacinomycin B (ACM-B), an anthracycline antitumor antibiotic, on the DNA-dependent RNA synthesis using single- and double-stranded DNAs of known base content and sequence is studied. The data show that ACM-B effectively inhibits the double-stranded DNA-directed RNA synthesis with a preference of poly[d(A-T)] > poly[d(G-C)] > poly[d(I-C)]. In contrast, it has no inhibitory effect on the template function of single-stranded DNA (e.g. poly dA, poly dT, and poly dC). These results suggest that the mechanism of ACM-13 inhibition, like other anthracycline antibiotics, is by intercalation. In addition to the base specificity, there are also dramatic differences in inhibition depending on the base sequence in the DNA template. Thus, ACM-13 preferentially inhibits the alternating double-stranded copolymers over the double-stranded homopolymers; e.g. poly [d(A-T)] is inhibited to a greater extent than poly dA · poly dT and poly [d(G-C)] is inhibited more than poly dG · poly dC. Since the inhibition by ACM-13 can be totally abolished when assayed in excess amount of DNA, this result suggests that ACM-B inhibition of RNA synthesis is solely on the DNA template (which is in support of the intercalation model), and has ruled out the possibility that ACM-B may also exert an inhibitory effect on the activity of RNA polymerase per se.  相似文献   

5.
We have studied the circular dichroism and ultraviolet difference spectra of T7 bacteriophage DNA and various synthetic polynucleotides upon addition of Escherichia coli RNA polymerase. When RNA polymerase binds nonspecifically to T7 DNA, the CD spectrum shows a decrease in the maximum at 272 but no detectable changes in other regions of the spectrum. This CD change can be compared with those associated with known conformational changes in DNA. Nonspecific binding to RNA polymerase leads to an increase in the winding angle, theta, in T7 DNA. The CD and UV difference spectra for poly[d(A-T)] at 4 degrees C show similar effects. At 25 degrees C, binding of RNA polymerase to poly[d(A-T)] leads to hyperchromicity at 263 nm and to significant changes in CD. These effects are consistent with an opening of the double helix, i.e. melting of a short region of the DNA. The hyperchromicity observed at 263 nm for poly[d(A-T)] is used to determine the number of base pairs disrupted in the binding of RNA polymerase holoenzyme. The melting effect involves about 10 base pairs/RNA polymerase molecule. Changes in the CD of poly(dT) and poly(dA) on binding to RNA polymerase suggest an unstacking of the bases with a change in the backbone conformation. This is further confirmed by the UV difference spectra. We also show direct evidence for differences in the template binding site between holo- and core enzyme, presumably induced by the sigma subunit. By titration of the enzyme with poly(dT) the physical site size of RNA polymerase on single-stranded DNA is approximately equal to 30 bases for both holo- and core enzyme. Titration of poly[d(A-T)] with polymerase places the figure at approximately equal to 28 base pairs for double-stranded DNA.  相似文献   

6.
The complexes of Hoechst 33258 with poly[d(A-T)2], poly[d(I-C)2], poly[d(G-C)2], and poly[d(G-m5C)2] were studied using linear dichroism, CD, and fluorescence spectroscopies. The Hoechst-poly[d(I-C)2] complex, in which there is no guanine amino group protruding in the minor groove, exhibits spectroscopic properties that are very similar to those of the Hoechst-poly[d(A-T)2] complex. When bound to both of these polynucleotides, Hoechst exhibits an average orientation angle of near 45° relative to the DNA helix axis for the long-axis polarized low-energy transition, a relatively strong positive induced CD, and a strong increase in fluorescence intensity—leading us to conclude that this molecule also binds in the minor groove of poly[d(I-C)2]. By contrast, when bound to poly[d(G-C)2] and poly[d(G-m5C)2], Hoechst shows a distinctively different behavior. The strongly negative reduced linear dichroism in the ligand absorption region is consistent with a model in which part of the Hoechst chromophore is intercalculated between DNA bases. From the low drug:base ratio onset of excitonic effects in the CD and fluorescence emission spectra, it is inferred that another part of the Hoechst molecule may sit in the major groove of poly[d(G-C)2] and poly[d(G-m5C)2] and preferentially stacks into dimers, though this tendency is strongly reduced for the latter polynucleotide. Based on these results, the importance of the interactions of Hoechst with the exocyclic amino group of guanine and the methyl group of cytosine in determining the binding modes are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
H Takashima  M Nakanishi  M Tsuboi 《Biochemistry》1985,24(18):4823-4825
The kinetics of the hydrogen-deuterium exchange reactions of poly(dA).poly(rU) and poly(rA).poly(dT) has been examined, at pH 7.0 and at various temperatures in the 15-35 degrees C range, by stopped-flow ultraviolet spectrophotometry. For comparison, the deuteration kinetics of poly[d(A-T)].poly[d(A-T)] and poly(rA).poly(rU) has been reexamined. At 20 degrees C, the imino deuteration (NH----ND) rates of the two hybrid duplexes were found to be 1.5 and 1.8 s-1, respectively. These are nearly equal to the imino deuteration rates of poly[d(A-T)].poly[d(A-T)] (1.1 s-1) and poly(rA).poly(rU) (1.5 s-1) but appreciably higher than that of poly(dA).poly(dT) (0.35 s-1). It has been suggested that a DNA.RNA hybrid, an RNA duplex, and the AT-alternating DNA duplex have in general higher base-pair-opening reaction rates than the ordinary DNA duplex. The amino deuteration (NH2----ND2) rates, on the other hand, have been found to be 0.25, 0.28, and 0.33 s-1, respectively, for poly(dA).poly(rU), poly(rA).poly(dT), and poly[d(A-T)].poly[d(A-T)], at 20 degrees C. These are appreciably higher than that for poly(rA).poly(rU) (0.10 s-1). In general, the equilibrium constants (K) of the base-pair opening are considered to be greatest for the DNA.RNA hybrid duplex (0.05 at 20 degrees C), second greatest for the RNA duplex (0.02 at 20 degrees C), and smallest for the DNA duplex (0.005 at 20 degrees C), although the AT-alternating DNA duplex has an exceptionally great K (0.07 at 20 degrees C). From the temperature effect on the K value, the enthalpy of the base-pair opening was estimated to be 3.0 kcal/mol for the DNA.RNA hybrid duplex.  相似文献   

8.
R S Johnson 《Biochemistry》1991,30(1):198-206
A derivative of RNA polymerase containing approximately 2 pyrene equiv per enzyme molecule has been used to study the interaction of RNA polymerase with poly[d(A-T)].poly[d(A-T)] and poly[d-(G-C)].poly[d(G-C)]. As monitored by fluorescence spectroscopy, pyrenyl RNA polymerase displays a unique set of conformational changes with each synthetic polynucleotide as a function of temperature. An increase in the fluorescence intensity was observed for both polynucleotides at 5 degrees C. A decrease was observed in the case of poly[d(A-T)].poly[d(A-T)] at 25 and 37 degrees C, whereas no discernible perturbation was observed in the case of poly[d(G-C)].poly[d(G-C)]. Different salt dependencies were observed for the interaction of pyrenyl RNA polymerase with these polynucleotides at 5 and 25 degrees C. Further characterization of these interactions as well as correlation of the observed fluorescence changes to the corresponding open and closed complexes was carried out with heparin. The interaction between pyrenyl RNA polymerase and poly[d-(A-T)].poly[d(A-T)] at 25 degrees C was quantified by using two different methods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The reversible thermal unfolding of the archaeal histone-like protein Ssh10b from the extremophile Sulfolobus shibatae was studied using differential scanning calorimetry and circular dichroism spectroscopy. Analytical ultracentrifugation and gel filtration showed that Ssh10b is a stable dimer in the pH range 2.5–7.0. Thermal denaturation data fit into a two-state unfolding model, suggesting that the Ssh10 dimer unfolds as a single cooperative unit with a maximal melting temperature of 99.9 °C and an enthalpy change of 134 kcal/mol at pH 7.0. The heat capacity change upon unfolding determined from linear fits of the temperature dependence of ΔHcal is 2.55 kcal/(mol K). The low specific heat capacity change of 13 cal/(mol K residue) leads to a considerable flattening of the protein stability curve (ΔG (T)) and results in a maximal ΔG of only 9.5 kcal/mol at 320 K and a ΔG of only 6.0 kcal/mol at the optimal growth temperature of Sulfolobus.  相似文献   

10.
31P- and 1H-nmr and laser Raman spectra have been obtained for poly[d(G-T)]·[d(C-A)] and poly[d(A-T)] as a function of both temperature and salt. The 31P spectrum of poly[d(G-T)]·[d(C-A)] appears as a quadruplet whose resonances undergo separation upon addition of CsCl to 5.5M. 1H-nmr measurements are assigned and reported as a function of temperature and CsCl concentration. One dimensional nuclear Overhauser effect (NOE) difference spectra are also reported for poly[d(G-T)]·[d(C-A)] at low salt. NOE enhancements between the H8 protons of the purines and the C5 protons of the pyrimidines, (H and CH3) and between the base and H-2′,2″ protons indicate a right-handed B-DNA conformation for this polymer. The NOE patterns for the TH3 and GH1 protons in H2O indicate a Watson–Crick hydrogen-bonding scheme. At high CsCl concentrations there are upfield shifts for selected sugar protons and the AH2 proton. In addition, laser Raman spectra for poly[d(A-T)] and poly[d(G-T)]·[d(C-A)] indicate B-type conformations in low and high CsCl, with predominantly C2′-endo sugar conformations for both polymers. Also, changes in base-ring vibrations indicate that Cs+ binds to O2 of thymine and possibly N3 of adenine in poly[d(G-T)]·[d(C-A)] but not in poly[d(A-T)]. Further, 1H measurements are reported for poly[d(A-T)] as a function of temperature in high CsCl concentrations. On going to high CsCl there are selective upfield shifts, with the most dramatic being observed for TH1′. At high temperature some of the protons undergo severe changes in linewidths. Those protons that undergo the largest upfield shifts also undergo the most dramatic changes in linewidths. In particular TH1′, TCH3, AH1′, AH2, and TH6 all undergo large changes in linewidths, whereas AH8 and all the H-2′,2″ protons remain essentially constant. The maximum linewidth occurs at the same temperature for all protons (65°C). This transition does not occur for d(G-T)·d(C-A) at 65°C or at any other temperature studied. These changes are cooperative in nature and can be rationalized as a temperature-induced equilibrium between bound and unbound Cs+, with duplex and single-stranded DNA. NOE measurements for poly[d(A-T)] indicate that at high Cs+ the polymer is in a right-handed B-conformation. Assignments and NOE effects for the low-salt 1H spectra of poly[d(A-T)] agree with those of Assa-Munt and Kearns [(1984) Biochemistry 23 , 791–796] and provide a basis for analysis of the high Cs+ spectra. These results indicate that both polymers adopt a B-type conformation in both low and high salt. However, a significant variation is the ability of the phosphate backbone to adopt a repeat dependent upon the base sequence. This feature is common to poly[d(G-T)]·[d(C-A)], poly[d(A-T)], and some other pyr–pur polymers [J. S. Cohen, J. B. Wouten & C. L Chatterjee (1981) Biochemistry 20 , 3049–3055] but not poly[d(G-C)].  相似文献   

11.
12.
P A Mirau  D R Kearns 《Biopolymers》1985,24(4):711-724
1H-nmr relaxation has been used to study the effect of sequence and conformation on imino proton exchange in adenine–thymine (A · T) and adenine–uracil (A · U) containing DNA and RNA duplexes. At low temperature, relaxation is caused by dipolar interactions between the imino and the adenine amino and AH2 protons, and at higher temperature, by exchange with the solvent protons. Although room temperature exchange rates vary between 3 and 12s?1, the exchange activation energies (Eα) are insensitive to changes in the duplex sequence (alternating vs homopolymer duplexes), the conformation (B-form DNA vs A-form RNA), and the identity of the pyrimidine base (thymine vs uracil). The average value of the activation energy for the five duplexes studied, poly[d(A-T)], poly[d(A) · d(T)], poly[d(A-U)], Poly[d(A) · d(U)], and poly[r(A) · r(U)], was 16.8 ± 1.3 kcal/mol. In addition, we find that the average Eα for the A.T base pairs in a 43-base-pair restriction fragment is 16.4 ± 1.0 kcal/mol. This result is to be contrasted with the observation that the Eα of cytosine-containing duplexes depends on the sequence, conformation, and substituent groups on the purine and pyrimidine bases. Taken together, the data indicate that there is a common low-energy pathway for the escape of the thymine (uracil) imino protons from the double helix. The absolute values of the exchange rates in the simple sequence polymers are typically 3–10 times faster than in DNAs containing both A · T and G · C base pairs.  相似文献   

13.
M Fry  C W Shearman  G M Martin  L A Loeb 《Biochemistry》1980,19(25):5939-5946
Accuracy of poly[d(A-T)] synthesis catalyzed by chromatin-bound deoxyribonucleic acid (DNA) polymerase beta was measured with several types. A new procedure was developed for the isolation of copied poly[d(A-T)] from chromatin DNA. This method involved in vitro copying of poly[d(A-T)] by native chromatin and subsequent selective fragmentation of chromatin by restriction nucleases, proteinase K, and heat denaturation. The fragmented natural DNA is then separated from the high molecular weight poly[d(A-T)] by gel filtration. The efficacy of DNA removal by this procedure was validated by cesium chloride gradient and nearest-neighbor analysis of the product of the reaction and by measurement of the fidelity of poly[d(A-T)] synthesis by Escherichia coli DNA Pol I contaminated with increasing amounts of DNA. Also, DNA polymerases dissociated from chromatin retain the same accuracy as that of native chromatin. Synthesis of poly[d(A-T)] by chromatin is catalyzed mainly by DNA polymerase-beta. By use of the described technique, we find that the fidelity of this reaction is exceptionally low; approximately one dGTP was incorporated for every thousand complementary nucleotides polymerized.  相似文献   

14.
Microcalorimetric heat capacity measurements on dilute and concentrated solutions and films of poly[d(A-T)·d(A-T)] in 2 M sodium chloride have been carried out. Values for enthalpy, entropy, and temperature of the helix–coil transition have been found to depend on the polymer concentration, and to have maxima near 20% (w/w) of polymer. The results are discussed in terms of polynucleotide hydration as one of the structure stabilizing factors.  相似文献   

15.
The template activity of Cancer pagurus DNA and its two components (poly d(A-T) and main component) in response to a DNA polymerase purified from regenerating rat liver has been studied and compared to the results previously obtained with synthetic templates. In the double-stranded native state, whole crab DNA and the main component were poor templates. Their replication was increased by thermal denaturation and inhibited by actinomycin. Like the synthetic copolymer poly[d(A-T)·d(T-A)], native crab poly d(A-T) could be copied and its duplication was not inhibited by actinomycin. The structural difference between native poly d(A-T) Form I, isolated on a density gradient, and partially renatured poly d(A-T) Form II, isolated on hydroxylapatite, resulted in a modification of their template activity. The kinetic studies of [3H] dGMP and [3H] dAMP incorporation confirmed the importance of single-stranded regions (particulary dC regions) in the initiation of the in vitro duplication.  相似文献   

16.
The pressure dependence of the helix–coil transition of poly(dA)∙poly(dT) and poly[d(A-T)]·poly[d(A-T)] in aqueous solutions of NaCl and CsCl at concentrations between 10 and 200 mM is reported and used to calculate the accompanying volume change. We also investigated the binding parameters and volume change of ethidium bromide binding with poly(dA)∙poly(dT) and poly[d(A-T)]·poly[d(A-T)] in aqueous solutions of these two salts. The volume change of helix–coil transition of poly(dA)∙poly(dT) in Cs+-containing solutions differs by less than 1 cm3 mol− 1 from the value measured when Na+ is the counter-ion. We propose that this insensitivity towards salt type arises if the counter-ions are essentially fully hydrated around DNA and the DNA conformation is not significantly altered by salt types. Circular dichroism spectroscopy showed that the previously observed large volumetric disparity for the helix–coil transition of poly[d(A-T)]·poly[d(A-T)] in solutions containing Na+ and Cs+ is likely result of a Cs+-induced conformation change that is specific for poly[d(A-T)]·poly[d(A-T)]. This cation-specific conformation difference is mostly absent for poly(dA)∙poly(dT) and EB bound poly[d(A-T)]·poly[d(A-T)].  相似文献   

17.
18.
The conditions for the measurement of linear dichroism (LD) can be adjusted so as to solely reflect the length and the flexibility of DNA. The real-time detection of the EDTA·Fe2+-induced oxidative cleavage of double-stranded native and synthetic DNAs was performed using LD. The decrease in the magnitude of the LD at 260 nm, which reflects an increase in the flexibility and a decrease in the length of the DNA, can be described by the sum of two or three exponential curves in relation to the EDTA·Fe2+ concentration. The fast component was assigned to the cleavage of one of the double strands, inducing an increase in the flexibility, while the other slower component was assigned to the cleavage of the double strand, resulting in the shortening of DNA. The decrease in the magnitude of the LD of poly[d(A-T)2] was similar to that of poly[d(I-C)2], while that of poly[d(G-C)2] was found to be the slowest, indicating that the resistance of poly[d(G-C)2] against the Fenton-type reagent was the strongest. This observation suggests that the amine group in the minor groove of the double helix may play an important role in slowing the EDTA·Fe2+-induced oxidative cleavage.  相似文献   

19.
The binding mode of norfloxacin, a quinolone antibacterial agent, in the synthetic polynucleotides poly[d(G-C)2], poly[d(I-C)2] and poly[d(A-T)2] was studied using polarized light spectroscopy, fluorescence spectroscopy and melting profiles. The absorption, circular and linear dichroism properties of norfloxacin are essentially the same for all the complexes, and the angle of electric transition dipole moment I and II of norfloxacin relative to the DNA helix axis is measured as 68-75 degrees for all complexes. These similarities indicate that the binding mode of norfloxacin is similar for all the polynucleotides. The decrease in the linear dichroism (LD) magnitude at 260 nm upon binding norfloxacin, which is strongest for the norfloxacin-poly[d(G-C)2] complex, and the identical melting temperature of poly[d(A-T)2] and poly[d(I-C)2] in the presence and absence of norfloxacin rule out the possibility of classic intercalation and minor groove binding. However, the characteristics of the fluorescence emission spectra of norfloxacin bound to poly[d(A-T)2] and to poly[d(I-C)2] are similar but are different to that of norfloxacin bound to poly[d(G-C)2]. As the amine group of the guanine base protrudes to the minor groove, this result strongly suggests that norfloxacin binds in the minor groove of B-form DNA in a nonclassic manner.  相似文献   

20.
Chromatin-bound and poly[d(A-T)]dependent RNA polymerase I plus III and II activities of mouse liver were analysed 24 and 48 hr after partial hepatectomy. Chromatin-bound RNA polymerase I plus III activity showed an increase of 57% at 24 hr and 51% at 48 hr after partial hepatectomy. There was a decrease in chromatin-bound RNA polymerase II activity of 15% at 24 hr and 34% at 48 hr after partial hepatectomy. There was no significant changes in poly[d(A-T)]dependent RNA polymerase activities. Heparin caused an approximately 10-fold increase in chromatin-bound RNA polymerase II activity. The stimulation by heparin was significantly increased 48 h after partial hepatectomy. Anaesthesia and/or surgery had great influence on RNA polymerase activities. At 24 hr after operation, chromatin-bound RNA polymerase I plus III and II activities were depressed, and the liver cell chromatin was more susceptible to stimulation by heparin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号