首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The human gut microbiota is a diverse and complex ecosystem that is involved in beneficial physiological functions as well as disease pathogenesis. Blastocystis is a common protistan parasite and is increasingly recognized as an important component of the gut microbiota. The correlations between Blastocystis and other communities of intestinal microbiota have been investigated, and, to a lesser extent, the role of this parasite in maintaining the host immunological homeostasis. Despite recent studies suggesting that Blastocystis decreases the abundance of beneficial bacteria, most reports indicate that Blastocystis is a common component of the healthy gut microbiome. This review covers recent finding on the potential interactions between Blastocystis and the gut microbiota communities and its roles in regulating host immune responses.  相似文献   

2.
The gut microbiota is vital to host health and, as such, it is important to elucidate the mechanisms altering its composition and diversity. Intestinal helminths are host immunomodulators and have evolved both temporally and spatially in close association with the gut microbiota, resulting in potential mechanistic interplay. Host–helminth and host–microbiota interactions are comparatively well-examined, unlike microbiota–helminth relationships, which typically focus on experimental infection with a single helminth species in laboratory animals. Here, in addition to a review of the literature on helminth–microbiota interactions, we examined empirically the association between microbiota diversity and composition and natural infection of multiple helminth species in wild mice (Apodemus flavicollis), using 16S rRNA gene catalogues (metataxonomics). In general, helminth presence is linked with high microbiota diversity, which may confer health benefits to the host. Within our wild rodent system variation in the composition and abundance of gut microbial taxa associated with helminths was specific to each helminth species and occurred both up- and downstream of a given helminth''s niche (gut position). The most pronounced helminth–microbiota association was between the presence of tapeworms in the small intestine and increased S24–7 (Bacteroidetes) family in the stomach. Helminths clearly have the potential to alter gut homeostasis. Free-living rodents with a diverse helminth community offer a useful model system that enables both correlative (this study) and manipulative inference to elucidate helminth–microbiota interactions.  相似文献   

3.
The gut microbiota–host co-metabolites are good indicators for representing the cross-talk between host and gut microbiota in a bi-direct manner. There is increasing evidence that levels of aromatic amino acids (AAAs) are associated with the alteration of intestinal microbial community though the effects of long-term microbial disturbance remain unclear. Here we monitored the gut microbiota composition and host–microbiota co-metabolites AAA profiles of mice after gentamicin and ceftriaxone treatments for nearly 4 months since their weaning to reveal the relationship between host and microbiome in long- term microbial disturbances. The study was performed employing targeted LC-MS measurement of AAA-related metabolites and 16S RNA sequence of mice cecal contents. The results showed obvious decreased gut microbial diversity and decreased Firmicutes/Bacteroidetes ratio in the cecal contents after long-term antibiotics treatment. The accumulated AAA (tyrosine, phenylalanine and tryptophan) and re-distribution of their downstreaming metabolites that produced under the existence of intestinal flora were found in mice treated with antibiotics for 4 months. Our results suggested that the long-term antibiotic treatment significantly changed the composition of the gut microbiota and destroyed the homeostasis in the intestinal metabolism. And the urinary AAA could be an indicator for exploring interactions between host and gut microbiota.  相似文献   

4.
肠道微生物群是人体内环境的重要组成部分,与宿主共进化、共代谢、共发育,并与宿主之间相互调控,影响宿主健康。近年研究显示,肠道微生物群参与了结直肠癌的发生和发展。了解肠道微生物群的特征性变化及其诱发结直肠癌的机制对于结直肠癌的防治有着重要意义。目前以肠道微生物群为靶点的干预性基础研究也取得了一些突破性的研究进展。本文主要对结直肠癌患者肠道微生物群的变化、其可能的致病机制及临床相关研究进展等进行综述。  相似文献   

5.

Background

Host genetic makeup plays a role in early gut microbial colonization and immune programming. Interactions between gut microbiota and host cells of the mucosal layer are of paramount importance for a proper development of host defence mechanisms. For different livestock species, it has already been shown that particular genotypes have increased susceptibilities towards disease causing pathogens.The objective of this study was to investigate the impact of genotypic variation on both early microbial colonization of the gut and functional development of intestinal tissue. From two genetically diverse chicken lines intestinal content samples were taken for microbiota analyses and intestinal tissue samples were extracted for gene expression analyses, both at three subsequent time-points (days 0, 4, and 16).

Results

The microbiota composition was significantly different between lines on each time point. In contrast, no significant differences were observed regarding changes in the microbiota diversity between the two lines throughout this study. We also observed trends in the microbiota data at genus level when comparing lines X and Y. We observed that approximately 2000 genes showed different temporal gene expression patterns when comparing line X to line Y. Immunological related differences seem to be only present at day 0, because at day 4 and 16 similar gene expression is observed for these two lines. However, for genes involved in cell cycle related processes the data show higher expression over the whole course of time in line Y in comparison to line X.

Conclusions

These data suggest the genetic background influences colonization of gut microbiota after hatch in combination with the functional development of intestinal mucosal tissue, including the programming of the immune system. The results indicate that genetically different chicken lines have different coping mechanisms in early life to cope with the outside world.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1646-6) contains supplementary material, which is available to authorized users.  相似文献   

6.
Microorganisms that colonize the gastrointestinal tract, collectively known as the gut microbiota, are known to produce small molecules and metabolites that significantly contribute to host intestinal development, functions, and homeostasis. Emerging insights from microbiome research reveal that gut microbiota‐derived signals and molecules influence another key player maintaining intestinal homeostasis—the intestinal stem cell niche, which regulates epithelial self‐renewal. In this review, the literature on gut microbiota‐host crosstalk is surveyed, highlighting the effects of gut microbial metabolites on intestinal stem cells. The production of various classes of metabolites, their actions on intestinal stem cells are discussed and, finally, how the production and function of metabolites are modulated by aging and dietary intake is commented upon.  相似文献   

7.
过去10年中,人们逐渐认识到肠道微生物群的多样性及菌群平衡在维护宿主健康中发挥的作用。肠道微生物及其代谢产物通过一系列的生化、免疫和生理功能环节与宿主进行交流,从而影响宿主的稳态和健康。阿尔茨海默病(Alzheimer’s disease,AD)是一种复杂的神经退行性疾病,其易感性和发展过程受年龄、遗传和表观遗传等因素的影响。研究发现,肠道微生物群的紊乱(组成改变和易位)与神经系统疾病(AD)有关,胃肠道通过肠脑轴与中枢神经系统进行沟通,包括对神经的直接作用、内分泌途径和免疫调控方式。动物模型、粪便菌群移植及益生菌干预为肠道菌群与AD的相关性提供了证据。外漏的细菌代谢产物可能直接损害神经元功能,也可能诱发神经炎症,促进AD的发病。本文主要综述了肠道微生物群与AD的关联和作用机制,以期为通过改善肠道菌群结构预防AD的可能干预措施提供依据。  相似文献   

8.
The intestinal microbiota is a complicated ecosystem that influences many aspects of host physiology (i.e. diet, disease development, drug metabolism, and regulation of the immune system). It also exhibits spatial patterning and temporal dynamics. In this review, the effects of internal and external (environmental) factors on intestinal microbiota are discussed. We describe the roles of the gut microbiota in maintaining intestinal and immune system homeostasis and the relationship between gut microbiota and diseases. In particular, the contributions of polysaccharides, as the most abundant diet components in intestinal microbiota and host health are presented. Finally, perspectives for research avenues relating to gut microbiota are also discussed.  相似文献   

9.
The gut microorganisms in some animals are reported to include a core microbiota of consistently associated bacteria that is ecologically distinctive and may have coevolved with the host. The core microbiota is promoted by positive interactions among bacteria, favoring shared persistence; its retention over evolutionary timescales is evident as congruence between host phylogeny and bacterial community composition. This study applied multiple analyses to investigate variation in the composition of gut microbiota in drosophilid flies. First, the prevalence of five previously described gut bacteria (Acetobacter and Lactobacillus species) in individual flies of 21 strains (10 Drosophila species) were determined. Most bacteria were not present in all individuals of most strains, and bacterial species pairs co-occurred in individual flies less frequently than predicted by chance, contrary to expectations of a core microbiota. A complementary pyrosequencing analysis of 16S rRNA gene amplicons from the gut microbiota of 11 Drosophila species identified 209 bacterial operational taxonomic units (OTUs), with near-saturating sampling of sequences, but none of the OTUs was common to all host species. Furthermore, in both of two independent sets of Drosophila species, the gut bacterial community composition was not congruent with host phylogeny. The final analysis identified no common OTUs across three wild and four laboratory samples of D. melanogaster. Our results yielded no consistent evidence for a core microbiota in Drosophila. We conclude that the taxonomic composition of gut microbiota varies widely within and among Drosophila populations and species. This is reminiscent of the patterns of bacterial composition in guts of some other animals, including humans.  相似文献   

10.
Lactic acid bacteria (LAB) are generally accepted as beneficial to the host and their presence is directly influenced by ingestion of fermented food or probiotics. While the intestinal lactic microbiota is well-described knowledge on its routes of inoculation and competitiveness towards selective pressure shaping the intestinal microbiota is limited. In this study, LAB were isolated from faecal samples of breast feeding mothers living in Syria, from faeces of their infants, from breast milk as well as from fermented food, typically consumed in Syria. A total of 700 isolates were characterized by genetic fingerprinting with random amplified polymorphic DNA (RAPD) and identified by comparative 16S rDNA sequencing and Matrix Assisted Laser Desorption Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) analyses. Thirty six different species of Lactobacillus, Enterococcus, Streptococcus, Weissella and Pediococcus were identified. RAPD and MALDI-TOF-MS patterns allowed comparison of the lactic microbiota on species and strain level. Whereas some species were unique for one source, Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus and Lactobacillus brevis were found in all sources. Interestingly, identical RAPD genotypes of L. plantarum, L. fermentum, L. brevis, Enterococcus faecium, Enterococcus faecalis and P. pentosaceus were found in the faeces of mothers, her milk and in faeces of her babies. Diversity of RAPD types found in food versus human samples suggests the importance of host factors in colonization and individual host specificity, and support the hypothesis that there is a vertical transfer of intestinal LAB from the mother's gut to her milk and through the milk to the infant's gut.  相似文献   

11.
随着高通量测序技术的发展,人们逐渐认识到肠道菌群与人类的健康和疾病密切相关,并发现肠道菌群受很多因素的影响。除了研究传统饮食和药物对肠道菌群的改变外,近年来,科学家也开始注重遗传因素在塑造肠道菌群中的作用。遗传因素可决定宿主的饮食偏好、肠道的生理结构、肠道屏障功能和免疫功能等,而这些都直接与肠道菌群相互作用,参与肠道微生态平衡的构建和稳定。因此,在研究肠道菌群与疾病发生相关性的过程中也需要考虑遗传因素的重要性。随着基因敲除、无菌小鼠和菌群移植等实验技术的革新,以及主成分分析、数量性状基因座和全基因组关联性分析等大数据分析手段的提高,科学家能够深入研究宿主遗传基因与肠道菌群之间的关联性,从而证明宿主遗传基因在塑造肠道微生态的过程中具有重要作用。本文将首先简述肠道菌群与疾病发生之间可能存在的联系,然后从多方面综述遗传因素对肠道菌群的影响及主要的研究进展,从而为今后该领域的深入研究提供重要的指导,也为今后预防和治疗疾病提供新思路和新方法。  相似文献   

12.
Microbiota-immune system interaction: an uneasy alliance   总被引:1,自引:0,他引:1  
An estimated 100 trillion microbes colonize human beings, with the majority of organisms residing in the intestines. This microbiota impacts host nutrition, protection, and gut development. Alterations in microbiota composition are associated with susceptibility to various infectious and inflammatory gut diseases. The mucosal surface is not a static barrier that simply prevents microbial invasion but a critical interface for microbiota-immune system interactions. Recent work suggests that dynamic interactions between microbes and the host immune system at the mucosal surface inform immune responses both locally and systemically. This review focuses on intestinal microbiota-immune interactions leading to intestinal homeostasis, and show that these interactions at the GI mucosal surface are critical for driving both protective and pathological immune responses systemically.  相似文献   

13.
陈小珊  王丽蕊 《微生物学通报》2023,50(11):5124-5136
肠道干细胞(intestinal stem cells, ISCs)是肠道各类上皮细胞的来源,通过平衡增殖与分化维持肠道稳态。同时,肠道菌群及其代谢物在维持宿主肠道稳态中也发挥着重要作用。随着技术的发展,研究者认识到ISCs与肠道菌群之间存在相互作用。研究表明,ISCs对上皮细胞亚型的调控影响肠道菌群的组成,并且肠道菌群及其代谢物也影响ISCs介导的上皮发育。本文阐述了ISCs分化对肠道菌群的影响,重点总结了肠道菌群及其代谢物调控ISCs增殖分化的研究进展,从菌群调控ISCs的角度探讨肠道损伤的治疗思路,并对未来可能的研究方向进行讨论。  相似文献   

14.
The intestine is colonized by a considerable community of microorganisms that cohabits within the host and plays a critical role in maintaining host homeostasis. Recently, accumulating evidence has revealed that the gut microbial ecology plays a pivotal role in the occurrence and development of cardiovascular disease (CVD). Moreover, the effects of imbalances in microbe–host interactions on homeostasis can lead to the progression of CVD. Alterations in the composition of gut flora and disruptions in gut microbial metabolism are implicated in the pathogenesis of CVD. Furthermore, the gut microbiota functions like an endocrine organ that produces bioactive metabolites, including trimethylamine/trimethylamine N-oxide, short-chain fatty acids and bile acids, which are also involved in host health and disease via numerous pathways. Thus, the gut microbiota and its metabolic pathways have attracted growing attention as a therapeutic target for CVD treatment. The fundamental purpose of this review was to summarize recent studies that have illustrated the complex interactions between the gut microbiota, their metabolites and the development of common CVD, as well as the effects of gut dysbiosis on CVD risk factors. Moreover, we systematically discuss the normal physiology of gut microbiota and potential therapeutic strategies targeting gut microbiota to prevent and treat CVD.  相似文献   

15.
曹蕾  吴健 《微生物与感染》2017,12(5):264-269
近年来肠道菌群的研究发展迅速,肠道菌群对宿主消化、代谢和免疫功能的影响逐渐被人们所熟知并重视。大量研究提示,肠道菌群的改变可能引发代谢、肝脏和肠道等方面的多种相关疾病。因此,研究肠道菌群对宿主健康及疾病的影响尤为重要,也能为预防和治疗肠道菌群相关疾病提供建议。  相似文献   

16.
肠道微生态系统及其与宿主的协同进化   总被引:1,自引:0,他引:1  
肠道微生态系统是寄生在宿主肠道内的微生物的总和。微生物进入肠道后,通过一个复杂的过程形成群落,与宿主之间相互作用,形成共生关系。宿主客观上为微生物提供生存和进化场所,微生态系统为宿主提供营养物质、刺激肠道组织的发育、刺激宿主肠道免疫系统的发育、影响宿主能量代谢、协助宿主降解有毒物质、影响宿主生殖活动和寿命等功能。作为一个进化的系统,微生态系统的物种多样性和丰富度对维持宿主正常生理功能具有重要作用,但同时又受宿主的影响,物种间相互作用和宿主-微生物间的相互作用是微生态系统进化的动力。进化主要表现在微生物和宿主基因组上发生适应性变化。因此,系统生态学的理论对理解肠道微生态系统的运行机制和临床应用具有重要指导作用。  相似文献   

17.
蜜蜂肠道菌群定殖研究进展   总被引:1,自引:1,他引:0  
肠道菌群在其宿主健康中发挥着各种各样的重要功能。蜜蜂是高度社会化的昆虫,其肠道菌群与大多数昆虫明显不同,由兼性厌氧和微好氧的细菌组成,具有高度保守性和专门的核心肠道微生物群。近年来的研究表明,蜜蜂肠道微生物群在代谢、免疫功能、生长发育以及保护机体免受病原体侵袭等方面起着重要作用,并已证实肠道微生物在蜜蜂健康和疾病中起着重要作用,肠道微生物群的破坏对蜜蜂健康会产生不利影响。本文综述了蜜蜂肠道菌群的特征及菌群定殖研究进展,介绍了蜜蜂的日龄、群体、季节等对蜜蜂肠道菌群定殖的影响,探讨了宿主的功能和新陈代谢对肠道菌群的影响。  相似文献   

18.
定植于宿主肠道中的微生物参与了宿主多种生理功能以及相关疾病的发生。一个新的医学研究热点在近年内逐渐被关注,肠道菌群可通过主要由神经—内分泌介导的肠—脑轴(gut-brain axis,GBA)与大脑进行双向式交流。GBA不仅实现了肠道菌群对大脑发育和功能的影响,也促使大脑对肠道菌群结构和多样性的改变成为可能。本文旨在对肠道菌群与大脑相互作用的研究进展作一综述,以期为肠道和大脑功能领域的研究以及重要相关疾病的治疗策略提供理论依据。  相似文献   

19.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease caused by many factors including colonic inflammation and microbiota dysbiosis. Previous studies have indicated that celastrol (CSR) has strong anti-inflammatory and immune-inhibitory effects. Here, we investigated the effects of CSR on colonic inflammation and mucosal immunity in an experimental colitis model, and addressed the mechanism by which CSR exerts the protective effects. We characterized the therapeutic effects and the potential mechanism of CSR on treating UC using histological staining, intestinal permeability assay, cytokine assay, flow cytometry, fecal microbiota transplantation (FMT), 16S rRNA sequencing, untargeted metabolomics, and cell differentiation. CSR administration significantly ameliorated the dextran sodium sulfate (DSS)-induced colitis in mice, which was evidenced by the recovered body weight and colon length as well as the decreased disease activity index (DAI) score and intestinal permeability. Meanwhile, CSR down-regulated the production of pro-inflammatory cytokines and up-regulated the amount of anti-inflammatory mediators at both mRNA and protein levels, and improved the balances of Treg/Th1 and Treg/Th17 to maintain the colonic immune homeostasis. Notably, all the therapeutic effects were exerted in a gut microbiota-dependent manner. Furthermore, CSR treatment increased the gut microbiota diversity and changed the compositions of the gut microbiota and metabolites, which is probably associated with the gut microbiota-mediated protective effects. In conclusion, this study provides the strong evidence that CSR may be a promising therapeutic drug for UC.  相似文献   

20.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide. The pathophysiological mechanisms linking gut dysbiosis and severe SARS-CoV-2 infection are poorly understood, although gut microbiota disorders are related to severe SARS-CoV-2 infections. The roles of the gut microbiota in severe SARS-CoV-2 infection were compared with those in respiratory viral infection, which is an easily understood and enlightening analogy. Secondary bacterial infections caused by immune disorders and antibiotic abuse can lead to dysregulation of the gut microbiota in patients with respiratory viral infections. The gut microbiota can influence the progression of respiratory viral infections through metabolites and the immune response, which is known as the gut–lung axis. Angiotensin-converting enzyme 2 is expressed in both the lungs and the small intestine, which may be a bridge between the lung and the gut. Similarly, SARS-CoV-2 infection has been shown to disturb the gut microbiota, which may be the cause of cytokine storms. Bacteria in the gut, lung, and other tissues and respiratory viruses can be considered microecosystems and may exert overall effects on the host. By referencing respiratory viral infections, this review focused on the mechanisms involved in the interaction between SARS-CoV-2 infections and the gut microbiota and provides new strategies for the treatment or prevention of severe SARS-CoV-2 infections by improving gut microbial homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号