首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Extraneuronal catecholamine uptake was investigated in isolated quiescent rat myocardial cells. By administration of (3H-)(–)noradrenaline concentration of 22 nmol/l up to 1000 mol/l the following data were obtained: (1) The KM of the uptake process amounted to 260 mol/l, the Vmax to 4.24 nmol/(10 min × mg Protein) corresponding to 179 nmol/(min × gWWt)(WWT = Wet Weight). (2) The uptake was largely inhibited by the uptake2-inhibitors corticosterone (100 mol/l), isoprenaline (IC so = 30.6 mol/l), and O-methylisoprenaline (IC50 = 2.1 pmol/l), but not by the uptake1-inhibitors cocaine (100 mol/l) and desipramine (10 mol/l). (3) The affinity-values KM and IC50 closely agreed with those already known, but the Vmax-value was higher than those obtained in whole rat hearts by a factor of at least 1.79. This is caused presumably by the voltage dependence of the uptake mechanism and the resulting inhibition of uptake 2 during the periods of depolarisation in beating hearts of other studies.  相似文献   

2.
The uptake of radioactive ethanolamine has been studied in exclusively neuronal and glial cell cultures from dissociated cerebral hemispheres of chick embryos. Both cell types show saturable kinetics; neurons have an apparentK m of 6.7 M,V max 41.4 pmol mg prot.–1 min–1 and glial cells aK m of 119.6 M,V max 3,917 pmol mg prot–1 min–1. The lower affinity of the transport and the 100 fold increase inV max observed in glial cells correlated with a more important accumulation of free ethanolamine found in glial cells and with a higher degree of phosphorylation of ethanolamine. The uptake appeared to be temperature and Na+ ions dependent but was not affected by CN or ouabain. Monomethyl-, dimethylethanolamine and choline were effective in inhibiting the uptake. Little or no effect was observed with serine, methionine, carnitine, alanine or glutamate.  相似文献   

3.
Summary The enzymatic transformation of desacetyl-lanatoside A (DLA) to its secondary glycoside, digitoxin, in solutions of -and -cyclodextrins is effected using of -glucosidase from barley. Due to the interaction of cyclodextrins (CyDs) with desacetyl-lanatoside A, an increase in solubility of the latter of 24.5 and 230 times was observed for -cyclodextrin and -cyclodextrin, respectively. Kinetic studies of the enzymatic transformation gave for -glucosidase the values KM=3.3×10–4 mol. dm–3 and Vmax=0.557 mol mg–1 min–1 when the substrate was the deacetyl-lanatoside A complex with -cyclodextrin, while in the case of the complex with -cyclodextrin these values were KM=5.45×10–4 mol dm–3 and Vmax=0.896 mol mg–1 min–1.  相似文献   

4.
Annual studies of kinetics of alkaline phosphatase (APA) activity and phosphorus availability for microplankton in the photic zone of an eutrophic lake are reported. The total APA activity of microplankton varied strongly. Vmax was highest during summer P depletion, and in autumn and winter total APA activity was low. The total APA specific activity of the microplankton was also highest (average 3.55 pmole PO4 3– ng ATP–1 min–1) when ambient orthophosphate concentrations were very low. Both Vmax and specific APA activity were not dependent on the biomass of microplankton; they were strongly affected by P available for microplankton. A differential filtration technique was used for separation of microplankton into two size classes, i.e., algal, larger than 3m, and bacterial fraction with size 0.2–3.0m. The algal size fraction had lower specific APA activity (average 1.224 pmole PO4 3– ng ATP–1 min–1) and higher KM values (38.8mole × liter–1) than microorganisms which were smaller than 3m (2.011 pmole PO4 3– ng ATP–1 min–1 and 25.4mole liter–1, respectively). The KM values of free, dissolved APA (36.8mole liter–1) indicated that free APA was probably released by algae. Phytoplankton were major APA activity producers in the photic zone of the lake from March to November, and their activity constituted, on the average, 48.6% of the total APA activity in the water. Bacteria were the dominant APA activity producers in winter (41.3–44.9%); however, during other periods they contributed significantly (average 21.7%) to total APA activity. When surplus constituted less than 10% of particulate P in seston, phytoplankton produced high specific APA activity, and when surplus P was higher than 15%, the specific APA activity of phytoplankton size fraction rapidly decreased. APA of the bacterial size fraction of the seston was not affected by P concentrations. Orthophosphate was a competitive inhibitor of APA produced by microorganisms of the size fraction larger than 3.0m, and increasing concentrations of inorganic phosphate caused an increase in KM values. The hypothetical metabolic-coupling between phytoplankton and bacterioplankton in the phosphorus cycle in conjunction with carbon metabolism in the lake is discussed.  相似文献   

5.
Histamine transport has been characterized in cultured astroglial cells of rat brain. The kinetics of [3H]-histamine uptake yielded a Km of 0.19±0.03 M and a Vmax of 3.12±0.75 pmol×mg protein–1×min–1. Transport system revealed high affinity for histamine and an approximately ten times higher capacity than that shown in cultured glial cells of chick embryonic brain. Ouabain which interferes with utilization of ATP to generate ion gradients, and the replacement of Na+ with choline inhibited the initial rate of uptake showing a strong Na+-dependency and suggesting the presence of a tightly coupled sodium/histamine symporter. Dissipation of K+-gradient (in>out) by high K+ or by K+-channel blockers, BaCl2, (100 M), quinine (100 M) or Sparteine (20 M) produced also remarkable inhibitions in the uptake of [3H]-histamine. Impromidine, a structural histamine-analogue could inhibit the uptake non-competitively in a range of concentrations of 1 to 10 M with a Ki value of 2.8 M, indicating the specificity of the uptake. [3H]histamine uptake measurements carried out by using a suspension of dissociated hypothalamic cells, of rat brain showed a strong gliotoxin-sensitivity and yielded a Km of 0.33±0.08 M; and a Vmax of 2.65±0.35 pmoles×mg protein–1×min–1. The uptake could be reversed by incubating the cells in histamine-free Krebs medium. The [3H]histamine efflux was sensitive to Na+ omission, ouabain treatment and high K+ or K+ channel blockers, resulting in marked elevations in the efflux. Data indicate that glial uptake of histamine is a high affinity, Na+-dependent and electrogenic, driven by an inward-oriented sodium ion gradient and an outward-oriented potassium ion gradient and functions as part of histamine inactivation, at least in a shunt mechanism.Abbreviations used HA histamine - [3H]HA [2.5-3H]-histamine - dl--aAA dl-alpha-aminoadipic acid - (Na++K+) ATP-ase sodium and potassium activated adenosine triphosphatase - SAH S-Adenosyl-d-Homocysteine - HNMT histamine-N-methyltransferase  相似文献   

6.
Summary We previously reported that3H-folate uptake by rabbit jejunal brush-border membrane (BBM) vesicles was markedly stimulated by an outwardly directed OH gradient (pHin 7.7, pHout 5.5), inhibited by anion exchange inhibitors (DIDS, SITS, furosemide), and saturable (folateK m=0.19 m) suggesting carrier-mediated folate/OH exchange (or H+/folate cotransport). In the present study, the anion specificity of this transport process was examined. Under conditions of an outwardly directed OH gradient, DIDS-sensitive folate uptake wascis inhibited (>90%) by reduced folate analogues: dihydrofolate (IC50=0.40 m), folinic acid (IC50=0.50 m), 5-methyltetrahydrofolate (IC50=0.53 m), and (+)amethopterin (IC50=0.93 M). In contrast, 10 m (–)amethopterin had only a modest effect on folate uptake (18% inhibition) suggesting stereospecificity of the folate/OH exchanger. The nonpteridine compounds which are transported by the folate carrier in L1210 leukemic cells (phthalate, thiamine pyrophosphate, and PO 4 –3 ) did not inhibit jejunal folate uptake. Furthermore, folate uptake was not inhibited by SO 4 –2 (4mm) or oxalate (4mm) thereby distinguishing this carrier from the previously described intestinal SO 4 –2 /OH and oxalate/Cl exchangers. After BBM vesicles were loaded with3H-folate, the initial velocity of3H-folate efflux was stimulated by unlabeled folate in the efflux medium. The transstimulation of3H-folate efflux by unlabeled folate was furosemide (or DIDS) inhibitable and temperature sensitive. Half-maximal stimulation of furosemide-sensitive3H-folate efflux was observed with 0.25±0.05 m unlabeled folate, a concentration similar to theK m for folate uptake. These data suggest that folate-stimulated3H-folate efflux is mediated by the folate/OH exchanger. With the exception of (–) amethopterin, reduced folate analogues also transstimulated furosemide-sensitive3H-folate efflux in a concentration-dependent manner suggesting stereospecific transport of these analogues by the folate/OH exchanger. In summary, folate transport by the jejunal folate/OH exchanger demonstrates bothcis inhibition and transstimulation by reduced folate analogues, but not by other inorganic or organic anions suggesting bidirectional transport of folate and a high degree of anion specificity.  相似文献   

7.
Two different immobilisation techniques for lipases were investigated: adsorption on to Accurel EP-100 and deposition on to Celite. The specific activities were in the same order of magnitude, 2.9 (mol min–1 mg protein) when Celite was used as support and 2.3 (mol min–1 mg–1 protein) when Accurel EP-100 was used as support, even if the amount of lipase loaded differed by 2 orders of magnitude. Immobilisation on Accurel EP-100 was the preferred technique since 40–100 times more protein can be loaded/per g carrier, thus yielding a more active catalyst. The water activity profiles in lipase catalysed esterification were influenced by the amount of protein adsorbed to Accurel EP-100. Higher protein loading (40 mg g–1) resulted in a bell-shaped water activity profile with highest specific activity (6.1 mol min–1 mg–1 protein) at a w=0.11, while an enzyme preparation with low protein loading (4 mg g–1) showed highest specific activity at a w=0.75.  相似文献   

8.
In potassium-limited chemostat cultures of Paracoccus denitrificans the maximum specific growth rate (µmax) was found to depend on the input potassium concentration: At 0.21mM µmax was 0.10–0.11 h-1; at 0.44 mM 0.15–0.16 h-1 and at 0.66 mM 0.20–0.21 h-1. The plots of the specific rates of oxygen-, succinate-and potassium consumption against gave straight lines. The intracellular potassium concentration was a linear function of and varied from 1% (0.13 M) at a value of 0.034 h-1 to 2.2% (0.29 M) at =0.26 h-1; the potassium concentration gradient and the potassium concentration in the culture fluid in the steady state were dependent on the input potassium concentration. The potassium concentration gradient varied from 8,900-1,200. At all values 20–25% of the total energy production was used for potassium transport. 350,100 and 30 ATP molecules were calculated to be required to maintain one potassium ion intracellular during 1 h at values of 0.034, 0.197 and 0.257 h-1 respectively. It is concluded that the amount of circulation of potassium is dependent on the potassium concentration gradient or on the potassium concentration in the culture in the steady state. The dependency of µmax on the input potassium concentration was explained by the assumption that at low input potassium concentrations the net uptake of potassium (influx-efflux) is not rapidly enough to maintain the high potassium gradient in the existing cells and to establish it in the newly formed cells. At high values and at high input potassium concentrations µmax is limited by the specific rate of oxygen consumption, which was found to be 11–12 mmol O2 g dry weight-1 h-1 at µmax for potassium-, succinate-and sulphate-limited chemostat cultures.  相似文献   

9.
Evidence is presented that the high levels of internal l-glutamic and l-aspartic acid in frog Rana esculenta red blood cells are due to the existence of a specific carrier for acidic amino acids of high affinity K m = 3 m and low capacity (Vmax) 0.4 mol l-Glu · Kg–1 dry cell mass · 10 min–1. It is Na+ dependent and the incorporation of l-glutamic acid can be inhibited by l and d-aspartate and l-cysteic acid, while d-glutamic does not inhibit. Moreover, this glutamic uptake shows a bell-shaped dependence on the external pH. All these properties show that this carrier belongs to the system X AG family. Besides the incorporation through this system, l-glutamic acid is also taken up through the ASC system, although, under physiological conditions, this transport is far less important, since it has relatively low affinity K m 39 m but high capacity (V max) 1.8 mol l-Glu · Kg–1 dry cell mass · 10 min–1.  相似文献   

10.
Summary Geotrichum candidum (isolate 1–9) pathogenic on citrus fruits, appears to lack siderophore production. Iron uptake byG. candidum is mediated by two distinct iron-regulated, energy-and temperature-dependent transport systems that require sulfhydryl groups. One system exhibits specificity for either ferric or ferrous iron, whereas the other exhibits specificity for ferrioxamine-B-mediated iron uptake and presumably other hydroxamate siderophores. Radioactive iron uptake from59FeCl3 showed an optimum at pH 6 and 35° C, and Michaelis-Menten kinetics (apparentK m = 3 m,V max = 0.054 nmol · mg–1 · min–1). The maximal rate of Fe2+ uptake was higher than Fe3+ (V max = 0.25 nmol · mg–1 · min–1) but theK m was identical. Reduction of ferric to ferrous iron prior to transport could not be detected. The ferrioxamine B system exhibits an optimum at pH 6 and 40° C and saturation kinetics (K m = 2 M,V max = 0.22 nmol · mg–1 · min–1). The two systems were distinguished as two separate entities by negative reciprocal competition, and on the basis of differential response to temperature and phenazine methosulfate. Mössbauer studies revealed that cells fed with either57FeCl3 or57FeCl2 accumulated unknown ferric and ferrous binding metabolites.  相似文献   

11.
Summer populations of the phytoplankton of the Loosdrecht Lakes were enclosed in laboratory scale enclosures (LSE), supplied with 7.5 g P.l–1.d–1 and 105 g P.l–1.d–1, respectively. The maximum initial phosphate uptake rate (Vm) was related to irradiance and primary production. At phosphate uptake saturating light-irradiance Vm values up to 4 times the Vm values in the dark were measured.The phosphate uptake capacity per unit dry weight remained more or less constant throughout the experiments in the LSE receiving the lower amount of phosphorus, and declined in the LSE receiving the higher amount of phosphorus. Within the range of Vm values measured (<10 g P.mg DW–1.h–1 or 1,3 g P. g chla –1.h–1), the growth rate of the phytoplankton was not influenced by alterations in phosphorus availability.  相似文献   

12.
The utility of interstitial water concentrations of metals and simultaneously extracted metals/acid-volatile sulfide differences (SEM–AVS) in two seasons were investigated to explain the biological availability of zinc in sediments to benthic organisms exposed in the laboratory. The amphipod Grandidierella japonica was exposed, in 10-day acute toxicity tests, to clean sediment spiked with zinc to obtain nominal treatments ranging from 0.25 to 74.4 mol g–1 dry weight with respect to the molar difference between SEMZn and AVS. When the molar difference between SEMZn and AVS (i.e., SEM–AVS) was <0 mol g–1, the concentration of zinc in the sediment interstitial water was low and few adverse effects were observed for any of the biological endpoints measured. Conversely, when SEMZn–AVS exceeded 0 mol g–1, the concentration of zinc in the interstitial water and amphipod mortality increased. These data compare favorably with observations made in short-term exposures and thus support the use of AVS as a normalization phase for predicting toxicity in metal-contaminated sediments in different season.  相似文献   

13.
Hydrogenase was solubilized from the membrane of acetate-grown Methanosarcina barkeri MS and purification was carried out under aerobic conditions. The enzyme was reactivated under reducing conditions in the presence of H2. The enzyme showed a maximal activity of 120±40 mol H2 oxidized · min–1 · min–1 with methyl viologen as an electron acceptor, a maximal hydrogen production rate of 45±4 mol H2 · min–1 · mg–1 with methyl viologen as electron donor, and an apparent K m for hydrogen oxidation of 5.6±1.7 M. The molecular weight estimated by gel filtration was 98,000. SDS-PAGE showed the enzyme to consist of two polypeptides of 57,000 and 35,000 present in a 1:1 ratio. The native protein contained 8±2 mol Fe, 8±2 mol S2–, and 0.5 mol Ni/mol enzyme. Cytochrome b was reduced by hydrogen in a solubilized membrane preparation. The hydrogenase did not couple with autologous F420 or ferredoxin, nor with FAD, FMN, or NAD(P)+. The physiological function of the membrane-bound hydrogenase in hydrogen consumption is discussed.Abbreviation CoM-S-S-HTP the heterodisulfide of 7-mercaptoheptanoylthrconine phosphate and coenzyme M (mercaptoethanesulfonic acid)  相似文献   

14.
Summary Lactate concentration was measured in the abdominal muscle of the shrimpPalaemon serratus. Rapid and seasonal temperature changes result in an increase of the lactate content of approximately 3–4 fold.Lactate dehydrogenase from the abdominal muscle exhibits a temperature dependent pyruvate inhibition with pyruvate as substrate.The kinetic parameters of lactate dehydrogenase fromPalaemon serratus are found to vary during rapid temperature changes: Vmax increases with temperature from 0.06 mol min–1 (mg protein)–1 at 10°C to 0.28 mol min–1 (mg protein)–1 at 30°C with lactate as substrate, and from 5.5 mol min–1 (mg protein)–1 at 10°C to 26.2 mol min–1 (mg protein)–1 at 30°C, with pyruvate (Table 1). The Hill coefficientn H, decreases with temperature from 2.2 to 1.2 when the pyruvate reduction is examined, but remains near 1.2 when the activity is measured with lactate as substrate (Table 1). The S0.5 values for lactate show a tendency to increase below 30 °C (18.9 mM l–1 at 20 °C) whereas the S0.5 for pyruvate is found to increase greatly with temperature (0.004 mM l–1 at 10 °C and 0.06 mM l–1 at 20 °C).Long term temperature changes involve variations of lactate dehydrogenase activity leading to inverse thermal compensation (Table 2).Activation energy (about 56 kJ both with pyruvate and lactate) does not vary during the year, suggesting that temperature adaptation does not induce important catalytic changes (Table 3).Abbreviation LDH lactate dehydrogenase  相似文献   

15.
Summary The influence of temperature on the growth of the theromophilic Bacillus caldotenax was investigated using chemostat techniques and a chemically defined minimal medium. All determined growth constants, that is maximal specific growth rate, yield and maintenance, were temperature dependent. It was striking that the very large maintenance requirement was about 10 times higher than for mesophilic cells under equivalent conditions. A death rate, which was very substantial at optimal and supraoptimal growth temperatures, was estimated by comparing the maintenance for substrate and oxygen. There was no indication for a thermoadaptation as postulated by Haberstich and Zuber (1974).Symbols D Dilution rate (h–1) - Dc=max Critical dilution rate (h–1) - E Temperature characteristic (J mol–1) - k Organism constant - kd Death rate coefficient (h–1) - km Maintenance substrate coefficient estimated from MO (h–1) - MO Maintenance respiration, mmol O2 per g dry biomass and h (mmol g–1h–1) - MO Maintenance respiration, taking kd into account - mS Maintenance substrate coefficient, g glucose per g dry biomass and h (h–1) - OD Optical density at 546 nm - QO2 Specific O2-uptake rate (mmol g–1h–1) - Q O2 V Specific O2-uptake rate for viable portion of biomass (mmol g–1 h–1) - QS Specific glucose uptake rate (h–1) - Q S V Specific glucose uptake rate for viable portion of biomass (h–1) - R Gas constant 8.28 J mol–1K–1 - S Substrate concentration in reactor (g l–1) - SO Influent substrate concentration (g l–1) - Tmax Maximal growth temperature (°C) - Tmin Minimal growth temperature (°C) - X Dry biomass (g l–1) - XtOt=X Dry biomass containing dead and viable cells - Xv Viable portion of biomass - Y O m Potential yield for O2 corrected for maintenance respiration (g mol–1) - Y S m Potential yield for substrate corrected for maintenance requirement, g biomass per g glucose (–) - Specific growth rate (h–1) - max Maximal specific growth rate (h–1)  相似文献   

16.
Summary The enzymatic transformation of apigenin-7-O--glucoside into apigenin is effected using -glucosidase from almonds. Kinetic studies gave the following values Km=7.63×10–4mol/dm3, vmax=10.37 mol mg–1 min–1 and E1=65.21 kJ/mol when the substrate was pure apigenin-7-O--glucoside, while in case of apigenin-7-O--glucoside from dry extract of camomile ligulate flowers E2 = 65.57 kJ/mol.Nomenclature So initial substrate concentration (g/100 cm3) - P product concentration (g/100 cm3) - k reaction rate constant (min–1) - t reaction time (min)  相似文献   

17.
The purpose of this study was to see whether artificial acclimatization to cold would reduce the pressor response to noradrenaline (NA) as natural acclimatization has been shown to do, and whether it would induce nonshivering thermogenesis. Three white men were infused with NA at four dosage levels between 0.038 and 0.300 g·kg–1·min–1 (2–23 g·min–1), before and after artificial acclimatization to cold and again 4 months later when acclimatization had decayed. Acclimatization was induced by ten daily cold (15°Q baths of 30–60 min followed by rapid rewarming in hot (38–42°C) water, and was confirmed by tests of the subjects responses to whole-body cooling in air. Three control subjects also underwent the first and third tests. Acclimatization substantially reduced the pressor response to NA at 0.150 and 0.300 g·kg–1·min–1, confirming earlier findings by the same technique in naturally acclimatized men, and its decay increased this response to beyond its initial levels (P<0.05 for both changes). Acclimatization did not change the response to NA of heart rate, subjective impressions, skin temperature of finger and toe, pulmonary ventilation, or plasma free fatty acids and ketone bodies. At no time did NA increase oxygen consumption, or increase skin temperature or heat flow over reported sites of brown fat. These findings would seem to show that acclimatization to cold reduces sensitivity to the pressor effect of NA but does not induce nonshivering thermogenesis, and that the reduced sensitivity is replaced by a hypersensitivity to NA when acclimatization decays.  相似文献   

18.
Summary Permeabilities of ammonia (NH3), methylamine (CH3NH2) and ethylamine (CH3CH2NH2) in the cyanobacterium (cyanophyte)Synechococcus R-2 (Anacystis nidulans) have been measured. Based on net uptake rates of DCMU (dichlorophenyldimethylurea) treated cells, the permeability of ammonia was 6.44±1.22 m sec–1 (n=13). The permeabilities of methylamine and ethylamine, based on steady-state14C labeling were more than ten times that of ammonia (P methylamine=84.6±9.47 m sec–1 (76),P ethylamine=109±11 m sec–1 (55)). The apparent permeabilities based on net uptake rates of methylamine and ethylamine uptake were significantly lower, but this effect was partially reversible by ammonia, suggesting that net amine fluxes are rate limited by proton fluxes to an upper limit of about 700 nmol m–2 sec–1. Increasing concentrations of amines in alkaline conditions partially dissipated the pH gradient across the cell membrane, and this property could be used to calculate the relative permeabilities of different amines. The ratio of ethylamine to methylamine permeabilities was not significantly different from that calculated from the direct measurements of permeabilities; ammonia was much less effective in dissipating the pH gradient across the cell membrane than methylamine or ethylamine. An apparent permeability of ammonia of 5.7±0.9 m sec–1 could be calculated from the permeability ratio of ammonia to methylamine and the experimentally measured permeability of methylamine. The permeability properties of ammonia and methylamine are very different; this poses problems in the interpretation of experiments where14C-methylamine is used as an ammonia analogue.  相似文献   

19.
Response of Rhizobium leguminosarum to nickel stress   总被引:2,自引:0,他引:2  
Rhizobium leguminosarum strain P-5 biovar viciae was sensitive to Ni2+ (MIC, 75 M) and showed concentration-dependent Ni2+ uptake in a wide concentration range (50–500 M). Ni2+ uptake up to a certain threshold limit also increased thiol content (66 nmol mg–1 protein), proline content (10.85 nmol mg–1 protein) and urease specific activity (500 nmol min–1 mg–1 protein) maximum corresponding to 100 M Ni2+ as the external concentration or 151 nmol Ni2+ mg–1 protein as the intracellular buildup. Proline synthesis was stimulated most even at much lower Ni2+ concentration (25 M). Higher intracellular Ni2+ load neither favoured thiol nor proline biosynthesis nor urease activity. Ni2+ requirement of urease was ascertained by using EDTA-grown cells and the addition of bicarbonate (NaHCO3, 100 mM) to the crude extract. The induction of thiol or proline by Ni2+, therefore, reflects the possible strategies adopted by bacterial cells to overcome the environmental stress.  相似文献   

20.
Magnesium uptake kinetics in loblolly pine seedlings   总被引:1,自引:0,他引:1  
Recent studies have suggested that the growth of loblolly pine (Pinus taeda L.) has declined in the southern United States and it has been hypothesized that foliar Mg deficiency may play an important role in the perceived decline. Quantitative nutrient uptake models such as the Barber-Cushman model have been used successfully to investigate nutrient uptake by crop species under a variety of field and experimental conditions and may provide one approach to evaluating this question. However, in order to use this approach it is necessary to develop, for the plant species and nutrient of interest, values for maximal nutrient influx rate at high solution concentrations (Imax), the solution concentration where net influx is 0.5 Imax (Km), and the nutrient concentration below which influx ceases (Cmin). As a first step in evaluating the potential of such an approach, two sets of experiments using established solution nutrient depletion techniques were used to define these values for loblolly pine seedlings 180, 240, 365, and 425 days in age. Observed Imax values for Mg range from 7.90E-8 to 1.29E-7 mol cm–2 s–1 with younger seedlings having higher values. Values of Km for all seedling ages were quite similar ranging from 8.69 to 8.58E-3 mol cm–3. Most importantly, the results of both experiments indicate that during a growth flush, seedlings will withdraw Mg from solution until the concentration is essentially zero (Cmin=0). During non-flush periods uptake rates appear to be greatly reduced. Therefore, efforts to model Mg uptake will need to take these differences as well as seedling age influences into consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号