首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
N‐[1‐(4‐(4‐fluorophenyl)‐2,6‐dioxocyclohexylidene)ethyl] (Fde) protected amino acids have been prepared and applied in solid‐phase peptide synthesis monitored by gel‐phase 19F NMR spectroscopy. The Fde protective group could be cleaved with 2% hydrazine or 5% hydroxylamine solution in DMF as determined with gel‐phase 19F NMR spectroscopy. The dipeptide Ac‐L ‐Val‐L ‐Val‐NH2 12 was constructed using Fde‐L ‐Val‐OH and no noticeable racemization took place during the amino acid coupling with N,N′‐diisopropylcarbodiimide and 1‐hydroxy‐7‐azabenzotriazole or Fde deblocking. To extend the scope of Fde protection, the hydrophobic nonapeptide LLLLTVLTV from the signal sequence of mucin MUC1 was successfully prepared using Fde‐L ‐Leu‐OH at diagnostic positions. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Fluorine (19F) NMR is a valuable tool for studying dynamic biological processes. However, increasing the sensitivity of fluorinated reporter molecules is a key to reducing acquisition times and accessing transient biological interactions. Here, we evaluate the utility a novel amino acid, l ‐O‐(perfluoro‐t‐butyl)‐homoserine (pFtBSer), that can easily be synthesized and incorporated into peptides and provides greatly enhanced sensitivity over currently used 19F biomolecular NMR probes. Incorporation of pFtBSer into the potent antimicrobial peptide MSI‐78 results in a sharp 19F NMR singlet that can be readily detected at concentrations of 5 µm and lower. We demonstrate that pFtBSer incorporation into MSI‐78 provides a sensitive tool to study binding through 19F NMR chemical shift and nuclear relaxation changes. These results establish future potential for pFtBSer to be incorporated into various proteins where NMR signal sensitivity is paramount, such as in‐cell investigations. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Readily available L‐tartaric acid, which is a bidentate ligand with two chiral centers forming a seven‐membered chelate ring, was applied to the chiral ligand for the chiral nuclear magnetic resonance (NMR) shift reagent of samarium(III) formed in situ. This simple method does not cause serious signal broadening in the high magnetic field. Enantiomeric 13C and 1H NMR signals and enantiotopic 1H NMR signals of α‐amino acids were successfully resolved at pH 8.0 and the 1:3 molar ratio of Sm(NO3)3:L‐tartaric acid. It is elucidated that the enantiomeric signal resolution is attributed to the anisotropic magnetic environment for the enantiomers induced by the chiral L‐tartarato samarium(III) complex rather than differences in stability of the diastereomeric substrate adducts. The present 13C NMR signal resolution was also effective for the practical simultaneous analysis of plural kinds of DL‐amino acids. Chirality 27:353–357, 2015.© 2015 Wiley Periodicals, Inc.  相似文献   

4.
We prepared, by solution‐phase methods, and fully characterized three analogs of the membrane‐active peptaibiotic alamethicin F50/5, bearing a single trifluoroacetyl (Tfa) label at the N‐terminus, at position 9 (central region) or at position 19 (C‐terminus), and with the three Gln at positions 7, 18, and 19 replaced by Glu(OMe) residues. To add the Tfa label at position 9 or 19, a γ‐trifluoroacetylated α,γ‐diaminobutyric acid (Dab) residue was incorporated as a replacement for the original Val9 or Glu(OMe)19 amino acid. We performed a detailed conformational analysis of the three analogs (using FT‐IR absorption, CD, 2D‐NMR, and X‐ray diffraction), which clearly showed that Tfa labeling does not introduce any dramatic backbone modification in the predominantly α‐helical structure of the parent peptaibiotic. The results of an initial solid‐state 19F‐NMR study on one of the analogs favor the conclusion that the Tfa group is a very promising reporter for the analysis of peptaibiotic? membrane interactions. Finally, we found that the antimicrobial activities of the three newly synthesized analogs depend on the position of the Tfa label in the peptide sequence.  相似文献   

5.
The interaction with model membranes of a peptide, EqtII1–32, corresponding to the N‐terminal region of the pore‐forming toxin equinatoxin II (EqtII) has been studied using solid‐state NMR and molecular dynamics (MD) simulations. The distances between specifically labeled nuclei in [19F‐para]Phe16‐[1‐13C]Leu19 and [19F‐para]Phe16‐[15N]Leu23 analogs of EqtII1–32 measured by REDOR in lyophilized peptide were in agreement with published crystal and solution structures. However, in both DMPC and mixed DMPC:SM membrane environments, significant changes in the distances between the labeled amino acid pairs were observed, suggesting changes in helical content around the experimentally studied region, 16–23, in the presence of bilayers. 19F‐31P REDOR experiments indicated that the aromatic ring of Phe16 is in contact with lipid headgroups in both membrane environments. For the DMPC:SM mixed bilayers, a closer interaction between Phe16 side chains and lipid headgroups was observed, but an increase in distances was observed for both labeled amino acid pairs compared with those measured for EqtII1–32 in pure DMPC bilayers. The observed differences between DMPC and DMPC:SM bilayers may be due to the greater affinity of EqtII for the latter. MD simulations of EqtII1–32 in water, on a pure DMPC bilayer, and on a mixed DMPC:SM bilayer indicate significant peptide secondary structural differences in the different environments, with the DMPC‐bound peptide adopting helical formations at residues 16–24, whereas the DMPC:SM‐bound peptide exhibits a longer helical stretch, which may contribute to its enhanced activity against PC:SM compared with pure PC bilayers. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
The compound (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid was evaluated as a chiral nuclear magnetic resonance (NMR) solvating agent for a series of diamines and bicyclic β‐amino acids. The amine must be protonated for strong association with the crown ether. An advantage of (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid over many other crown ethers is that it undergoes a neutralization reaction with neutral amines to form the protonated species needed for binding. Twelve primary diamines in neutral and protonated forms were evaluated. Diamines with aryl and aliphatic groups were examined. Some are atropisomers with equivalent amine groups. Others have two nonequivalent amine groups. Association equilibria for these systems are complex, given the potential formation of 2:1, 1:1, and 1:2 crown‐amine complexes and given the various charged species in solution for mixtures of the crown ether with the neutral amine. The crown ether produced enantiomeric differentiation in the 1H NMR spectrum of one or more resonances for every diamine substrate. Also, a series of five bicyclic β‐amino acids were examined and (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid caused enantiomeric differentiation in the 1H NMR spectrum of three or more resonances of each compound. Chirality 27:708–715, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Aims: It is well established that the bile salt sodium taurocholate acts as a germinant for Clostridium difficile spores and the amino acid glycine acts as a co‐germinant. The aim of this study was to determine whether any other amino acids act as co‐germinants. Methods and Results: Clostridium difficile spore suspensions were exposed to different germinant solutions comprising taurocholate, glycine and an additional amino acid for 1 h before heating shocking (to kill germinating cells) or chilling on ice. Samples were then re‐germinated and cultured to recover remaining viable cells. Only five amino acids out of the 19 common amino acids tested (valine, aspartic acid, arginine, histidine and serine) demonstrated co‐germination activity with taurocholate and glycine. Of these, only histidine produced high levels of germination (97·9–99·9%) consistently in four strains of Cl. difficile spores. Some variation in the level of germination produced was observed between different PCR ribotypes, and the optimum concentration of amino acids with taurocholate for the germination of Cl. difficile NCTC 11204 spores was 10–100 mmol l?1. Conclusions: Histidine was found to be a co‐germinant for Cl. difficile spores when combined with glycine and taurocholate. Significance and Impact of the Study: The findings of this study enhance current knowledge regarding agents required for germination of Cl. difficile spores which may be utilized in the development of novel applications to prevent the spread of Cl. difficile infection.  相似文献   

8.
Novel enantiopure 1,2,4‐trizole‐3‐thiones containing a benzensulfonamide moiety were synthesized via multistep reaction sequence starting with D‐phenylalanine methyl ester and L‐phenylalanine ethyl ester as a source of chirality. The chemical structures of all compounds were characterized by elemental analysis, UV, IR, 1H NMR, 13C NMR, 2D NMR (HETCOR), and mass spectral data. All compounds were tested in vitro antiviral activity against a broad variety of DNA and RNA viruses and in vitro cytostatic activity against murine leukemia (L1210), human T‐lymphocyte (CEM) and human cervix carcinoma (HeLa) cell lines. Although enantiopure 1,2,4‐triazole‐3‐thione analogs in (R) configuration emerged as promising anti‐influenza A H1N1 subtype in Madin Darby canine kidney cell cultures (MDCK), their enantiomers exhibited no activity. Especially compounds 18a , 21a , 22a , 23a , and 24a (EC50: 6.5, 6.1, 2.4, 1.6, 1.7 μM, respectively) had excellent activity against influenza A H1N1 subtype compared to the reference drug ribavirin (EC50: 8.0 μM). Several compounds have been found to inhibit proliferation of L1210, CEM and HeLa cell cultures with IC50 in the 12–53 μM range. Compound 5a and 27a in (R) configuration were the most active compounds (IC50: 12–22 μM for 5a and IC50: 19–23 μM for 27a ). Chirality 28:495–513, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
The phospholipase Cγ1 (PLCγ1) is essential for T‐cell signaling and activation in hepatic cancer immune response, which has a regulatory Src homology 3 (SH3) domain that can specifically recognize and interact with the PXXP‐containing decapeptide segment (185QP P VP P QRPM194, termed as SLP76185–194 peptide) of adaptor protein SLP76 following T‐cell receptor ligation. The isolated peptide can only bind to the PLCγ1 SH3 domain with a moderate affinity due to lack of protein context support. Instead of the traditional natural residue mutagenesis that is limited by low structural diversity and shifted target specificity, we herein attempt to improve the peptide affinity by replacing the two key proline residues Pro187 and Pro190 of SLP76185–194 PXXP motif with nonnatural N‐substituted amino acids, as the proline is the only endogenous N‐substituted amino acid. The replacement would increase peptide flexibility but can restore peptide activity by establishing additional interactions with the domain. Structural analysis reveals that the domain pocket can be divided into a large amphipathic region and a small negatively charged region; they accommodate hydrophobic, aromatic, polar, and moderate‐sized N‐substituted amino acid types. A systematic replacement combination profile between the peptide residues Pro187 and Pro190 is created by structural modeling, dynamics simulation, and energetics analysis, from which six improved and two reduced N‐substituted peptides as well as native SLP76185–194 peptide are identified and tested for their binding affinity to the recombinant protein of the human PLCγ1 SH3 domain using fluorescence‐based assays. Two N‐substituted peptides, SLP76185–194(N‐Leu187/N‐Gln190) and SLP76185–194(N‐Thr187/N‐Gln190), are designed to have high potency (Kd = 0.67 ± 0.18 and 1.7 ± 0.3 μM, respectively), with affinity improvement by, respectively, 8.5‐fold and 3.4‐fold relative to native peptide (Kd = 5.7 ± 1.2 μM).  相似文献   

10.
The global fold of human cannabinoid type 2 (CB2) receptor in the agonist‐bound active state in lipid bilayers was investigated by solid‐state 13C‐ and 15N magic‐angle spinning (MAS) NMR, in combination with chemical‐shift prediction from a structural model of the receptor obtained by microsecond‐long molecular dynamics (MD) simulations. Uniformly 13C‐ and 15N‐labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into liposomes. 13C MAS NMR spectra were recorded without sensitivity enhancement for direct comparison of Cα, Cβ, and C?O bands of superimposed resonances with predictions from protein structures generated by MD. The experimental NMR spectra matched the calculated spectra reasonably well indicating agreement of the global fold of the protein between experiment and simulations. In particular, the 13C chemical shift distribution of Cα resonances was shown to be very sensitive to both the primary amino acid sequence and the secondary structure of CB2. Thus the shape of the Cα band can be used as an indicator of CB2 global fold. The prediction from MD simulations indicated that upon receptor activation a rather limited number of amino acid residues, mainly located in the extracellular Loop 2 and the second half of intracellular Loop 3, change their chemical shifts significantly (≥1.5 ppm for carbons and ≥5.0 ppm for nitrogens). Simulated two‐dimensional 13Cα(i)? 13C?O(i) and 13C?O(i)? 15NH(i + 1) dipolar‐interaction correlation spectra provide guidance for selective amino acid labeling and signal assignment schemes to study the molecular mechanism of activation of CB2 by solid‐state MAS NMR. Proteins 2014; 82:452–465. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
A single chiral cyclic α,α‐disubstituted amino acid, (3S,4S)‐1‐amino‐(3,4‐dimethoxy)cyclopentanecarboxylic acid [(S,S)‐Ac5cdOM], was placed at the N‐terminal or C‐terminal positions of achiral α‐aminoisobutyric acid (Aib) peptide segments. The IR and 1H NMR spectra indicated that the dominant conformations of two peptides Cbz‐[(S,S)‐Ac5cdOM]‐(Aib)4‐OEt ( 1) and Cbz‐(Aib)4‐[(S,S)‐Ac5cdOM]‐OMe (2) in solution were helical structures. X‐ray crystallographic analysis of 1 and 2 revealed that a left‐handed (M) 310‐helical structure was present in 1 and that a right‐handed (P) 310‐helical structure was present in 2 in their crystalline states. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Selective labeling with stable isotopes has long been recognized as a valuable tool in protein NMR to alleviate signal overlap and sensitivity limitations. In this study, combinatorial 15N‐, 13Cα‐, and 13C'‐selective labeling has been used during the backbone assignment of human cyclophilin D to explore binding of an inhibitor molecule. Using a cell‐free expression system, a scheme that involves 15N, 1‐13C, 2‐13C, fully 15N/13C, and unlabeled amino acids was optimized to gain a maximum of assignment information from three samples. This scheme was combined with time‐shared triple‐resonance NMR experiments, which allows a fast and efficient backbone assignment by giving the unambiguous assignment of unique amino acid pairs in the protein, the identity of ambiguous pairs and information about all 19 non‐proline amino acid types. It is therefore well suited for binding studies where de novo assignments of amide 1H and 15N resonances need to be obtained, even in cases where sensitivity is the limiting factor.  相似文献   

13.
This study describes the 1H‐NMR‐based metabolomics profiling of juices from citrus fruits harvested in the state of Veracruz, México. The hydrophilic profile of commercial lemons (Agrio and Persian), tangerines (Fremont and Mónica), oranges (Valencia and Washington Navel), and grapefruits (Red Ruby and Rio Red) was determined. According to our results, 35 metabolites were identified in the 1H‐NMR profiling. The statistical differences obtained by PCA and OPLS‐DA revealed that specific amino acids, sugars, and organic acids were differential metabolites in the species and cultivars studied. High endogenous levels of sucrose (10–190 mM), α‐glucose, β‐glucose (α‐ and β‐isomers, 40–205 mm ), and fructose (36–170 mm ) were detected in the juices of grapefruits, oranges, and tangerines, whereas citric acid (40–530 mm ) was the principal organic acid in the juices of lemons. To calculate the specific amounts of metabolites from these species and their cultivars, the results were finely analyzed using the qNMR method. According to these calculations, Valencia oranges had the highest concentration of ascorbic acid (>2 mm ). The described 1H‐NMR method is highly reproducible, inexpensive, and highly robust in comparison to other analytical methods used to determine the hydrophilic profile of citrus juices.  相似文献   

14.
A new near‐infrared fluorescence sensor PDI‐PD for Ag+ ions was successfully prepared and its structure characterized by 1H nuclear magnetic resonance (NMR), 13C NMR and high‐resolution mass spectrometry; matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (HRMS MALDI‐TOF). The probe exhibited rapid, sensitive, and selective two‐channel fluorescence responses towards Ag+ ions and protons. The probe has a marked high binding affinity and high sensitivity for Ag+, with a detection limit of 1.4 × 10?6 M. An approximately five‐fold enhanced core emission at 784 nm was attributed to fluorescence resonance energy transfer (FRET). The enhanced core emission of the probe with Ag+ ions based on photo‐induced electron transfer and FRET is discussed. In addition, the probe presented a visible colour change. All experimental results demonstrated that PDI‐PD is an efficient tool for the selective, sensitive and rapid detection of Ag+ ions and protons using two‐channel fluorescence responses.  相似文献   

15.
Since fungi and bacteria are the dominant decomposers in soil, their distinct physiologies are likely to differentially influence rates of ecosystem carbon (C) and nitrogen (N) cycling. We used meta‐analysis and an enzyme‐driven biogeochemical model to explore the drivers and biogeochemical consequences of changes in the fungal‐to‐bacterial ratio (F : B). In our meta‐analysis data set, F : B increased with soil C : N ratio (R2 = 0.224, < 0.001), a relationship predicted by our model. We found that differences in biomass turnover rates influenced F : B under conditions of C limitation, while differences in biomass stoichiometry set the upper bounds on F : B once a nutrient limitation threshold was reached. Ecological interactions between the two groups shifted along a gradient of resource stoichiometry. At intermediate substrate C : N, fungal N mineralisation fuelled bacterial growth, increasing total microbial biomass and decreasing net N mineralisation. Therefore, we conclude that differences in bacterial and fungal physiology may have large consequences for ecosystem‐scale C and N cycling.  相似文献   

16.
1H NMR metabolic profiles of urine from sheep exposed to prenatal nutritional restriction (n = 19) and a control group with normal prenatal nutritional requirements (n = 19), followed by either conventional (n = 10 + 10) or high carbohydrate high fat postnatal diet (n = 9 + 9), were studied. Urine was sampled from 2, 6, 19 and 24-month-old animals receiving differential dietary treatments during the first 6 months and the same normal diet later. Principal component analysis of 1H NMR spectra (n = 164) showed a V-shaped metabolic trajectory as a function of age and diet, starting with urines with a high amount of glucose, indicative of monogastric-like metabolism, and exhibiting concomitant increase of metabolites related to rumen microflora (mainly glycine conjugates of benzoic and phenylacetic acid) as the ruminal metabolism developed. Urines from young (2-month-old) animals exposed to prenatal undernutrition followed by normal postnatal diet showed metabolic patters that are ahead in time on the metabolic trajectory relative to the prenatal control group. No long-term effects of fetal undernutrition, alone or in combination with postnatal hypernutrition were observed.  相似文献   

17.
Five homologous acetylated acylglycerols of 3‐hydroxyfatty acids (chain lengths C(14) – C(18)), named euphrasianins A – E, were characterized for the first time in Euphrasia rostkoviana Hayne (Orobanchaceae) by gas chromatography/mass spectrometry (GC/MS) and high‐performance liquid chromatography/atmospheric pressure chemical ionization‐mass spectrometry (HPLC/APCI‐MSn). In addition to mass spectrometric data, structures of euphrasianins were verified via a three‐step total synthesis of one representative homologue (euphrasianin A). The structure of the latter was confirmed by 1D‐ and 2D‐NMR experiments as well as high‐resolution electrospray ionization‐mass spectrometry (HR‐ESI‐MS). The absolute configuration of the 3‐hydroxyfatty acid moiety at C(3) was found to be R in the natural euphrasianins, which was determined by alkaline hydrolysis and methylation of a purified fraction, followed by chiral GC analysis. Furthermore, in extracts of Euphrasia tetraquetra (Bréb .) Arrond . euphrasianins C and E were detected exclusively, indicating that this subclass of lipid constituents is possibly valuable for fingerprinting methods.  相似文献   

18.
Four new 13,14‐seco‐withanolides, minisecolides A – D ( 1  –  4 ), together with three known analogues 5  –  7 , were isolated from the whole plants of Physalis minima. The structures of new compounds were determined on the basis of spectroscopic analysis, including 1H‐, 13C‐NMR, 2D‐NMR (HMBC, HSQC, ROESY), and HR‐ESI‐MS. Evaluation of all isolates for their inhibitory effects on nitric oxide (NO) production was conducted on lipopolysaccaride‐activated RAW264.7 macrophages. Compounds 2 , 3 , 5 , and 6 showed inhibitory activities, especially for compound 5 with IC50 value of 3.87 μm .  相似文献   

19.
Lamins are the main components of the nucleoskeleton. They form a protein meshwork that underlies the inner nuclear membrane. Mutations in the LMNA gene coding for A-type lamins (lamins A and C) cause a large panel of human diseases, referred to as laminopathies. These diseases include muscular dystrophies, lipodystrophies and premature aging diseases. Lamin A exhibits a C-terminal region that is different from lamin C and is post-translationally modified. It is produced as prelamin A and it is then farnesylated, cleaved, carboxymethylated and cleaved again in order to become mature lamin A. In patients with the severe Hutchinson–Gilford progeria syndrome, a specific single point mutation in LMNA leads to an aberrant splicing of the LMNA gene preventing the post-translational processing of prelamin A. This leads to the accumulation of a permanently farnesylated lamin A mutant lacking 50 amino acids named progerin. We here report the NMR 1H, 15N, 13CO, 13Cα and 13Cβ chemical shift assignment of the C-terminal region that is specific to prelamin A, from amino acid 567 to amino acid 664. We also report the NMR 1H, 15N, 13CO, 13Cα and 13Cβ chemical shift assignment of the C-terminal region of the progerin variant, from amino acid 567 to amino acid 614. Analysis of these chemical shift data confirms that both prelamin A and progerin C-terminal domains are largely disordered and identifies a common partially populated α-helix from amino acid 576 to amino acid 585. This helix is well conserved from fishes to mammals.  相似文献   

20.
The Pictet–Spengler (PS) cyclizations of β3hTrp derivatives as arylethylamine substrates were performed with L‐α‐amino and D‐α‐amino aldehydes as carbonyl components. During the PS reaction, a new stereogenic center was created, and the mixture of cis/trans 1,3‐disubstituted 1,2,3,4‐tetrahydro‐β‐carbolines was obtained. The ratio of cis/trans diastereomers depends on the stereogenic centre of used amino aldehyde and the size of substituents. It was confirmed by 1H and 2D NMR (ROESY) spectra. The conformations of cyclic products were studied by 2D NMR ROESY spectra. Products of the PS condensation after removal of protecting group(s) can be incorporated into a peptide chain as tryptophan mimetics with the possibility of the β‐turn induction. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号