首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Lignocellulose‐derived hydrolyzates typically display a high degree of variation depending on applied biomass source material as well as process conditions. Consequently, this typically results in variable composition such as different sugar concentrations as well as degree and the presence of inhibitors formed during hydrolysis. These key obstacles commonly limit its efficient use as a carbon source for biotechnological conversion. The gram‐negative soil bacterium Pseudomonas putida KT2440 is a promising candidate for a future lignocellulose‐based biotechnology process due to its robustness and versatile metabolism. Recently, P. putida KT2440_xylAB which was able to metabolize the hemicellulose (HC) sugars, xylose and arabinose, was developed and characterized. Building on this, the intent of the study was to evaluate different lignocellulose hydrolyzates as platform substrates for P. putida KT2440 as a model organism for a bio‐based economy. Firstly, hydrolyzates of different origins were evaluated as potential carbon sources by cultivation experiments and determination of cell growth and sugar consumption. Secondly, the content of major toxic substances in cellulose and HC hydrolyzates was determined and their inhibitory effect on bacterial growth was characterized. Thirdly, fed‐batch bioreactor cultivations with hydrolyzate as the carbon source were characterized and a diauxic‐like growth behavior with regard to different sugars was revealed. In this context, a feeding strategy to overcome the diauxic‐like growth behavior preventing accumulation of sugars is proposed and presented. Results obtained in this study represent a first step and proof‐of‐concept toward establishing lignocellulose hydrolyzates as platform substrates for a bio‐based economy.  相似文献   

2.
The Pseudomonas putida group in the Gammaproteobacteria has been intensively studied for bioremediation and plant growth promotion. Members of this group have recently emerged as promising hosts to convert intermediates derived from plant biomass to biofuels and biochemicals. However, most strains of P. putida cannot metabolize pentose sugars derived from hemicellulose. Here, we describe three isolates that provide a broader view of the pentose sugar catabolism in the P. putida group. One of these isolates clusters with the well-characterized P. alloputida KT2440 (Strain BP6); the second isolate clustered with plant growth-promoting strain P. putida W619 (Strain M2), while the third isolate represents a new species in the group (Strain BP8). Each of these isolates possessed homologous genes for oxidative xylose catabolism (xylDXA) and a potential xylonate transporter. Strain M2 grew on arabinose and had genes for oxidative arabinose catabolism (araDXA). A CRISPR interference (CRISPRi) system was developed for strain M2 and identified conditionally essential genes for xylose growth. A glucose dehydrogenase was found to be responsible for initial oxidation of xylose and arabinose in strain M2. These isolates have illuminated inherent diversity in pentose catabolism in the P. putida group and may provide alternative hosts for biomass conversion.  相似文献   

3.
Pseudomonas putida has emerged as a promising host for the conversion of biomass-derived sugars and aromatic intermediates into commercially relevant biofuels and bioproducts. Most of the strain development studies previously published have focused on P. putida KT2440, which has been engineered to produce a variety of non-native bioproducts. However, P. putida is not capable of metabolizing pentose sugars, which can constitute up to 25% of biomass hydrolysates. Related P. putida isolates that metabolize a larger fraction of biomass-derived carbon may be attractive as complementary hosts to P. putida KT2440. Here we describe genetic tool development for P. putida M2, a soil isolate that can metabolize pentose sugars. The functionality of five inducible promoter systems and 12 ribosome binding sites was assessed to regulate gene expression. The utility of these expression systems was confirmed by the production of indigoidine from C6 and C5 sugars. Chromosomal integration and expression of non-native genes was achieved by using chassis-independent recombinase-assisted genome engineering (CRAGE) for single-step gene integration of biosynthetic pathways directly into the genome of P. putida M2. These genetic tools provide a foundation to develop hosts complementary to P. putida KT2440 and expand the ability of this versatile microbial group to convert biomass to bioproducts.  相似文献   

4.

Currently, biotransformation of 5-hydroxymethylfurfural (HMF) into a series of high-value bio-based platform chemicals is massively studied. In this study, selective biooxidation of HMF to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) by Pseudomonas putida KT2440 with superior titer, yield, and productivity was reported. The biocatalytic performances of P. putida KT2440 were optimized separately. Under optimal conditions, 100% yield of HMFCA was obtained when HMF concentration was less than 150 mM, while the maximum concentration of 155 mM was achieved from 160 mM HMF in 12 h. P. putida KT2440 was highly tolerate to HMF, up to 190 mM. Besides, it was capable of selective oxidation of other furan aldehydes to the corresponding carboxylic acids with good yield of 100%. This study further demonstrates the potential of P. putida KT2440 as a biocatalyst for biomass conversion, as this strain has been proved the capacity to convert and utilize many kinds of biomass-derived sugars and ligin-derived aromatic compounds.

  相似文献   

5.
6.
Corynebacterium glutamicum wild type lacks the ability to utilize the pentose fractions of lignocellulosic hydrolysates, but it is known that recombinants expressing the araBAD operon and/or the xylA gene from Escherichia coli are able to grow with the pentoses xylose and arabinose as sole carbon sources. Recombinant pentose-utilizing strains derived from C. glutamicum wild type or from the l-lysine-producing C. glutamicum strain DM1729 utilized arabinose and/or xylose when these were added as pure chemicals to glucose-based minimal medium or when they were present in acid hydrolysates of rice straw or wheat bran. The recombinants grew to higher biomass concentrations and produced more l-glutamate and l-lysine, respectively, than the empty vector control strains, which utilized the glucose fraction. Typically, arabinose and xylose were co-utilized by the recombinant strains along with glucose either when acid rice straw and wheat bran hydrolysates were used or when blends of pure arabinose, xylose, and glucose were used. With acid hydrolysates growth, amino acid production and sugar consumption were delayed and slower as compared to media with blends of pure arabinose, xylose, and glucose. The ethambutol-triggered production of up to 93 ± 4 mM l-glutamate by the wild type-derived pentose-utilizing recombinant and the production of up to 42 ± 2 mM l-lysine by the recombinant pentose-utilizing lysine producer on media containing acid rice straw or wheat bran hydrolysate as carbon and energy source revealed that acid hydrolysates of agricultural waste materials may provide an alternative feedstock for large-scale amino acid production.  相似文献   

7.
8.
Pseudomonas putida is a highly solvent-resistant microorganism and useful chassis for the production of value-added compounds from lignocellulosic residues, in particular aromatic compounds that are made from phenylalanine. The use of these agricultural residues requires a two-step treatment to release the components of the polysaccharides of cellulose and hemicellulose as monomeric sugars, the most abundant monomers being glucose and xylose. Pan-genomic studies have shown that Pseudomonas putida metabolizes glucose through three convergent pathways to yield 6-phosphogluconate and subsequently metabolizes it through the Entner–Doudoroff pathway, but the strains do not degrade xylose. The valorization of both sugars is critical from the point of view of economic viability of the process. For this reason, a P. putida strain was endowed with the ability to metabolize xylose via the xylose isomerase pathway, by incorporating heterologous catabolic genes that convert this C5 sugar into intermediates of the pentose phosphate cycle. In addition, the open reading frame T1E_2822, encoding glucose dehydrogenase, was knocked-out to avoid the production of the dead-end product xylonate. We generated a set of DOT-T1E-derived strains that metabolized glucose and xylose simultaneously in culture medium and that reached high cell density with generation times of around 100 min with glucose and around 300 min with xylose. The strains grew in 2G hydrolysates from diluted acid and steam explosion pretreated corn stover and sugarcane straw. During growth, the strains metabolized > 98% of glucose, > 96% xylose and > 85% acetic acid. In 2G hydrolysates P. putida 5PL, a DOT-T1E derivative strain that carries up to five independent mutations to avoid phenylalanine metabolism, accumulated this amino acid in the medium. We constructed P. putida 5PLΔgcd (xylABE) that produced up to 250 mg l−1 of phenylalanine when grown in 2G pretreated corn stover or sugarcane straw. These results support as a proof of concept the potential of P. putida as a chassis for 2G processes.  相似文献   

9.
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.  相似文献   

10.
11.
The use of waste materials as feedstock for biosynthesis of valuable compounds has been an intensive area of research aiming at diminishing the consumption of non-renewable materials. In this study, P. putida KT2440 was employed as a cell factory for the bioconversion of waste vegetable oil into medium-chain-length Polyhydroxyalkanoates. In the presence of the waste oil this environmental strain is capable of secreting enzymes with lipase activities that enhance the bioavailability of this hydrophobic carbon substrate. It was also found that the oxygen transfer coefficient is directly correlated with high PHA levels in KT2440 cells when metabolizing the waste frying oil. By knocking out the tctA gene, encoding for an enzyme of the tripartite carboxylate transport system, an enhanced intracellular level of mcl-PHA was found in the engineered strain when grown on fatty acids. Batch bioreactors showed that the KT2440 strain produced 1.01 (g⋅L−1) of PHA whereas the engineered ΔtctA P. putida strain synthesized 1.91 (g⋅L−1) after 72 h cultivation on 20 (g⋅L−1) of waste oil, resulting in a nearly 2-fold increment in the PHA volumetric productivity. Taken together, this work contributes to accelerate the pace of development for efficient bioconversion of waste vegetable oils into sustainable biopolymers.  相似文献   

12.
The soil bacterium Pseudomonas putida KT2440 has gained increasing biotechnological interest due to its ability to tolerate different types of stress. Here, the tolerance of P. putida KT2440 toward eleven toxic chemical compounds was investigated. P. putida was found to be significantly more tolerant toward three of the eleven compounds when compared to Escherichia coli. Increased tolerance was for example found toward p‐coumaric acid, an interesting precursor for polymerization with a significant industrial relevance. The tolerance mechanism was therefore investigated using the genome‐wide approach, Tn‐seq. Libraries containing a large number of miniTn5‐Km transposon insertion mutants were grown in the presence and absence of p‐coumaric acid, and the enrichment or depletion of mutants was quantified by high‐throughput sequencing. Several genes, including the ABC transporter Ttg2ABC and the cytochrome c maturation system (ccm), were identified to play an important role in the tolerance toward p‐coumaric acid of this bacterium. Most of the identified genes were involved in membrane stability, suggesting that tolerance toward p‐coumaric acid is related to transport and membrane integrity.
  相似文献   

13.
Using agricultural wastes as a substrate for biotechnological processes is of great interest in industrial biotechnology. A prerequisite for using these wastes is the ability of the industrially relevant microorganisms to metabolize the sugars present therein. Therefore, many metabolic engineering approaches are directed towards widening the substrate spectrum of the workhorses of industrial biotechnology like Escherichia coli, yeast or Pseudomonas putida. For instance, neither xylose or arabinose from cellulosic residues, nor sucrose, the main sugar in waste molasses, can be metabolized by most E. coli and P. putida wild types. We evaluated a new, so far uncharacterized gene cluster for sucrose metabolism from Pseudomonas protegens Pf-5 and showed that it enables P. putida to grow on sucrose as the sole carbon and energy source. Even when integrated into the genome of P. putida, the resulting strain grew on sucrose at rates similar to the rate of the wild type on glucose – making it the fastest growing, plasmid-free P. putida strain known so far using sucrose as substrate. Next, we elucidated the role of the porin, an orthologue of the sucrose porin ScrY, in the gene cluster and found that in P. putida, a porin is needed for sucrose transport across the outer membrane. Consequently, native porins were not sufficient to allow unlimited growth on sucrose. Therefore, we concluded that the outer membrane can be a considerable barrier for substrate transport, depending on strain, genotype and culture conditions, all of which should be taken into account in metabolic engineering approaches. We additionally showed the potential of the engineered P. putida strains by growing them on molasses with efficiencies twice as high as obtained with the wild-type P. putida. This can be seen as a further step towards the production of low-value chemicals and biofuels with P. putida from alternative and more affordable substrates in the future.  相似文献   

14.
Plant cell wall polymers are synthesized by glycosyltransferases using nucleotide sugars as substrates. Most UDP‐sugars are synthesized from UDP‐glucose via de novo pathways but salvage pathways work in parallel to recycle sugars, which have been released during cell wall polymer and glycoprotein turnover. Here we report on the cloning and biochemical analysis of two arabinokinases in Arabidopsis. Arabinokinase is a 100 kDa protein located in the cytosol with a putative N‐terminal glycosyltransferase domain and a C‐terminal sugar‐1‐kinase domain. This unique structure is highly conserved in the plant kingdom. Arabinokinase has a high affinity for l ‐arabinose, which is the only sugar substrate of this GHMP (galactose; homoserine; mevalonate; phosphomevalonate) kinase. Plants that were knocked‐out for arabinokinase and the previously described ara1‐1 mutant were characterized. The ARA1‐1 mutant form of the enzyme carries a point mutation in an α‐helix. The mutation is close to the substrate binding site and changes the Km value for arabinose from 80 μm in the wild type to 17 000 μm in ARA1‐1. The previous arabinose toxicity explanation is challenged by knockout plants in arabinokinase that accumulate higher levels of arabinose but do not show signs of arabinose toxicity. Analysis of marker genes from sugar signalling pathways (SnRK1 and Tor) suggest that ara1‐1 misinterprets its carbon energy status. Although glucose is present in ara1‐1 similar to wild type levels, it constitutively changes gene expression as typically found in wild type plants only under starvation conditions. Furthermore, ara1‐1 shows increased expression of marker genes for programmed cell death as found in other lesion mimic mutants.  相似文献   

15.
The development of P. putida as an industrial host requires a sophisticated molecular toolbox for strain improvement, including vectors for gene expression and repression. To augment existing expression plasmids for metabolic engineering, we developed a series of dual-inducible duet-expression vectors for P. putida KT2440. A number of inducible promoters (Plac, Ptac, PtetR/tetA and Pbad) were used in different combinations to differentially regulate the expression of individual genes. Protein expression was evaluated by measuring the fluorescence of reporter proteins (GFP and RFP). Our experiments demonstrated the use of compatible plasmids, a useful approach to coexpress multiple genes in P. putida KT2440. These duet vectors were modified to generate a fully inducible CRISPR interference system using two catalytically inactive Cas9 variants from S. pasteurianus (dCas9) and S. pyogenes (spdCas9). The utility of developed CRISPRi system(s) was demonstrated by repressing the expression of nine conditionally essential genes, resulting in growth impairment and prolonged lag phase for P. putida KT2440 growth on glucose. Furthermore, the system was shown to be tightly regulated, tunable and to provide a simple way to identify essential genes with an observable phenotype.  相似文献   

16.
Itaconic acid (IA), an unsaturated 5‐carbon dicarboxylic acid, is a building block platform chemical that is currently produced industrially from glucose by fermentation with Aspergillus terreus. However, lignocellulosic biomass has potential to serve as low‐cost source of sugars for production of IA. Research needs to be performed to find a suitable A. terreus strain that can use lignocellulose‐derived pentose sugars and produce IA. One hundred A. terreus strains were evaluated for the first time for production of IA from xylose and arabinose. Twenty strains showed good production of IA from the sugars. Among these, six strains (NRRL strains 1960, 1961, 1962, 1972, 66125, and DSM 23081) were selected for further study. One of these strains NRRL 1961 produced 49.8 ± 0.3, 38.9 ± 0.8, 34.8 ± 0.9, and 33.2 ± 2.4 g IA from 80 g glucose, xylose, arabinose and their mixture (1:1:1), respectively, per L at initial pH 3.1 and 33°C. This is the first report on the production of IA from arabinose and mixed sugar of glucose, xylose, and arabinose by A. terreus. The results presented in the article will be very useful in developing a process technology for production of IA from lignocellulosic feedstocks. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1059–1067, 2017  相似文献   

17.
Pseudomonas putida KT2440 is becoming a new robust metabolic chassis for biotechnological applications, due to its metabolic versatility, low nutritional requirements and biosafety status. We have previously engineered P. putida KT2440 to be an efficient propionate producer from L-threonine, although the internal enzymes converting propionyl-CoA to propionate are not clear. In this study, we thoroughly investigated 13 genes annotated as potential thioesterases in the KT2440 mutant. One thioesterase encoded by locus tag PP_4975 was verified to be the major contributor to propionate production in vivo. Deletion of PP_4975 significantly decreased propionate production, whereas the performance was fully restored by gene complement. Compared with thioesterase HiYciA from Haemophilus influenza, thioesterase PP_4975 showed a faster substrate conversion rate in vitro. Thus, this study expands our knowledge on acyl-CoA thioesterases in P. putida KT2440 and may also reveal a new target for further engineering the strain to improve propionate production performance.  相似文献   

18.
Pseudomonas putida (P. putida) is a microorganism of interest for various industrial processes, yet its strictly aerobic nature limits application. Despite previous attempts to adapt P. putida to anoxic conditions via genetic engineering or the use of a bioelectrochemical system (BES), the problem of energy shortage and internal redox imbalance persists. In this work, we aimed to provide the cytoplasmic metabolism with different monosaccharides, other than glucose, and explored the physiological response in P. putida KT2440 during bioelectrochemical cultivation. The periplasmic oxidation cascade was found to be able to oxidize a wide range of aldoses to their corresponding (keto-)aldonates. Unexpectedly, isomerization of the ketose fructose to mannose also enabled oxidation by glucose dehydrogenase, a new pathway uncovered for fructose metabolism in P. putida KT2440 in BES. Besides the isomerization, the remainder of fructose was imported into the cytoplasm and metabolized. This resulted in a higher NADPH/NADP+ ratio, compared to glucose. Comparative proteomics further revealed the upregulation of proteins in the lower central carbon metabolism during the experiment. These findings highlight that the choice of a substrate in BES can target cytosolic and periplasmic oxidation pathways, and that electrode-driven redox balancing can drive these pathways in P. putida under anaerobic conditions.  相似文献   

19.
Pseudomonas putida KT2440 strain was investigated for biosynthesis of the valuable xanthophyll zeaxanthin. A new plasmid was constructed harboring five carotenogenic genes from Pantoea ananatis and three genes from Escherichia coli under control of an l-rhamnose-inducible promoter. Pseudomonas putida KT2440 wild type hardly tolerated the plasmids for carotenoid production. Mating experiments with E. coli S17-1 strains revealed that the carotenoid products are toxic to the Pseudomonas putida cells. Several carotenoid-tolerant transposon mutants could be isolated, and different gene targets for relief of carotenoid toxicity were identified. After optimization of cultivation conditions and product processing, 51 mg/l zeaxanthin could be produced, corresponding to a product yield of 7 mg zeaxanthin per gram cell dry weight. The effect of various additives on production of hydrophobic zeaxanthin was investigated as well. Particularly, the addition of lecithin during cell cultivation increased volumetric productivity of Pseudomonas putida by a factor of 4.7 (51 mg/l vs. 239 mg/l).  相似文献   

20.
6-Hydroxynicotinate can be used for the production of drugs, pesticides and intermediate chemicals. Some Pseudomonas species were reported to be able to convert nicotinic acid to 6-hydroxynicotinate by nicotinate dehydrogenase. So far, previous reports on NaDH in Pseudomonas genus were confused and contradictory each other. Recently, Ashraf et al. reported an NaDH gene cloned from Eubacterium barkeri and suggested some deducted NaDH genes from other nine bacteria. But they did not demonstrate the activity of recombinant NaDH and did not mention NaDH gene in Pseudomonas. In this study we cloned the gene of NaDH, ndhSL, from Pseudomonas putida KT2440. NdhSL in P. putida KT2440 is composed of two subunits. The small subunit contains [2Fe2S] iron sulfur domain, while the large subunit contains domains of molybdenum cofactor and cytochrome c. Expression of recombinant ndhSL in P. entomophila L48, which lacks the ability to produce 6-hydroxynicotinate, enabled the resting cell and cell extract of engineering P. entomophila L48 to hydroxylate nicotinate. Gene knockout and recovery studies further confirmed the ndhSL function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号