首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scoliosis, a complex three‐dimensional deformity of the spine with the Cobb angle (a measure of the spinal lateral curvature) >10 degree, encompasses a spectrum of pathologies, including congenital, idiopathic, syndromic and neuromuscular aetiologies. The pathogenesis is multifactorial involving both environmental and genetic factors but the exact cellular and molecular mechanisms of disease development remain largely unknown. Emerging evidence showed that non‐coding RNAs (ncRNAs), namely microRNAs, long ncRNAs and circular RNAs, are deregulated in many orthopaedic diseases, including scoliosis. Importantly, these deregulated ncRNAs functionally participate in the initiation and progression of scoliosis. Here, we review recent progress in ncRNA research on scoliosis.  相似文献   

2.
Air pollution has been a serious public health issue over the past few decades particularly in developing countries. Air pollution exposure during pregnancy poses potential threat to offspring as the deleterious substances might pass through placenta to alter foetal development. A growing number of studies have demonstrated that long non‐coding RNAs (lncRNAs) participate in the development of many diseases, including congenital defects. Here, we used RNA sequencing to identify differentially expressed lncRNAs in air pollution‐exposed rat embryos compared with control group. Our data suggested that 554 lncRNAs (216 up‐regulated and 338 down‐regulated) were significantly differentially expressed in the air pollution‐exposed embryos. Moreover, potential cellular functions of these deregulated lncRNAs were predicted via KEGG signal pathway/GO enrichment analyses, which suggested the possible involvements of neurological process, sensory perception of smell and the G‐protein signalling pathway. Furthermore, potential functional network of deregulated lncRNAs and their correlated mRNAs in the development of congenital spinal abnormality was established. Our data suggested that lncRNAs may play a vital role in the pathophysiology of air pollution‐exposed congenital spinal malformation.  相似文献   

3.
Neuropathic pain is a major type of chronic pain caused by the disease or injury of the somatosensory nervous system. It afflicts about 10% of the general population with a significant proportion of patients’ refractory to conventional medical treatment. This highlights the importance of a better understanding of the molecular pathogenesis of neuropathic pain so as to drive the development of novel mechanism‐driven therapy. Circular RNAs (circRNAs) are a type of non‐coding, regulatory RNAs that exhibit tissue‐ and disease‐specific expression. An increasing number of studies reported that circRNAs may play pivotal roles in the development of neuropathic pain. In this review, we first summarize circRNA expression profiling studies on neuropathic pain. We also highlight the molecular mechanisms of specific circRNAs (circHIPK3, circAnks1a, ciRS‐7, cZRANB1, circZNF609 and circ_0005075) that play key functional roles in the pathogenesis of neuropathic pain and discuss their potential diagnostic, prognostic, and therapeutic utilization in the clinical management of neuropathic pain.  相似文献   

4.
Exosomes are attracting considerable interest in the cardiovascular field as the wide range of their functions is recognized in acute myocardial infarction (AMI). However, the regulatory role of exosomal long non‐coding RNAs (lncRNAs) in AMI remains largely unclear. Exosomes were isolated from the plasma of AMI patients and controls, and the sequencing profiles and twice qRT‐PCR validations of exosomal lncRNAs were performed. A total of 518 differentially expressed lncRNAs were detected over two‐fold change, and 6 kinds of lncRNAs were strikingly elevated in AMI patients with top fold change and were selected to perform subsequent validation. In the two validations, lncRNAs ENST00000556899.1 and ENST00000575985.1 were significantly up‐regulated in AMI patients compared with controls. ROC curve analysis revealed that circulating exosomal lncRNAs ENST00000556899.1 and ENST00000575985.1 yielded the area under the curve values of 0.661 and 0.751 for AMI, respectively. Moreover, ENST00000575985.1 showed more significant relationship with clinical parameters, including inflammatory biomarkers, prognostic indicators and myocardial damage markers. Multivariate logistic model exhibited positive association of ENST00000575985.1 with the risk of heart failure in AMI patients. In summary, our data demonstrated that circulating exosomal lncRNAs ENST00000556899.1 and ENST00000575985.1 are elevated in patients with AMI, functioning as potential biomarkers for predicting the prognosis of pateints with AMI.  相似文献   

5.
It is an increasing evidence that long non‐coding RNAs (lncRNAs) are involved in tumour initiation and progression. Here, we analysed RNA‐sequencing data from the Cancer Genome Atlas (TCGA) datasets. Totally, 1176lncRNAs, 245miRNAs and 2081mRNAs were identified to be differentially expressed (DE) in colon cancer tissues compared with normal tissues. CASC21, a novel lncRNA located in 8q24.21 locus, was significantly overexpressed in 30 colon cancer tissues compared with matched normal tissues by qRT‐PCR assay. CASC21 tended to higher expression as the increase of the tumour‐node‐metastasis (TNM) classification. Functionally, CASC21 promoted cell proliferation by regulating cell cycle and enhanced tumour metastasis by epithelial‐mesenchymal transition (EMT) in colon cancer. Mechanism study indicated that CASC21 might be involved in activating WNT/β‐catenin pathway in colon cancer. In addition, we also built a competing endogenous RNA (ceRNNA) network by bioinformatic analysis using TCGA datasets. Together, our results not only provide novel lncRNAs as potential candidates for further study but also prove that CASC21 is an oncogenic regulator through activating WNT/β‐catenin signalling in colon cancer.  相似文献   

6.
7.
Long non‐coding RNAs (lncRNAs) comprise a vast repertoire of RNAs playing a wide variety of crucial roles in tissue physiology in a cell‐specific manner. Despite being engaged in myriads of regulatory mechanisms, many lncRNAs have still remained to be assigned any functions. A constellation of experimental techniques including single‐molecule RNA in situ hybridization (sm‐RNA FISH), cross‐linking and immunoprecipitation (CLIP), RNA interference (RNAi), Clustered regularly interspaced short palindromic repeats (CRISPR) and so forth has been employed to shed light on lncRNA cellular localization, structure, interaction networks and functions. Here, we review these and other experimental approaches in common use for identification and characterization of lncRNAs, particularly those involved in different types of cancer, with focus on merits and demerits of each technique.  相似文献   

8.
9.
10.
11.
Diabetic neuropathic pain is associated with increased glutamatergic input in the spinal dorsal horn. Group I metabotropic glutamate receptors (mGluRs) are involved in the control of neuronal excitability, but their role in the regulation of synaptic transmission in diabetic neuropathy remains poorly understood. Here we studied the role of spinal mGluR5 and mGluR1 in controlling glutamatergic input in a rat model of painful diabetic neuropathy induced by streptozotocin. Whole-cell patch-clamp recordings of lamina II neurons were performed in spinal cord slices. The amplitude of excitatory post-synaptic currents (EPSCs) evoked from the dorsal root and the frequency of spontaneous EPSCs (sEPSCs) were significantly higher in diabetic than in control rats. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) inhibited evoked EPSCs and sEPSCs more in diabetic than in control rats. Also, the percentage of neurons in which sEPSCs and evoked EPSCs were affected by MPEP or the group I mGluR agonist was significantly higher in diabetic than in control rats. However, blocking mGluR1 had no significant effect on evoked EPSCs and sEPSCs in either groups. The mGluR5 protein level in the dorsal root ganglion, but not in the dorsal spinal cord, was significantly increased in diabetic rats compared with that in control rats. Furthermore, intrathecal administration of MPEP significantly increased the nociceptive pressure threshold only in diabetic rats. These findings suggest that increased mGluR5 expression on primary afferent neurons contributes to increased glutamatergic input to spinal dorsal horn neurons and nociceptive transmission in diabetic neuropathic pain.  相似文献   

12.
13.
14.
The association between chronic pain and depression is widely recognized, the comorbidity of which leads to a heavier disease burden, increased disability and poor treatment response. This study examined nociceptive responding to mechanical and thermal stimuli prior to and following L5‐L6 spinal nerve ligation (SNL), a model of neuropathic pain, in the olfactory bulbectomized (OB) rat model of depression. Associated changes in the expression of genes encoding for markers of glial activation and cytokines were subsequently examined in the amygdala, a key brain region for the modulation of emotion and pain. The OB rats exhibited mechanical and cold allodynia, but not heat hyperalgesia, when compared with sham‐operated counterparts. Spinal nerve ligation induced characteristic mechanical and cold allodynia in the ipsilateral hindpaw of both sham and OB rats. The OB rats exhibited a reduced latency and number of responses to an innocuous cold stimulus following SNL, an effect positively correlated with interleukin (IL)‐6 and IL‐10 mRNA expression in the amygdala, respectively. Spinal nerve ligation reduced IL‐6 and increased IL‐10 expression in the amygdala of sham rats. The expression of CD11b (cluster of differentiation molecule 11b) and GFAP (glial fibrillary acidic protein), indicative of microglial and astrocyte activation, and IL‐1β in the amygdala was enhanced in OB animals when compared with sham counterparts, an effect not observed following SNL. This study shows that neuropathic pain‐related responding to an innocuous cold stimulus is altered in an animal model of depression, effects accompanied by changes in the expression of neuroinflammatory genes in the amygdala .  相似文献   

15.
16.
17.
Spinal cord injury (SCI) is a significant health burden worldwide which causes permanent neurological deficits, and there are approximately 17,000 new cases each year. However, there are no effective and current treatments that lead to functional recovery because of the limited understanding of the pathogenic mechanism of SCI. In recent years, the biological roles of long non‐coding RNAs (lncRNAs) in SCI have attracted great attention from the researchers all over the world, and an increasing number of studies have investigated the regulatory roles of lncRNAs in SCI. In this review, we summarized the biogenesis, classification and function of lncRNAs and focused on the investigations on the roles of lncRNAs involved in the pathogenic processes of SCI, including neuronal loss, astrocyte proliferation and activation, demyelination, microglia activation, inflammatory reaction and angiogenesis. This review will help understand the molecular mechanisms of SCI and facilitate the potential use of lncRNAs as diagnostic markers and therapeutic targets for SCI treatment.  相似文献   

18.
Paclitaxel‐induced peripheral neuropathy (PIPN) is often associated with neuropathic pain and neuroinflammation in the central and peripheral nervous system. Antihypertensive drug losartan, an angiotensin II receptor type 1 (AT1R) blocker, was shown to have anti‐inflammatory and neuroprotective effects in disease models, predominantly via activation of peroxisome proliferator‐activated receptor gamma (PPARγ). Here, the effect of systemic losartan treatment (100 mg/kg/d) on mechanical allodynia and neuroinflammation was evaluated in rat PIPN model. The expression of pro‐inflammatory markers protein and mRNA levels in dorsal root ganglia (DRGs) and spinal cord dorsal horn (SCDH) were measured with Western blot, ELISA and qPCR 10 and 21 days after PIPN induction. Losartan treatment attenuated mechanical allodynia significantly. Paclitaxel induced overexpression of C‐C motif chemokine ligand 2 (CCL2), tumour necrosis alpha (TNFα) and interleukin‐6 (IL‐6) in DRGs, where the presence of macrophages was demonstrated. Neuroinflammatory changes in DRGs were accompanied with glial activation and pro‐nociceptive modulators production in SCDH. Losartan significantly attenuated paclitaxel‐induced neuroinflammatory changes and induced expression of pro‐resolving markers (Arginase 1 and IL‐10) indicating a possible shift in macrophage polarization. Considering the safety profile of losartan, acting also as partial PPARγ agonist, it may be considered as a novel treatment strategy for PIPN patients.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号