首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugar and organic Acid constituents in white clover   总被引:3,自引:3,他引:0       下载免费PDF全文
Davis LC  Nordin P 《Plant physiology》1983,72(4):1051-1055
Major ethanol-soluble carbohydrate and organic acid constituents of white clover (Trifolium repens) have been identified by use of high-performance liquid chromatography and gas chromatography. In leaves, petioles, roots, and nodules, pinitol (3-O-methyl chiro-inositol) is the predominant sugar, with sucrose present in lower concentration. In leaves and petioles there are significant levels of α- and β-methyl glucosides, linamarin, glucose, and fructose. In the nodules glucose is rarely present at detectable levels. The concentration of pinitol is generally greater than 25 millimolar in each tissue examined whereas the level of sucrose varies depending on the time of day. Sucrose is the major sugar significantly labeled during 1 hour administration of 14CO2 and accounts for more than 99% of all the radioactivity detected in the nodules at early times. Between 3 and 7 hours after labeling, 6% of the radioactivity is found in the organic acids fraction and 5% in the basic fraction of nodules. Malonic acid does not appear to be present in unusually high concentrations in either leaves or nodules of white clover.  相似文献   

2.
Cyanogenesis-the production of toxic hydrogen cyanide (HCN) by damaged tissue-inTrifolium repens L. (white clover), a type of most important pasture legume, has been studied at different elevations of Darjeeling Himalaya (latitude-27° 2′ 57″ N, longitude-88° 15′ 45″ E). Release of HCN takes place due to reaction between cyanogenic glucosides stored in vacuoles of the leaf cell and the corresponding enzyme β-glucosidase present in another compartment, often cell wall. Cyanogenesis, a defense system in plant, protects the clover from herbivore and inhibits grazing. Biochemical analysis showed the presence and absence of the cyanogenesis trait within the population in different proportions at different elevations. Acyanogenic individuals also showed variations with respect to presence or absence of either cyanogenic glucosides or β-glucosidase enzyme or both. The distribution of cyanogenic and acyanogenic plants was found in all places, but at lower altitudes (2084–2094 m) the dominating plants were cyanogenic whereas in higher altitude (2560 m) the dominating plants were acyanogenic. It was observed that blister beetle (Mylabris pustalata Thunb.) and the mollusc (Macrochlamys tusgurium Benson.) were the most common consumer of leaflets ofT. repens. Six categories of damage on white clover leaf by these animals were recorded. Our results suggest that the two selective factors or forces i.e. very cold temperature (harmful to cyanogenic plants) at higher altitude as well as indiscriminate but preferential predation (harmful to acyanogenic plants) interact to affect the system of cyanogenesis and also to cause the stable and protective polymorphism inT. repens rather than genotypic differences present among the plants.  相似文献   

3.
Manihot esculenta (cassava) contains two cyanogenic glucosides, linamarin and lotaustralin, biosynthesized from l ‐valine and l ‐isoleucine, respectively. In this study, cDNAs encoding two uridine diphosphate glycosyltransferase (UGT) paralogs, assigned the names UGT85K4 and UGT85K5, have been isolated from cassava. The paralogs display 96% amino acid identity, and belong to a family containing cyanogenic glucoside‐specific UGTs from Sorghum bicolor and Prunus dulcis. Recombinant UGT85K4 and UGT85K5 produced in Escherichia coli were able to glucosylate acetone cyanohydrin and 2‐hydroxy‐2‐methylbutyronitrile, forming linamarin and lotaustralin. UGT85K4 and UGT85K5 show broad in vitro substrate specificity, as documented by their ability to glucosylate other hydroxynitriles, some flavonoids and simple alcohols. Immunolocalization studies indicated that UGT85K4 and UGT85K5 co‐occur with CYP79D1/D2 and CYP71E7 paralogs, which catalyze earlier steps in cyanogenic glucoside synthesis in cassava. These enzymes are all found in mesophyll and xylem parenchyma cells in the first unfolded cassava leaf. In situ PCR showed that UGT85K4 and UGT85K5 are co‐expressed with CYP79D1 and both CYP71E7 paralogs in the cortex, xylem and phloem parenchyma, and in specific cells in the endodermis of the petiole of the first unfolded leaf. Based on the data obtained, UGT85K4 and UGT85K5 are concluded to be the UGTs catalyzing in planta synthesis of cyanogenic glucosides. The localization of the biosynthetic enzymes suggests that cyanogenic glucosides may play a role in both defense reactions and in fine‐tuning nitrogen assimilation in cassava.  相似文献   

4.
Polymorphisms at two genetic loci conditioning the cyanogenic glucoside linamarin (Ac) and the glucosidase linamarase (Li) are reported for the first time in Trifolium nigrescens Viv. subspecies nigrescens (2n=2x=16). T. nigrescens is one of several possible ancestral species that may have donated a genome to the allotetraploid species white clover (T. repens L., 2n=4x=32). T. nigrescens is a strong candidate because it is the only very close relative that, like white clover, is cyanogenic. Genetic analysis showed that in T. nigrescens, cyanogenesis was inherited as a two-locus genetic system in a similar way to that in white clover. Furthermore, Li, which is linked to the locus Sdh (shikimate dehydrogenase, SDH) at a distance of 6 cM in one genome of white clover, also showed linkage (12 cM) in T. nigrescens. It is concluded that one of the subspecies of T. nigrescens is a likely donor of a genome to white clover. Received: 27 December 2000 / Accepted: 12 April 2001  相似文献   

5.
Summary Collections of the slug Deroceras reticulatum were made from grassland sites containing contrasting frequencies of the cyanogenic morph of white clover, Trifolium repens. In choice chamber experiments, slugs obtained from sites with a low frequency of cyanogenic clover showed a significantly greater degree of selective eating of acyanogenic morphs than slugs taken from a site containing a high frequency of cyanogenic clover. Differences in selectivity between populations were caused both by differences in the rate of initiation of feeding on cyanogenic morphs, and by differences in the extent of damage once feeding had been initiated. The implications of these results for the cyanogenic polymorphism of T. repens are discussed.  相似文献   

6.
Summary The effect of the cyanogenic glucosides linamarin and lotaustralin and their hydrolyzing enzyme linamarase was studied in a B2 generation segregating for the genes Ac and Li. Plants containing the glucosides are protected against grazing by snails both in the seedling stage and as adult plants. In seedlings, however, there is a direct effect on survival, whereas in adult plants the leaf area of plants containing linamarin/lotaustralin is less reduced under intense grazing. Linamarase has no effect on grazing by snails, possibly as a result of the presence of -glucosidase activity in the gut of these animals. The genes Ac and Li, or genes tightly linked to them, have other effects as well: plants possessing one dominant Ac allele produce fewer flowers than homozygous ac plants. I compared this difference in flower production to the metabolic cost of producing the cyanogenic glucosides. The energy content of the difference in flower head production far exceeded the metabolic cost of cyanoglucoside production in Acac plants. It is possible that the cost of maintaining a certain level of cyanoglucosides is much more important for the plant than the initial cost of biosynthesis. The importance of the effects of Ac and Li in the maintenance of cyanogenic polymorphism in white clover is discussed.  相似文献   

7.
Knowledge of insect behaviour is essential for accurately interpreting studies of diversification and to develop diversified agroecosystems that have a reliable pest‐suppressive effect. In this study, we investigated the egg‐laying behaviour of the turnip root fly, Delia floralis (Fall.) (Diptera: Anthomyiidae), in an intercrop‐monoculture system. We examined both the main effect of intercropping and the effect on oviposition in the border zone between a cabbage monoculture [Brassica oleracea L. var. capitata (Brassicaceae)] and a cabbage‐red clover intercropping system [Trifolium pratense L. (Fabaceae)]. To investigate the border‐effect, oviposition was measured along a transect from the border between the treatments to the centre of experimental plots. Intercropping reduced the total egg‐laying of D. floralis with 42% in 2003 and 55% in 2004. In 2004, it was also found that the spatial distribution of eggs within the experimental plots was affected by distance from the adjoining treatment. The difference in egg‐laying between monoculture and intercropping was most pronounced close to the border, where egg‐laying was 68% lower on intercropped plants. This difference in egg numbers decreased gradually up to a distance of 3.5 m from the border, where intercropped plants had 43% fewer eggs than the corresponding monocultured plants. The reason behind this oviposition pattern is most likely that flies in intercropped plots have a higher probability of entering the monoculture if they are close to the border than if they are in the centre of a plot. When entering the monoculture, flies can pursue their egg‐laying behaviour without being disrupted by the clover. As the final decision to land is visually stimulated, flies could also be attracted to fly from the intercropped plots into the monoculture, where host plants are more visually apparent. Visual cues could also hinder flies in a monoculture from entering an intercropped plot. Other possible patterns of insect attack due to differences in insect behaviour are discussed, as well as the practical application of the results of this study.  相似文献   

8.
Adult clover root weevil Sitona lepidus show a feeding preference for white clover Trifolium repens over red clover Trifolium pratense. The effects on S. lepidus of three red clover T. pratense lines, selected for high, medium, or low levels of the isoflavone formononetin in foliage, were compared in three experiments using white clover as a control. In a no‐choice slant board experiment, weevil larval weights were greater for larvae feeding on white clover roots than those feeding on roots of the red clovers. The effect of larval root herbivory on plant growth was similar for all four clovers. Following root herbivory, a large increase in root and shoot formononetin levels was observed in the high‐formononetin selection of red clover but little change in the low‐formononetin red clover. In a no‐choice experiment with sexually mature female adult weevils feeding on foliage of the four clovers, all the red clovers had increased weevil mortality. Female weevils eating the high‐formononetin red clover laid fewer eggs than weevils eating white clover. The red clover diet caused a large accumulation of abdominal fat and/or oil in the weevils, whereas weevils feeding on white clover did not accumulate fat/oil. When sexually immature adult weevils were given a choice of foliage from all four clovers, white clover was eaten preferentially, and the low‐formononetin red clover was preferred to the high‐formononetin red clover. The results suggest that formononetin and associated metabolites in red clover may act as chemical defences against adult S. lepidus and that distribution in forage legumes can be manipulated by plant breeding to improve root health.  相似文献   

9.
Lotus japonicus, like several other legumes, biosynthesizes the cyanogenic α–hydroxynitrile glucosides lotaustralin and linamarin. Upon tissue disruption these compounds are hydrolysed by a specific β–glucosidase, resulting in the release of hydrogen cyanide. Lotus japonicus also produces the non‐cyanogenic γ‐ and β–hydroxynitrile glucosides rhodiocyanoside A and D using a biosynthetic pathway that branches off from lotaustralin biosynthesis. We previously established that BGD2 is the only β–glucosidase responsible for cyanogenesis in leaves. Here we show that the paralogous BGD4 has the dominant physiological role in rhodiocyanoside degradation. Structural modelling, site‐directed mutagenesis and activity assays establish that a glycine residue (G211) in the aglycone binding site of BGD2 is essential for its ability to hydrolyse the endogenous cyanogenic glucosides. The corresponding valine (V211) in BGD4 narrows the active site pocket, resulting in the exclusion of non‐flat substrates such as lotaustralin and linamarin, but not of the more planar rhodiocyanosides. Rhodiocyanosides and the BGD4 gene only occur in L. japonicus and a few closely related species associated with the Lotus corniculatus clade within the Lotus genus. This suggests the evolutionary scenario that substrate specialization for rhodiocyanosides evolved from a promiscuous activity of a progenitor cyanogenic β–glucosidase, resembling BGD2, and required no more than a single amino acid substitution.  相似文献   

10.
Microsomal fractions from developing shoots of adult white clover plants (of genotype AcAc) and cotyledons of dark germinated clover seedlings can synthesize 2-hydroxy-2-methylpropanenitrile and 2-hydroxy-2-methylbutanenitrile, the aglycone precursors of the cyanogenic glucosides, linamarin and lotaustralin, from various precursors in the presence of NADPH. l-Valine, 2-methylpropanal oxime, and 2-methylpropanenitrile are converted to 2-hydroxy-2-methylpropanenitrile and are detected as cyanide and acetone. l-Isoleucine and 2-methylbutanal oxime are converted to 2-hydroxy-2-methylbutanenitrile and are detected as cyanide and 2-butanone. At least two steps in these conversions are missing in microsomes from plants of genotype acac.  相似文献   

11.
The burnet moth Zygaena filipendulae L. contains the cyanogenic glucosides linamarin and lotaustralin, which can be degraded to the volatiles hydrogen cyanide (HCN), acetone and 2‐butanone. Linamarin and lotaustralin are transferred from the male to female during mating and thus are considered to be involved in mating communication. Because volatile semiochemical cues play a major role in mating communication in many insect species, the emissions of HCN, acetone and 2‐butanone from Z. filipendulae are characterized in the present study, aiming to determine the interplay between the degradation products of cyanogenic glucosides and pheromones. The volatile emissions from Z. filipendulae and flowers inducing mating are measured using headspace solid‐phase micro‐extraction and gas chromatography‐mass spectrometry analysis. All Z. filipendulae life stages emit HCN, acetone and 2‐butanone. Virgin females show higher emissions than mated females, whereas mated males have higher emissions than virgin males. Hydrogen cyanide is only rarely detected in the course of male–female copulation. These observations indicate a role for the cyanogenic glucoside derived volatiles in female calling and male courtship behaviours, although not as a defence during copulation. Males rejected for mating by a female are accepted after injection of linamarin or lotaustralin, demonstrating that cyanogenic glucosides are also important for female assessment of the fitness of the male. Volatiles from flowers occupied during mate calling are also analyzed, and emissions from males and females result in the identification of novel putative pheromones for Z. filipendulae.  相似文献   

12.
Zagrobelny M  Møller BL 《Phytochemistry》2011,72(13):1585-1592
Cyanogenic glucosides are important components of plant defense against generalist herbivores due to their bitter taste and the release of toxic hydrogen cyanide upon tissue disruption. Some specialized herbivores, especially insects, preferentially feed on cyanogenic plants. Such herbivores have acquired the ability to metabolize cyanogenic glucosides or to sequester them for use in their own predator defense. Burnet moths (Zygaena) sequester the cyanogenic glucosides linamarin and lotaustralin from their food plants (Fabaceae) and, in parallel, are able to carry out de novo synthesis of the very same compounds. The ratio and content of cyanogenic glucosides is tightly regulated in the different stages of the Zygaena filipendulae lifecycle and the compounds play several important roles in addition to defense. The transfer of a nuptial gift of cyanogenic glucosides during mating of Zygaena has been demonstrated as well as the possible involvement of hydrogen cyanide in male assessment and nitrogen metabolism. As the capacity to de novo synthesize cyanogenic glucosides was developed independently in plants and insects, the great similarities of the pathways between the two kingdoms indicate that cyanogenic glucosides are produced according to a universal route providing recruitment of the enzymes required. Pyrosequencing of Z. filipendulae larvae de novo synthesizing cyanogenic glucosides served to provide a set of good candidate genes, and demonstrated that the genes encoding the pathway in plants and Z. filipendulae are not closely related phylogenetically. Identification of insect genes involved in the biosynthesis and turn-over of cyanogenic glucosides will provide new insights into biological warfare as a determinant of co-evolution between plants and insects.  相似文献   

13.
Abstract 1 The dose–response of azadirachtin on vine weevil, Otiorhynchus sulcatus (Fabricius), reproduction is investigated by confining adults to feed on treated Taxus × media leaves, and by counting and evaluating development in the resulting eggs. 2 A dosage‐dependent reduction in oviposition is discovered for foliar surface residues of azadirachtin, with an EC50 of 25–50 parts per million (p.p.m) and 99.2% inhibition of viable egg production with 100 p.p.m. 3 Switching weevils from treated to untreated foliage allows reproductive capability to be restored for weevils that cease egg laying after azadirachtin exposure of 50 p.p.m. Weevils that had already started laying eggs in untreated groups soon cease oviposition once switched to azadirachtin‐treated foliage. 4 A transovarial effect results in a decrease in the percentage of viable eggs as the azadirachtin concentration increases. 5 The amount of feeding on foliage does not appreciably decrease at these hormonally effective concentrations, and adult weevil mortality is only slightly greater in the azadirachtin‐treated groups. Therefore, the overall effect of azadirachtin on weevil populations in the field is difficult to assess, except by collecting weevils to determine whether they are able to lay viable eggs.  相似文献   

14.
Growth habits and cyanogenesis were studied in a field experimentwith white clover (Trifolium repens L.) cv. Huia. Eighty controlplants propagated by seeds, and 80 clones of an in vivo selectedvariant were examined in mid-late August and late September.The temperature effect on cyanogenic glucoside levels was alsoexamined on in vitro grown plantlets of the variant in growthchambers. Results showed that the upright growth habit dominated in controlplants. The population of the variant plants was mainly composedof prostrate clones and a transition from prostrate to uprightgrowth habit occurred. Considerable variation was observed withregard to all measured morphological characters in both controland variant plants. Great variation was also noted in cyanogenicglucoside content in the leaf laminae of the control plants.Low cyanogenic plants, on the other hand, dominated in the variant.The number of low and high cyanogenic plants increased in thecontrol by the end of the growth season, after the first frosts.A one-way shift of cyanogenic (slight increase) was recordedin the variant. Similar levels of cyanogenic glucoside and linamarasewere determined in the in vitro and field-grown plants. Cyanogenicglucoside content slightly decreased with the age of the invitro plantlets, but variation in temperature did not causeany changes in their level. The response to the environmentalchanges, regarding cyanogenesis, appear to be genetically determined. Trifolium repens, in vitro, somaclonal variation, cyanogenic glucosides  相似文献   

15.
Whereas high activities of β-glucosidase occur in homogenates of leaves of Hevea brasiliensis Muell.-Arg., this enzyme, which is capable of splitting the cyanogenic monoglucoside linamarin (linamarase), is not present in intact protoplasts prepared from the corresponding leaves. Thus, in leaves of H. brasiliensis the entire linamarase is located in the apoplasmic space. By analyzing the vacuoles obtained from leaf protoplasts isolated from mesophyll and epidermal layers of H. brasiliensis leaves, it was shown that the cyanogenic glucoside linamarin is localized exclusively in the central vacuole. Analyses of apoplasmic fluids from leaves of six other cyanogenic species showed that significant linamarase activity is present in the apoplasm of all plants tested. In contrast, no activity of any diglucosidase capable of hydrolyzing the cyanogenic diglucoside linustatin (linustatinase) could be detected in these apoplasmic fluids. As described earlier, any translocation of cyanogenic glucosides involves the interaction of monoglucosidic and diglucosidic cyanogens with the corresponding glycosidases (Selmar, 1993a, Planta 191, 191–199). Based on this, the data on the compartmentation of cyanogenic glucosides and their degrading enzymes in Hevea are discussed with respect to the complex metabolism and the transport of cyanogenic glucosides.  相似文献   

16.
Cyanogenesis, the release of hydrogen cyanide from damaged plant tissues, involves the enzymatic degradation of amino acid–derived cyanogenic glucosides (α-hydroxynitrile glucosides) by specific β-glucosidases. Release of cyanide functions as a defense mechanism against generalist herbivores. We developed a high-throughput screening method and used it to identify cyanogenesis deficient (cyd) mutants in the model legume Lotus japonicus. Mutants in both biosynthesis and catabolism of cyanogenic glucosides were isolated and classified following metabolic profiling of cyanogenic glucoside content. L. japonicus produces two cyanogenic glucosides: linamarin (derived from Val) and lotaustralin (derived from Ile). Their biosynthesis may involve the same set of enzymes for both amino acid precursors. However, in one class of mutants, accumulation of lotaustralin and linamarin was uncoupled. Catabolic mutants could be placed in two complementation groups, one of which, cyd2, encoded the β-glucosidase BGD2. Despite the identification of nine independent cyd2 alleles, no mutants involving the gene encoding a closely related β-glucosidase, BGD4, were identified. This indicated that BGD4 plays no role in cyanogenesis in L. japonicus in vivo. Biochemical analysis confirmed that BGD4 cannot hydrolyze linamarin or lotaustralin and in L. japonicus is specific for breakdown of related hydroxynitrile glucosides, such as rhodiocyanoside A. By contrast, BGD2 can hydrolyze both cyanogenic glucosides and rhodiocyanosides. Our genetic analysis demonstrated specificity in the catabolic pathways for hydroxynitrile glucosides and implied specificity in their biosynthetic pathways as well. In addition, it has provided important tools for elucidating and potentially modifying cyanogenesis pathways in plants.  相似文献   

17.
In 2007, an invasive paropsine beetle, Paropsisterna nr. gloriosa Blackburn, caused severe defoliation of Eucalyptus in mixed‐species foliage plantations in south‐west Ireland. At many of the plantations, Eucalyptus parvula L.A.S. Johnson & K.D. Hill was the most heavily damaged species while Eucalyptus pulverulenta Sims was generally resistant to the beetle. However, at the most heavily damaged site beetles moved to feed on E. pulvarulenta presumably during periods when suitable foliage (new leaves) of E. parvula had been severely depleted. The present study examines factors underlying shifts in oviposition from the preferred to non‐preferred host. In choice and no‐choice experiments, P. nr. gloriosa laid more eggs directly on new E. parvula foliage compared with new E. pulverulenta foliage. However, in choice experiments where new E. parvula foliage was unavailable (but old foliage available), more eggs were laid on new E. pulverulenta foliage. The potential for prior feeding damage to stimulate or deter oviposition on either host was also examined. Prior damage to new and old E. parvula leaves increased egg‐laying directly on the damaged foliage; however, prior damage to E. pulverulenta may have inhibited oviposition. The results suggest that in mixed‐species plantations, facilitation of oviposition on preferred hosts through prior feeding damage helps maintain the relative resistance of E. pulverulenta against P. nr. gloriosa, even under high beetle densities. However, the vulnerability of E. pulverulenta will increase where suitable age‐classes of preferred‐host foliage are severely depleted or unavailable.  相似文献   

18.
Methylated inositol, d ‐pinitol (3‐O‐methyl‐d ‐chiro‐inositol), is a common constituent in legumes. It is synthesized from myo‐inositol in two reactions: the first reaction, catalyzed by myo‐inositol‐O‐methyltransferase (IMT), consists of a transfer of a methyl group from S‐adenosylmethionine to myo‐inositol with the formation of d ‐ononitol, while the second reaction, catalyzed by d ‐ononitol epimerase (OEP), involves epimerization of d ‐ononitol to d ‐pinitol. To identify the genes involved in d ‐pinitol biosynthesis in a model legume Medicago truncatula, we conducted a BLAST search on its genome using soybean IMT cDNA as a query and found putative IMT (MtIMT) gene. Subsequent co‐expression analysis performed on publicly available microarray data revealed two potential OEP genes: MtOEPA, encoding an aldo‐keto reductase and MtOEPB, encoding a short‐chain dehydrogenase. cDNAs of all three genes were cloned and expressed as recombinant proteins in E. coli. In vitro assays confirmed that putative MtIMT enzyme catalyzes methylation of myo‐inositol to d ‐ononitol and showed that MtOEPA enzyme has NAD+‐dependent d ‐ononitol dehydrogenase activity, while MtOEPB enzyme has NADP+‐dependent d ‐pinitol dehydrogenase activity. Both enzymes are required for epimerization of d ‐ononitol to d ‐pinitol, which occurs in the presence of NAD+ and NADPH. Introduction of MtIMT, MtOEPA, and MtOEPB genes into tobacco plants resulted in production of d ‐ononitol and d ‐pinitol in transformants. As this two‐step pathway of d ‐ononitol epimerization is coupled with a transfer of reducing equivalents from NADPH to NAD+, we speculate that one of the functions of this pathway might be regeneration of NADP+ during drought stress.  相似文献   

19.
While many studies demonstrate that herbivores alter selection on plant reproductive traits, little is known about whether antiherbivore defenses affect selection on these traits. We hypothesized that antiherbivore defenses could alter selection on reproductive traits by altering trait expression through allocation trade‐offs, or by altering interactions with mutualists and/or antagonists. To test our hypothesis, we used white clover, Trifolium repens, which has a Mendelian polymorphism for the production of hydrogen cyanide—a potent antiherbivore defense. We conducted a common garden experiment with 185 clonal families of T. repens that included cyanogenic and acyanogenic genotypes. We quantified resistance to herbivores, and selection on six floral traits and phenology via male and female fitness. Cyanogenesis reduced herbivory but did not alter the expression of reproductive traits through allocation trade‐offs. However, the presence of cyanogenic defenses altered natural selection on petal morphology and the number of flowers within inflorescences via female fitness. Herbivory influenced selection on flowers and phenology via female fitness independently of cyanogenesis. Our results demonstrate that both herbivory and antiherbivore defenses alter natural selection on plant reproductive traits. We discuss the significance of these results for understanding how antiherbivore defenses interact with herbivores and pollinators to shape floral evolution.  相似文献   

20.
Dirk Selmar 《Planta》1993,191(2):191-199
The 14C-labelled cyanogenic glucosides linustatin (diglucoside of acetone cyanohydrin) and linamarin (monoglucoside of acetone cyanohydrin), prepared by feeding [14C]valine to plants of Linum usitatissimum L., were applied to cotyledons of Hevea brasiliensis Muell.-Arg. in order to study their transport. Both [14C]-linustatin and [14C]linamarin were efficiently taken up by the cotyledons. Whereas 14C was recovered completely when [14C]linustatin was applied to the seedling, only about one-half of the radioactivity fed as [14C]linamarin could be accounted for after incubation. This observation is in agreement with the finding that apoplasmic linamarase hydrolyzes linamarin but not the related diglucoside linustatin. These data prove that, in vivo, linamarin does not occur apoplasmically and that linustatin, which is exuded from the endosperm, is taken up by the cotyledons very efficiently. Thus, these findings confirm the linustatin pathway (Selmar et al. 1988, Plant Physiol. 86, 711–716), which describes mobilization and transport of the cyanogenic glucoside linamarin, initiated by the glucosylation of linamarin to yield linustatin. When linustatin is metabolized to non-cyanogenic compounds, in Hevea this cyanogenic diglucoside is hydrolyzed by a diglucosidase which splits off both glucose molecules simultaneously as one gentiobiose moiety (Selmar et al. 1988). In contrast, [14C]linustatin, which is taken up by the cotyledon, is not metabolized but is reconverted in high amounts to the monoglucosidic [14C]linamarin, which then is temporarily stored in the cotyledons. These data demonstrate that in Hevea, besides the simultaneous diglucosidase, there must be present a further diglucosidase which is able to hydrolyze cyanogenic diglucosides sequentially by splitting off only the terminal glucose moiety from linustatin to yield linamarin. From this, it is deduced that the metabolic fate of linustatin, which is transported into the source tissues, depends on the activities of the different diglucosidases. Whereas sequential cleavage — producing linamarin — is purely a part of the process of linamarin translocation (using linustatin as the transport vehicle), simultaneous cleavage, producing acetone cyanohydrin, is part of the process of linamarin metabolization in which the nitrogen from cyanogenic glucosides is used to synthesize non-cyanogenic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号