首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epigenetic drugs are promising add‐ons to cancer treatment; still, adverse effects concerning tumour promotion have been reported occasionally. In this in vitro study, we investigated the effect of combination treatment of decitabine with anthracycline‐based chemotherapy [5‐fluorouracil plus epirubicine plus cyclophosphamide (FEC)] on viability and metastatic activity of breast cancer cell lines, MDA‐MB‐231 (estrogen receptor‐negative) and MCF‐7 (estrogen receptor‐positive). The effect of decitabine and its combined treatment with FEC on viability of both cancer cell lines was assessed using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazoliumbromide and adenosine triphosphate (ATP) cell survival assays. DNA methylation specific real‐time polymerase chain reaction (PCR) (Methylight®) was employed to document the methylation status of the metastasis‐relevant urokinase‐type plasminogen activator (uPA) and plasminogen activator inhibitor‐I (PAI‐1) genes. Additionally, protein expression levels of uPA and PAI‐1 were determined using enzyme‐linked immunosorbent assays. Invasion capacity of cells was assayed using Matrigel® invasion assay. Decitabine lowered the viability of MCF‐7 cells, although MDA‐MB‐231 cells were not affected. Decitabine did not augment FEC‐mediated cytotoxicity in both cell lines. In MCF‐7 cells, methylation of the uPA and PAI‐1 gene promoter was significantly reduced by decitabine or decitabine plus FEC. Protein levels of uPA and PAI‐1 were induced by all treatments. Decitabine significantly induced the invasion capacity of MCF‐7 cells, whereas all of the drugs resulted in decreased invasion capacity of MDA‐MB‐231. Our results suggest differential effects of single‐dose decitabine and its combination with FEC on the metastatic capacity and survival of breast cancer cell lines endowed with different metastatic behaviour. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Osteoprotegerin (OPG) is a decoy receptor for receptor activator of NF‐κB ligand (RANKL) and TNF‐related apoptosis‐inducing ligand (TRAIL). While RANKL is essential for osteoclastogenesis and facilitates breast cancer migration into bone, TRAIL promotes breast cancer apoptosis. We analyzed the expression of OPG and TRAIL and its modulation in estrogen receptor‐positive MCF‐7 cells and receptor‐negative MDA‐MB‐231 cells. In both cells, OPG mRNA levels and protein secretion were dose‐ and time‐dependently enhanced by interleukin (IL)‐1β and suppressed by dexamethasone. In contrast to MCF‐7 cells, MDA‐MB‐231 abundantly expressed TRAIL mRNA, which was enhanced by IL‐1β and inhibited by dexamethasone. TRAIL activated pro‐apoptotic caspase‐3, ‐7, and poly‐ADP‐ribose polymerase and decreased cell numbers of MDA‐MB‐231, but had no effect on MCF‐7 cells. Gene silencing siRNA directed against OPG resulted in a 31% higher apoptotic rate compared to non‐target siRNA‐treated MDA‐MB‐231 cells. Furthermore, TRAIL induced significantly less apoptosis in cells cultured in conditioned media (containing OPG) compared to cells exposed to TRAIL in fresh medium lacking OPG (P < 0.01) and these protective effects were reversed by blocking OPG with its specific ligand RANKL (P < 0.05). The association between cancer cell survival and OPG production by MDA‐MB‐231 cells was further supported by the finding, that modulation of OPG secretion using IL‐1β or dexamethasone prior to TRAIL exposure resulted in decreased and increased rate of apoptosis, respectively (P < 0.05). Thus, OPG secretion by breast cancer cells is modulated by cytokines and dexamethasone, and may represent a critical resistance mechanism that protects against TRAIL‐induced apoptosis. J. Cell. Biochem. 108: 106–116, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
To investigate the effects of PA‐MSHA (Pseudomonas aeruginosa‐mannose sensitive hemagglutinin) on inhibiting proliferation of breast cancer cell lines and to explore its mechanisms of action in human breast cancer cells. MCF‐10A, MCF‐7, MDA‐MB‐468, and MDA‐MB‐231HM cells were treated with PA‐MSHA or PA (Heat‐killed P. aeruginosa) at different concentrations and different times. Changes of cell super‐microstructure were observed by transmission electron microscopy. Cell cycle distribution and apoptosis induced by PA‐MSHA were measured by flow cytometry (FCM) with PI staining, ANNEXIN V‐FITC staining and Hoechst33258 staining under fluorescence microscopy. Western blot was used to evaluate the expression level of apoptosis‐related molecules. A time‐dependent and concentration‐dependent cytotoxic effect of PA‐MSHA was observed in MDA‐MB‐468 and MDA‐MB‐231HM cells but not in MCF‐10A or MCF‐7 cells. The advent of PA‐MSHA changed cell morphology, that is to say, increases in autophagosomes, and vacuoles in the cytoplasm could also be observed. FCM with PI staining, ANNEXIN V‐FITC and Hoechst33258 staining showed that the different concentrations of PA‐MSHA could all induce the apoptosis and G0–G1 cell cycle arrest of breast cancer cells. Cleaved caspase 3, 8, 9, and Fas protein expression levels were strongly associated with an increase in apoptosis of the breast cancer cells. There was a direct relationship with increased concentrations of PA‐MSHA but not of PA. Completely different from PA, PA‐MSHA may impart antiproliferative effects against breast cancer cells by inducing apoptosis mediated by at least a death receptor‐related cell apoptosis signal pathway, and affecting the cell cycle regulation machinery. J. Cell. Biochem. 108: 195–206, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Numb is known as a cell fate determinant as it identifies the direction of cell differentiation via asymmetrical partitioning during mitosis. It is considered as a tumour suppressor, and a frequent loss of Numb expression in breast cancer is noted. Numb forms a tri‐complex with p53 and E3 ubiquitin ligase HDM2 (also known as MDM2), thereby preventing the ubiquitination and degradation of p53. In this study, we examined Numb expression in 125 patients with triple‐negative breast cancer (TNBC). The results showed that 61 (48.8%) patients presented with a deficient or decreased Numb expression. The percentage of Ki67 > 14% in the retained Numb group was significantly lower than that in the decreased and deficient Numb groups (86.00% vs. 98.40%, P = .0171). This study aimed to detect the expression and migration of Numb, HDM2 and p53 in the membrane, cytoplasmic and nuclear fractions of normal mammary epithelial cell line MCF‐10A and basal‐like TNBC cell line MDA‐MB‐231. We obtained the cell fractions to identify changes in these three protein levels after the re‐expression of NUMB in the MDA‐MB‐231 cells and the knocking down of NUMB in the MCF‐10A cells. Results showed that Numb regulates p53 levels in the nucleus where the protein levels of Numb are positively correlated with p53 levels, regardless if it is re‐expressed in the MDA‐MB‐231 cells or knocked down in the MCF‐10A cells. Moreover, HDM2 was remarkably decreased only in the membrane fraction of NUMB knock‐down cells; however, its mRNA levels were increased significantly. Our results reveal a previously unknown molecular mechanism that Numb can migrate into the nucleus and interact with HDM2 and p53.  相似文献   

5.
Arachidonic acid (AA) is a common dietary n‐6 cis polyunsaturated fatty acid that under physiological conditions is present in an esterified form in cell membrane phospholipids, and it might be present in the extracellular microenvironment. AA and its metabolites are implicated in FAK activation and cell migration in MDA‐MB‐231 breast cancer cells, and an epithelial‐to‐mesenchymal‐like transition process in mammary non‐tumorigenic epithelial cells MCF10A. During malignant transformation is present an altered expression of glycosiltransferases, which promote changes on the glycosilation of cell‐surface proteins. The β‐1,4‐galactosyltransferase I (GalT I) is an enzyme that participates in a variety of biological functions including cell growth, migration, and spreading. However, the participation of AA in the regulation of GalT I expression and the role of this enzyme in the cell adhesion process in breast cancer cells remains to be investigated. In the present study, we demonstrate that AA induces an increase of GalT I expression through a PLA2α, Src, ERK1/2, and LOXs activities‐dependent pathway in MDA‐MB‐231 breast cancer cells. Moreover, MDA‐MB‐231 cells adhere to laminin via GalT I expression and pretreatment of cells with AA induces an increase of cell adhesion to laminin. In conclusion, our findings demonstrate, for the first time, that AA promotes an increase of GalT I expression through an AA metabolism, Src and ERK1/2 activities‐dependent pathway, and that GalT I plays a pivotal role in cell adhesion to laminin in MDA‐MB‐231 breast cancer cells. J. Cell. Biochem. 113: 3330–3341, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Estrogen receptor alpha (ERα) plays an important role in the development and progression of breast cancer and thus the attenuation of ERα activities is a promising treatment strategy. Furanodienone is one of the main bioactive chemical components of Rhizoma Curcumae which is commonly used in Chinese medicine for the treatment of cancer. In this study, we investigated the effects of furanodienone on human breast cancer MCF‐7, T47D, and MDA‐MB‐231 cells. Our results showed that furanodienone could inhibit MCF‐7, T47D, and MDA‐MB‐231 cells proliferation in a dose (10–160 µM) dependent manner. ERα‐negative MDA‐MB‐231 cells were less sensitive to furanodienone than ERα‐positive MCF‐7 and T47D cells. Furanodienone could effectively block 17β‐estradiol (E2)‐stimulated MCF‐7 cell proliferation and cell cycle progression and induce apoptosis evidenced by the flow cytometric detection of sub‐G1 DNA content and the appearance of apoptotic nuclei after DAPI staining. Furanodienone specifically down‐regulated ERα protein and mRNA expression levels without altering ERβ expression. Furanodienone treatment inhibited E2‐stimulation of estrogen response element (ERE)‐driven reporter plasmid activity and ablated E2‐targeted gene (e.g., c‐Myc, Bcl‐2, and cyclin D1) expression which resulted in the inhibition of cell cycle progression and cell proliferation, and in the induction of apoptosis. Knockdown of ERα in MCF‐7 cells by ERα‐specific siRNA decreased the cell growth inhibitory effect of furanodienone. These findings suggest that effects of furanodienone on MCF‐7 cells are mediated, at least in part, by inhibiting ERα signaling. J. Cell. Biochem. 112: 217–224, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
WD‐repeat proteins are implicated in a variety of biological functions, most recently in oncogenesis. However, the underlying function of WD‐repeat protein 41 (WDR41) in tumorigenesis remains elusive. The present study was aimed to explore the role of WDR41 in breast cancer. Combined with Western blotting and immunohistochemistry, the results showed that WDR41 was expressed at low levels in breast cancer, especially in triple‐negative breast cancer (TNBC). Using methylation‐specific PCR (MSP), we observed that WDR41 presented hypermethylation in MDA‐MB‐231 cells. Methylation inhibitor 5‐aza‐2′‐deoxycytidine (5‐aza‐dC) management increased the expression of WDR41 in MDA‐MB‐231 cells, but not in MCF‐10A (normal mammary epithelial cells) or oestrogen receptor‐positive MCF‐7 breast cancer cells. WDR41‐down‐regulation promoted, while WDR41‐up‐regulation inhibited the tumour characteristics of TNBC cells including cell viability, cell cycle and migration. Further, WDR41‐up‐regulation dramatically suppressed tumour growth in vivo. Mechanistically, WDR41 protein ablation activated, while WDR41‐up‐regulation repressed the AKT/GSK‐3β pathway and the subsequent nuclear activation of β‐catenin in MDA‐MB‐231 cells, and 5‐aza‐dC treatment enhanced this effect. After treatment with the AKT inhibitor MK‐2206, WDR41‐down‐regulation‐mediated activation of the GSK‐3β/β‐catenin signalling was robustly abolished. Collectively, methylated WDR41 in MDA‐MB‐231 cells promotes tumorigenesis through positively regulating the AKT/GSK‐3β/β‐catenin pathway, thus providing an important foundation for treating TNBC.  相似文献   

8.
Garcinol, obtained from Garcinia indica in tropical regions, is used for its numerous biological effects. Its anti‐cancer activity has been suggested but the mechanism of action has not been studied in‐detail, especially there is no report on its action against breast cancer cells. Here we tested our hypothesis that garcinol may act as an anti‐proliferative and apoptosis‐inducing agent against breast cancer cell lines. Using multiple techniques such as MTT, Histone‐DNA ELISA, Annexin V‐PI staining, Western blot for activated caspases and cleaved PARP, homogenous caspase‐3/7 fluorometric assay and EMSA, we investigated the mechanism of apoptosis‐inducing effect of garcinol in ER‐positive MCF‐7 and ER‐negative MDA‐MB‐231 cells. We found that garcinol exhibits dose‐dependent cancer cell‐specific growth inhibition in both the cell lines with a concomitant induction of apoptosis, and has no effect on non‐tumorigenic MCF‐10A cells. Our results suggested induction of caspase‐mediated apoptosis in highly metastatic MDA‐MB‐231 cells by garcinol. Down‐regulation of NF‐κB signaling pathway was observed to be the mechanism of apoptosis‐induction. Garcinol inhibited constitutive NF‐κB activity, which was consistent with down‐regulation of NF‐κB‐regulated genes. This is the first report on anti‐proliferative and apoptosis‐inducing action of garcinol against human breast cancer cells and the results suggest that this natural compound merits investigation as a potential chemo‐preventive/‐therapeutic agent, especially against breast cancer. J. Cell. Biochem. 109: 1134–1141, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Breast cancer (BC) is one of the most common malignant tumors in women, and screening relevant genes and markers that are involved in BC tumor genesis and progression is of great value. We previously found that messenger RNA expression of ARHGAP9 was high in BC tissue, but it is unclear whether ARHGAP9 participates in the progression of human BC. In this study, we found that ARHGAP9 expression was correlated with poor patient survival, American Joint Committee on Cancer clinical staging, tumor size, and tumor differentiation. MCF‐7 and MDA‐MB‐231 cells exhibited higher expression of ARHGAP9 than other human BC cell lines (HCC1937, MDA‐MB‐453, ZR‐75‐1, and Hs 578T). Knockdown of ARHGAP9 in human BC cells markedly reduced the cell proliferation, migration, and invasive ability of MCF‐7 and MDA‐MB‐231 cells. Furthermore, small interfering RNA (siRNA) of ARHGAP9 also induced G0‐G1 cell cycle arrest and apoptosis in MCF‐7 and MDA‐MB‐231 cells. Expressions of cell cycle markers (CDK2 and CCNB1) and invasion‐related protein (RhoC and MTA1) were downregulated in siRNA‐ARHGAP9‐transfected cells. siRNA of ARHGAP9 also inhibited the phosphorylation of mitogen‐activated protein kinases in BC cells. In conclusion, the abnormal expression of ARHGAP9 may correlate with the genesis, development, and diagnosis of BC.  相似文献   

10.
Emerging evidence has indicated the important function of long non‐coding RNAs (lncRNAs) in tumour chemotherapy resistance. However, the underlying mechanism is still ambiguous. In this study, we investigate the physiopathologic role of lncRNA ferritin heavy chain 1 pseudogene 3 (FTH1P3) on the paclitaxel (PTX) resistance in breast cancer. Results showed that lncRNA FTH1P3 was up‐regulated in paclitaxel‐resistant breast cancer tissue and cells (MCF‐7/PTX and MDA‐MB‐231/PTX cells) compared with paclitaxel‐sensitive tissue and parental cell lines (MCF‐7, MDA‐MB‐231). Gain‐ and loss‐of‐function experiments revealed that FTH1P3 silencing decreased the 50% inhibitory concentration (IC50) value of paclitaxel and induced cell cycle arrest at G2/M phase, while FTH1P3‐enhanced expression exerted the opposite effects. In vivo, xenograft mice assay showed that FTH1P3 silencing suppressed the tumour growth of paclitaxel‐resistant breast cancer cells and ABCB1 protein expression. Bioinformatics tools and luciferase reporter assay validated that FTH1P3 promoted ABCB1 protein expression through targeting miR‐206, acting as a miRNA “sponge.” In summary, our results reveal the potential regulatory mechanism of FTH1P3 on breast cancer paclitaxel resistance through miR‐206/ABCB1, providing a novel insight for the breast cancer chemoresistance.  相似文献   

11.
12.
DNA methylation plays an important role in regulation of gene expression and is increasingly being recognized as a determinant of chemosensitivity of human cancers. With the aim of improving the chemotherapeutic efficacy of breast carcinoma, the effect of DNA methyltransferase inhibitor, 5-Aza-2′-deoxycytidine (5-aza-CdR), on the chemosensitivity of anticancer drugs was investigated. The cytotoxicity of paclitaxel (PTX), adriamycin (ADR), and 5-fluorouracil (5-FU) was analyzed against human breast cancer cell lines, MDA MB 231 and MCF 7 cell lines using the MTT assay, and the synergy of 5-aza-CdR and these agents was determined by Drewinko’s fraction method. The effects of each single agent or the combined treatment on cell cycle arrest were analyzed by flow cytometric analysis. We also investigated the effect of each single agent or the combined treatment of anticancer drugs with 5-aza-CdR on the methylation status of the selected genes by methylation specific PCR. In MDA MB 231 cells, a synergistic antiproliferative effect was observed with a combination of 10 μM 5-aza-CdR and these three anticancer drugs, while in MCF 7 cells, a semiadditive effect was observed. Treatment with 5-aza-CdR and anticancer drug resulted in partial demethylation of a panel of genes including RARβ2, Slit2, GSTP1, and MGMT. Based on these findings, we propose that 5-aza-CdR enhances the chemosensitivity of anticancer drugs in breast cancer cells and may be a promising approach for increasing the chemotherapeutic potential of these anticancer agents for more effective management of breast carcinomas.  相似文献   

13.
Phosphoinositide 3‐kinase (PI3K) signaling is frequently deregulated in breast cancer and plays a critical role in tumor progression. However, resistance to PI3K inhibitors in breast cancer has emerged, which is due to the enhanced β‐catenin nuclear accumulation. Until now, the mechanisms underlying PI3K inhibition‐induced β‐catenin nuclear accumulation remains largely unknown. In the present study, we found inhibition of PI3K with LY294002 promoted β‐catenin nuclear accumulation in MCF‐7 and MDA‐MB‐231 breast cancer cells. Combining PI3K inhibitor LY294002 with XAV‐939, an inhibitor against β‐catenin nuclear accumulation, produced an additive anti‐proliferation effect against breast cancer cells. Subsequent experiments suggested β‐catenin nuclear accumulation induced by PI3K inhibition depended on the feedback activation of epidermal growth factor receptor (EGFR) signaling pathway in breast cancer cells. Inhibition of EGFR phosphorylation with Gefitinib enhanced anti‐proliferation effect of PI3K inhibitor LY294002 in MCF‐7 and MDA‐MB‐231 cells. Taken together, our findings may elucidate a possible mechanism explaining the poor outcome of PI3K inhibitors in breast cancer treatment.  相似文献   

14.
15.
A series of coumarin‐tagged β‐lactam triazole hybrids ( 10a – 10o ) were synthesized and tested for their cytotoxic activity against MDA‐MB‐231 (triple negative breast cancer), MCF‐7 (estrogen receptor positive breast cancer (ER+)) and A549 (human lung carcinoma) cancer cell lines including one normal cell line, HEK‐293 (human embryonic kidney). Two compounds 10b and 10d exhibited substantial cytotoxic effect against MCF‐7 cancer cell lines with IC50 values of 53.55 and 58.62 μm , respectively. More importantly, compounds 10b and 10d were non‐cytotoxic against HEK‐293 cell lines. Structure–activity relationship (SAR) studies suggested that the nitro and chloro group at the C‐3 position of phenyl ring are favorable for anticancer activity, particularly against MCF‐7 cell lines. Furthermore, antimicrobial evaluation of these compounds revealed modest inhibition of examined pathogenic strains with compounds 10c and 10i being the most promising antimicrobial agents against Pseudomonas aeruginosa and Candida albicans, respectively.  相似文献   

16.
The objective of the present study was to elucidate the effect of BMN 673 (talozoparib) on BRCA1 mutant (HCC1937) and wild‐type (MDA‐MB‐231) triple negative breast cancer (TNBC). The in vitro cytotoxicity results indicated that BMN 673 had considerable inhibitory effects on HCC1937 and MDA‐MB‐231 cell lines by inducing apoptosis, multicaspase activity, G2/M arrest, and altering the expression levels of apoptosis‐related genes (P < 0.01). Additionally, BMN 673 indicated no toxicity on MCF‐10A control cells until a certain concentration and incubation time. However, BMN 673, a novel and selective poly ADP ribose polymerase inhibitor, was more potent in TNBC cells bearing BRCA1 mutant than those with wild‐type BRCA1. In conclusion, our study, for the first time, demonstrated a molecular mechanism of the induction of apoptosis by BMN 673 in TNBC with different genetic profile. However, further investigations regarding the exact molecular mechanisms underlying BMN 673‐inducing apoptotic death and gene‐cell line associations are required.  相似文献   

17.
The anti‐resorptive agent zoledronic acid inhibits key enzymes in the mevalonate pathway, disrupting post‐translational modification and thereby correct protein localization and function. Inhibition of prenylation may also be responsible for the reported anti‐tumour effects of zoledronic acid, but the specific molecular targets have not been identified. Cenp‐F/mitosin, a kinetochore‐associated protein involved in the correct separation of chromosomes during mitosis, has been shown to undergo post‐translational prenylation and may therefore be a novel target contributing to the anti‐tumour effects of zoledronic acid. We investigated whether zoledronic acid causes loss of Cenp‐F from the kinetochore in breast cancer cells, to determine if the reported anti‐tumour effects may be mediated by impairing correct chromosome separation. MDA‐MB‐436, MDA‐MB‐231 and MCF‐7 breast cancer cells and MCF‐10A non‐malignant breast epithelial cells were treated with zoledronic acid in vitro, and the effect on Cenp‐F localization was analysed by immunoflourescence microscopy. Zoledronic acid caused loss of Cenp‐F from the kinetochore, accompanied by an increase in the number of cells in pro‐, /prometa‐ and metaphase in all of the cancer cell lines. There was also a significant increase in the number of lagging chromosomes in mitotic cells. The effects of zoledronic acid could be reversed by inclusion of an intermediary of the mevalonate pathway, showing that the loss of Cenp‐F from the kinetochore was caused by the inhibition of farnesylation. In contrast, no effect was seen on Cenp‐F in non‐malignant MCF‐10A cells. This is the first report showing a specific effect of zoledronic acid on a protein involved in the regulation of chromosome segregation, identifying Cenp‐F as a potential new molecular target for NBPs in tumour cells.  相似文献   

18.
Chemotherapy is one of the standard strategies for treatment of breast cancer. Adriamycin (Dox) is a first‐line chemotherapy agent for breast cancer. However, the gastrointestinal reactions, myocardial toxicity and other side effects caused by Dox due to its un‐specific cytotoxicity limit the clinical treatment effect. To address this need, aptamer has been regarded as an ideal target molecular carrier. In the present study, we selected an aptamer 5TR1 that can specifically bind to the MUC1 protein which has been regarded as an important tumor biomarker, as well as a potential target in anticancer therapies. Dox was loaded on the modified 5TR1‐GC, which specifically targets breast cancer cell MDA‐MB‐231. Cell viability and apoptosis assays demonstrated that the 5TR1‐GC‐Dox exhibited target specificity of cytotoxicity in MDA‐MB‐231. Moreover, in vivo xenograft study also confirmed that 5TR1‐GC‐Dox had a more effective effect on tumor growth inhibition and induced the apoptosis of malignant tumor cells compared to Dox. We provided a novel experimental and theoretical basis for developing an aptamer targeted drug system, thus to promote the killing effect of drugs on breast cells and to reduce the damage to normal cells and tissues for breast cancer.  相似文献   

19.
The insulin‐like growth factor I (IGF‐I) signalling pathway contributes a major role on various cancer cell proliferation, survival and cell cycle. The present study was aimed to investigate the effect of nimbolide on IGF signalling and cell cycle arrest in MCF‐7 and MDA‐MB‐231 breast cancer cell lines. The protein expression of IGF signalling molecules and cell cycle protein levels was assessed by western blot analysis. In order to study the interaction of nimbolide on IGF‐1 signalling pathway, IGF‐I and phosphoinositide 3‐kinase (PI3K) inhibitor (LY294002) were used to treat MCF‐7 and MDA‐MB‐231 cells. Further, the cell cycle arrest was analysed by flow cytometry. The protein expression of IGF signalling molecules was significantly decreased in nimbolide‐treated breast cancer cells. PI3K inhibitor and IGF‐I with nimbolide treatment notably inhibited phosphorylated Akt. The cell cycle arrest was observed at the G0/G1 phase, and accumulation of apoptotic cells was observed in nimbolide‐treated breast cancer cell lines. Nimbolide also increased the protein expression of p21 and decreased the cyclins in both the cell lines. Nimbolide decreases the proliferation of breast cancer cells by modulating the IGF signalling molecules, which could be very useful for the breast cancer treatment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号