首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In plants, ammonium released during photorespiration exceeds primary nitrogen assimilation by as much as 10-fold. Analysis of photorespiratory mutants indicates that photorespiratory ammonium released in mitochondria is reassimilated in the chloroplast by a chloroplastic isoenzyme of glutamine synthetase (GS2), the predominant GS isoform in leaves of Solanaceous species including tobacco (Nicotiana tabacum). By contrast, cytosolic GS1 is expressed in the vasculature of several species including tobacco. Here, we report the effects on growth and photorespiration of overexpressing a cytosolic GS1 isoenzyme in leaf mesophyll cells of tobacco. The plants, which ectopically overexpress cytosolic GS1 in leaves, display a light-dependent improved growth phenotype under nitrogen-limiting and nitrogen-non-limiting conditions. Improved growth was evidenced by increases in fresh weight, dry weight, and leaf soluble protein. Because the improved growth phenotype was dependent on light, this suggested that the ectopic expression of cytosolic GS1 in leaves may act via photosynthetic/photorespiratory process. The ectopic overexpression of cytosolic GS1 in tobacco leaves resulted in a 6- to 7-fold decrease in levels of free ammonium in leaves. Thus, the overexpression of cytosolic GS1 in leaf mesophyll cells seems to provide an alternate route to chloroplastic GS2 for the assimilation of photorespiratory ammonium. The cytosolic GS1 transgenic plants also exhibit an increase in the CO(2) photorespiratory burst and an increase in levels of photorespiratory intermediates, suggesting changes in photorespiration. Because the GS1 transgenic plants have an unaltered CO(2) compensation point, this may reflect an accompanying increase in photosynthetic capacity. Together, these results provide new insights into the possible mechanisms responsible for the improved growth phenotype of cytosolic GS1 overexpressing plants. Our studies provide further support for the notion that the ectopic overexpression of genes for cytosolic GS1 can potentially be used to affect increases in nitrogen use efficiency in transgenic crop plants.  相似文献   

3.
4.
5.
Glutamine synthetase (GS; EC 6.3.1.2) is present in different subcellular compartments in plants. It is located in the cytoplasm in root and root nodules while generally present in the chloroplasts in leaves. The expression of GS gene(s) is enhanced in root nodules and in soybean roots treated with ammonia. We have isolated four genes encoding subunits of cytosolic GS from soybean (Glycine max L. cv. Prize). Promoter analysis of one of these genes (GS15) showed that it is expressed in a root-specific manner in transgenic tobacco and Lotus corniculatus, but is induced by ammonia only in the legume background. Making the GS15 gene expression constitutive by fusion with the CaMV-35S promoter led to the expression of GS in the leaves of transgenic tobacco plants. The soybean GS was functional and was located in the cytoplasm in tobacco leaves where this enzyme is not normally present. Forcing this change in the location of GS caused concomitant induction of the mRNA for a native cytosolic GS in the leaves of transgenic tobacco. Shifting the subcellular location of GS in transgenic plants apparently altered the nitrogen metabolism and forced the induction in leaves of a native GS gene encoding a cytosolic enzyme. The latter is normally expressed only in the root tissue of tobacco. This phenomenon may suggest a hitherto uncharacterized metabolic control on the expression of certain genes in plants.  相似文献   

6.
Over‐expression of glutamine synthetase (GS, EC 6.3.1.2), a key enzyme in nitrogen assimilation, may be a reasonable approach to enhance plant nitrogen use efficiency. In this work phenotypic and biochemical characterizations of young transgenic poplars showing ectopic expression of a pine cytosolic GS transgene in photosynthetic tissue (Gallardo et al., Planta 210, 19–26, 1999) are presented. Analysis of 22 independent transgenic lines in a 6 month greenhouse study indicated that expression of the pine GS transgene affects early vegetative growth and leaf morphology. In comparison with non‐transgenic controls, transgenic trees exhibited significantly greater numbers of nodes and leaves (12%), and higher average leaf length and width resulting in an increase in leaf area (25%). Leaf shape was not altered. Transgenic poplars also exhibited increased GS activity (66%), chlorophyll content (33%) and protein content (21%). Plant height was correlated with GS content in young leaves, suggesting that GS can be considered a marker for vegetative growth. Molecular and kinetic characterization of GS isoforms in leaves indicated that poplar GS isoforms are similar to their counterparts in herbaceous plants. A new GS isoenzyme that displayed molecular and kinetic characteristics corresponding to the octomeric pine cytosolic GS1 was identified in the photosynthetic tissues of transgenic poplar leaves. These results indicate that enhanced growth and alterations in biochemistry during early growth are the consequence of transgene expression and assembly of pine GS1 subunits into a new functional holoenzyme in the cytosol of photosynthetic cells.  相似文献   

7.
Summary Localization of glutamine synthetase inSolanum tuberosum leaves was investigated by techniques of Western tissue printing and immunogold electron microscopy. Anti-GS antibodies used in immunolocalization recognize two peptides (45 kDa and 42 kDa) on Western blots. Antibody stained tissue prints on nitrocellulose membranes allowed low resolution localization of GS. Immunostaining was most evident in the adaxial phloem of the leaf midribs and petiole veins. High-resolution localization of glutamine synthetase by immunogold electron microscopy revealed that this enzyme occurs in both the chloroplasts and the cytosol ofS. tuberosum leaf cells. However, GS was specifically associated with the chloroplasts of mesophyll cells and with the cytoplasm of phloem companion cells. The evidence for cell-specific localization of chloroplast and cytosolic GS presented here agrees with the recently reported cell-specific pattern of expression of GUS reporter gene, directed by promoters for chloroplast and cytosolic GS form in tobacco transgenic plants. These data provide additional clues to the interpretation of the functional role of these different isoenzymes and its relationship with their specific localization.Abbreviations BSA bovine serum albumin - EM electron microscope - GOGAT glutamate synthase - GS glutamine synthetase - GUS -glucuronidase - IgG immunoglobulin - PBS phosphate buffer saline - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

8.
To investigate the role of stress in nitrogen management in plants, the effect of pathogen attack, elicitors, and phytohormone application on the expression of the two senescence-related markers GS1 (cytosolic glutamine synthetase EC 6.3.1.2) and GDH (glutamate dehydrogenase, EC 1.4.1.2) involved in nitrogen mobilization in senescing leaves of tobacco (Nicotiana tabacum L.) plants, was studied. The expression of genes involved in primary nitrogen assimilation such as GS2 (chloroplastic glutamine synthetase) and Nia (nitrate reductase, EC 1.6.1.1) was also analysed. The Glubas gene, coding a beta-1,3-glucanase, was used as a plant-defence gene control. As during natural senescence, the expression of GS2 and Nia was repressed under almost all stress conditions. By contrast, GS1 and GDH mRNA accumulation was increased. However, GS1 and GDH showed differential patterns of expression depending on the stress applied. The expression of GS1 appeared more selective than GDH. Results indicate that the GDH and GS1 genes involved in leaf senescence are also a component of the plant defence response during plant-pathogen interaction. The links between natural plant senescence and stress-induced senescence are discussed, as well as the potential role of GS1 and GDH in a metabolic safeguard process.  相似文献   

9.
Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth of GS transgenic poplar plantlets was 5-fold greater than controls. The response of young leaves to PPT treatment depends on physiological state as indicated by GS and Rubisco (LSU) levels. Young leaves from control plants, typically in a low differentiation state, respond to the herbicide showing up-regulation of GS and LSU. In contrast, young leaves from transgenic lines, with higher initial GS and LSU levels compared to control, display up-regulation of NADP(+)-isocitrate dehydrogenase. Differences between control and GS transgenics in their response to PPT are discussed in relation to their differences in photosynthetic and photorespiratory capacities (El-Khatib et al., 2004).  相似文献   

10.
11.
12.
The role of cytosolic glutamine synthetase in wheat   总被引:15,自引:1,他引:14  
The role of glutamine synthetase (GS; EC 6.3.1.2) was studied in wheat. GS isoforms were separated by HPLC and the two major leaf isoforms (cytosolic GS1 and chloroplastic GS2) were found to change in content and activity throughout plant development. GS2 dominated activity in green, rapidly photosynthesising leaves compared to GS1 which was a minor component. GS2 remained the main isoform in flag leaves at the early stages of grain filling but GS1 activity increased as the leaves aged. During senescence, there was a decrease in total GS activity which resulted largely from the loss of GS2 and thus GS 1 became a greater contributor to total GS activity. The changes in the activities of the GS isoforms were mirrored by the changes in GS proteins measured by western blotting. The changes in GS during plant development reflect major transitions in metabolism from a photosynthetic leaf (high GS2 activity) towards a senescencing leaf (relatively high GS1 activity). It is likely that, during leaf maturation and subsequently senescence, GS1 is central for the efficient reassimilation of ammonium released from catabolic reactions when photosynthesis has declined and remobilisation of nitrogen is occurring. Preliminary analysis of transgenic wheat lines with increased GS1 activity in leaves showed that they develop an enhanced capacity to accumulate nitrogen in the plant, mainly in the grain, and this is accompanied by increases in root and grain dry matter. The possibility that the manipulation of GS may provide a means of enhancing nitrogen use in wheat is discussed.  相似文献   

13.
14.
15.
Higher plants assimilate nitrogen in the form of ammonia through the concerted activity of glutamine synthetase (GS) and glutamate synthase (GOGAT). The GS enzyme is either located in the cytoplasm (GS1) or in the chloroplast (GS2). To understand how modulation of GS activity affects plant performance, Lotus japonicus L. plants were transformed with an alfalfa GS1 gene driven by the CaMV 35S promoter. The transformants showed increased GS activity and an increase in GS1 polypeptide level in all the organs tested. GS was analyzed by non-denaturing gel electrophoresis and ion-exchange chromatography. The results showed the presence of multiple GS isoenzymes in the different organs and the presence of a novel isoform in the transgenic plants. The distribution of GS in the different organs was analyzed by immunohistochemical localization. GS was localized in the mesophyll cells of the leaves and in the vasculature of the stem and roots of the transformants. Our results consistently showed higher soluble protein concentration, higher chlorophyll content and a higher biomass accumulation in the transgenic plants. The total amino acid content in the leaves and stems of the transgenic plants was 22–24% more than in the tissues of the non-transformed plants. The relative abundance of individual amino acid was similar except for aspartate/asparagine and proline, which were higher in the transformants.Abbreviations GS Glutamine synthetase - UTR Untranslated region  相似文献   

16.
17.
In order to improve our understanding of the regulation of nitrogen assimilation and recycling in wheat (Triticum aestivum L.), we studied the localization of plastidic (GS2) and cytosolic (GS1) glutamine synthetase isoenzymes and of glutamate dehydrogenase (GDH) during natural senescence of the flag leaf and in the stem. In mature flag leaves, large amounts of GS1 were detected in the connections between the mestome sheath cells and the vascular cells, suggesting an active transfer of nitrogen organic molecules within the vascular system in the mature flag leaf. Parallel to leaf senescence, an increase of a GS1 polypeptide (GS1b) was detected in the mesophyll cytosol of senescing leaves, while the GS protein content represented by another polypetide (GS1a) in the phloem companion cells remained practically constant in both leaves and stems. Both GDH aminating activity and protein content were strongly induced in senescing flag leaves. The induction occurred both in the mitochondria and in the cytosol of phloem companion cells, suggesting that the shift in GDH cellular compartmentation is important during leaf nitrogen remobilization although the metabolic or sensing role of the enzyme remains to be elucidated. Taken together, our results suggest that in wheat, nitrogen assimilation and recycling are compartmentalized between the mesophyll and the vasculature, and are shifted in different cellular compartments within these two tissues during the transition of sink leaves to source leaves.  相似文献   

18.
A major source of inorganic nitrogen for rice plants grown in paddy soil is ammonium ions. The ammonium ions are actively taken up by the roots via ammonium transporters and subsequently assimilated into the amide residue of glutamine (Gln) by the reaction of glutamine synthetase (GS) in the roots. The Gln is converted into glutamate (Glu), which is a central amino acid for the synthesis of a number of amino acids, by the reaction of glutamate synthase (GOGAT). Although a small gene family for both GS and GOGAT is present in rice, ammonium-dependent and cell type-specific expression suggest that cytosolic GS1;2 and plastidic NADH-GOGAT1 are responsible for the primary assimilation of ammonium ions in the roots. In the plant top, approximately 80% of the total nitrogen in the panicle is remobilized through the phloem from senescing organs. Since the major form of nitrogen in the phloem sap is Gln, GS in the senescing organs and GOGAT in developing organs are important for nitrogen remobilization and reutilization, respectively. Recent work with a knock-out mutant of rice clearly showed that GS1;1 is responsible for this process. Overexpression studies together with age- and cell type-specific expression strongly suggest that NADH-GOGAT1 is important for the reutilization of transported Gln in developing organs. The overall process of nitrogen utilization within the plant is discussed.  相似文献   

19.
Adaptation to steady-state low-nutrient availability was investigated by comparing the Wassileskija (WS) accession of Arabidopsis thaliana grown on 2 or 10 mM nitrate. Low nitrogen conditions led to a limited rosette biomass and seed yield. The latter was mainly due to reduced seed number, while seed weight was less affected. However, harvest index was lower in high nitrate compared with limited nitrate conditions. Under nitrogen-limiting conditions, nitrate reductase activity was decreased while glutamine synthetase activity was increased due to a higher accumulation of the cytosolic enzyme. The level of nitrogen remobilization to the seeds was higher under low nitrogen, and the vegetative parts of the plants remaining after seed production stored very low residual nitrogen. Through promoting nitrogen remobilization and recycling pathways, nitrogen limitation modified plant and seed compositions. Rosette leaves contained more sugars and less free amino acids when grown under nitrogen-limiting conditions. Compared with high nitrogen, the levels of proline, asparagine and glutamine were decreased. The seed amino acid composition reflected that of the rosette leaves, thus suggesting that phloem loading for seed filling was poorly selective. The major finding of this report was that together with decreasing biomass and yield, nitrogen limitation triggers large modifications in vegetative products and seed quality.  相似文献   

20.
GLU1 encodes the major ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) in Arabidopsis thaliana (ecotype Columbia). With the aim of providing clues on the role of Fd-GOGAT, we analyzed the expression of Fd-GOGAT in tobacco (Nicotiana tabacum L. cv. Xanthi). The 5′ flanking element of GLU1 directed the expression of the uidA reporter gene in the palisade and spongy parenchyma of mesophyll, in the phloem cells of vascular tissue and in the roots of tobacco. White light, red light or sucrose induced GUS expression in the dark-grown seedlings in a pattern similar to the GLU1 mRNA accumulation in Arabidopsis. The levels of GLU2 mRNA encoding the second Fd-GOGAT and NADH-glutamate synthase (NADH-GOGAT, EC 1.4.1.14) were not affected by light. Both in the light and in darkness, 15NH4+ was incorporated into [5−15N]glutamine and [2−15N]glutamate by glutamine synthetase (GS, EC 6.3.1.2) and Fd-GOGAT in leaf disks of transgenic tobacco expressing antisense Fd-GOGAT mRNA and in wild-type tobacco. In the light, low level of Fd-glutamate synthase limited the [2−15N]glutamate synthesis in transgenic leaf disks. The efficient dark labeling of [2−15N]glutamate in the antisense transgenic tobacco leaves indicates that the remaining Fd-GOGAT (15–20% of the wild-type activity) was not the main limiting factor in the dark ammonium assimilation. The antisense tobacco under high CO2 contained glutamine, glutamate, asparagine and aspartate as the bulk of the nitrogen carriers in leaves (62.5%), roots (69.9%) and phloem exudates (53.2%). The levels of glutamate, asparagine and aspartate in the transgenic phloem exudates were similar to the wild-type levels while the glutamine level increased. The proportion of these amino acids remained unchanged in the roots of the transgenic plants. Expression of GLU1 in mesophyll cells implies that Fd-GOGAT assimilates photorespiratory and primary ammonium. GLU1 expression in vascular cells indicates that Fd-GOGAT provides amino acids for nitrogen translocation. The nucleotide sequence data of the GLU1 gene reported in the present study is available from GenBank with the following accession number: AY189525  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号