首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
Summary The effect of the hydrophobicity and the electrostatic charge of bacterial cell surfaces on the initial phase of adsorption to inorganic porous supports with SiO2 or Al2O3 as the main components was investigated. The physicochemical surface properties of various Gram-positive and Gram-negative bacteria were characterized by water contact angle and zeta-potential measurements. The influence of microbial charge on adsorption was investigated by varying the ionic strength of the suspending liquid. The amount of Escherichia coli cells adsorbed to Siran and B supports increased with increasing electrolyte concentration. The effect of cell surface hydrophobicity on the extent of adsorption was demonstrated at high ionic strength (0.15 m NaCl) where charge effects were reduced. The supports applied in this study promoted the adsorption of hydrophilic bacteria. Offprint requests to: H. Ziehr  相似文献   

2.
Zygosaccharomyces rouxii catalysed the reduction of ethyl 4-chloroacetoacetate (ethyl 4-chloro-3-oxobutanoate) to the corresponding (S)-hydroxy ester (ethyl (S)-4-chloro-3-hydroxybutanoate) in high enantiomeric excess. The productivity of non-immobilised cells was compared to cells immobilised on a range of organic and inorganic supports. Cells immobilised in calcium alginate displayed a catalytic activity significantly higher than that of non-immobilised cells. A time dependent fall in the enantiomeric purity of the product was observed with the use of this matrix. This phenomenon was not seen in the reduction catalysed by non-immobilised cells.  相似文献   

3.

Degradation processes of organoarsenic compounds significantly influence arsenic cycles in aquatic environments and would depend on the bacterial activities. The bacterial population involving dimethylarsinic acid (DMAA) degradation was investigated in Lake Kibagata from April to December in 2003. During the experimental period, the methylated arsenic was not detected, although the inorganic arsenic concentration ranged from 3.4 nM to 9.2 nM. Moreover, in the sample water of Lake Kibagata to which DMAA added, DMAA decreased while inorganic arsenic increased for 25 days. These facts suggested that the bacteria remineralized methylate arsenic species to inorganic arsenic. In fact, monitoring the use of Most Probable Number (MPN) procedure demonstrated that the DMAA-degrading bacteria exist at cell densities ranged from 41 cells/ml to 510 cells/ml. To determine the composition of DMAA-degrading bacteria, the total 110 isolates obtained as dominated bacterial species were analyzed by the restriction-fragment-length polymorphism (RFLP) analysis of 16S rDNA. As a result, total 110 isolates were classified into 12 types, of which 4 types dominated during the spring and/or fall seasons, and the rest 8 types dominated during summer season. DMAA degrading activities of the 110 isolates ranged at various degrees. Especially, the some isolates of fall season tend to show high degradation activities. The phylogenetic analysis using 16S rDNA revealed that the representative isolates formed several clusters in the gram-positive bacterial group and the proteobacteria subdivision. The diverse compositions of DMAA-degrading bacteria would seasonally change to control the rates of organoarsenic degradation in Kibagata.  相似文献   

4.
Tinta T  Kogovšek T  Malej A  Turk V 《PloS one》2012,7(6):e39274
Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in bacterial population dynamics and nutrient pathways following jellyfish blooms which have important implications for ecology of coastal waters.  相似文献   

5.
Abstract Bacteria are key organisms in the processing of dissolved organic carbon (DOC) in aquatic ecosystems. Their growth depends on both organic substrates and inorganic nutrients. The importance of allochthonous DOC, usually highly colored, as bacterial substrate can be modified by photobleaching. In this study, we examined how colored DOC (CDOC) photobleaching, and phosphorus (P) and nitrogen (N) availability, affect bacterial growth. Five experiments were conducted, manipulating nutrients (P and N) and sunlight exposure. In almost every case, nutrient additions had a significant, positive effect on bacterial abundance, production, and growth efficiency. Sunlight exposure (CDOC photobleaching) had a significant, positive effect on bacterial abundance and growth efficiency. We also found a significant, positive interaction between these two factors. Thus, bacterial use of CDOC was accelerated under sunlight exposure and enhanced P and N concentrations. In addition, the accumulation of cells in sunlight treatments was dependent on nutrient availability. More photobleached substrate was converted into bacterial cells in P- and N-enriched treatments. These results suggest nutrient availability may affect the biologically-mediated fate (new biomass vs respiration) of CDOC.  相似文献   

6.
Oligonucleotide primers were designed and used to amplify partial 16S rDNA sequences of the recently identified bacterial group BD from four diverse soils. Phylogenetic analysis of 34 BD group sequences supports division-level status for the group and also indicates that the BD group consists of at least 3 subdivision-level groups. Sequence divergence (21%) amongst these BD group sequences was found to be near the average for bacterial division-level lineages. An intercalating dye-based quantitative PCR (qPCR) assay was used to quantify BD phylogenetic group 3 16S rDNA in Wyoming shortgrass steppe soils. Although BD phylogenetic group 3 16S rDNA sequence numbers were high, averaging 3 x 10(8) copies per g soil, no significant correlations were found between their abundance and soil organic matter content, inorganic N concentration, or pH. Based on microscopically estimated cell numbers and the range of rRNA operons per genome in the bacterial domain, we estimate that BD group 3 represents between 0.75% and 10.7% of the microbial population in a shortgrass steppe soil. Our results indicate that the BD group is widely distributed in the environment and present in significant numbers in Wyoming shortgrass steppe soils.  相似文献   

7.
Abstract Viruses are active members of the microbial community in natural waters but little is known about the factors that regulate their activity and production. In this study we have investigated the effects of increased availability of organic nutrients and inorganic phosphate on activity, elemental composition, community structure and virus production in a natural bacterial community. The fraction of active cells in the community as estimated from microautoradiography of cells assimilating 3H-labeled thymidine ranged from 0–22%, but changes in the elemental composition of the cells indicated that more than 90% of the cells were active. The increase in carbon and energy availability stimulated virus production more than bacterial biomass production, while the increase in phosphate availability stimulated biomass production rather than virus production. A decrease in morphological diversity of the bacterial community was paralleled by a reduction in the virus-to-bacteria ratio (VBR) but the relationship between bacterial diversity and viral activity is uncertain. Our general conclusion is that nutrient availability, in addition to the bacterial activity, also affects the viral activity, and that both of these may affect the structure and diversity of the bacterial community.  相似文献   

8.
The SecE protein is an essential component of the SecAYE-translocase, which mediates protein translocation across the cytoplasmic membrane in bacteria. In the thylakoid membranes of chloroplasts, a protein homologous to SecE, chloroplastic (cp) SecE, has been identified. However, the functional role of cpSecE has not been established experimentally. In this report we show that cpSecE in cells depleted for bacterial SecE (i) supports growth, (ii) stabilizes, just like bacterial SecE, the Sec-translocase core component SecY, and (iii) supports Sec-dependent protein translocation. This indicates that cpSecE can functionally replace bacterial SecE in vivo, and strongly suggests that the thylakoid membrane contains a SecAYE-like translocase with functional and structural similarities to the bacterial complex. This study further underscores the evolutionary link between chloroplasts and bacteria.  相似文献   

9.
Comamonas terrigena N3H was immobilized by covalent linking on silanized inorganic supports and by physical entrapment of cells within calcium alginate beads and reticulated polyurethane foam. Both entrapped cells were efficient for the primary biodegradation of the anionic surfactants dihexyl sulphosuccinate (DHSS) and dioctyl sulphosuccinate (DOSS), furthermore, exhibiting, in the case of polyurethane immobilized cells, a positive fractionating effect of the substrate by adsorption onto the polymer matrix. The overall kinetics for the surfactant removal from water were well-fitted to a biphasic process, a rapid passive sorption step of the surfactant onto the cell-loaded support and the intrinsic primary biodegradation slower step, both acting synergically.  相似文献   

10.
Stream bacteria may be influenced by the composition and availability of dissolved organic matter (DOM) and inorganic nutrients, but knowledge about how individual phylogenetic groups in biofilm are affected is still limited. In this study, the influence of DOM and inorganic nutrients on stream biofilm bacteria was examined. Biofilms were developed on artificial substrates (unglazed ceramic tiles) for 21 days in a northeastern Ohio (USA) stream for five consecutive seasons. Then, the developed biofilm assemblages were exposed, in the laboratory, to DOM (glucose, leaf leachate, and algal exudates) and inorganic nutrients (nitrate, phosphate, and nitrate and phosphate in combination) amendments for 6 days. Bacterial numbers in the biofilms were generally higher in response to the DOM treatments than to the inorganic nutrient treatments. There were also apparent seasonal variations in the response patterns of the individual bacterial taxa to the nutrient treatments; an indication that limiting resources to bacteria in stream biofilms may change over time. Overall, in contrast to the other treatments, bacterial abundance was generally highest in response to the low-molecular-weight DOM (i.e., glucose) treatment. These results further suggest that there are interactions among the different bacterial groups in biofilms that are impacted by the associated nutrient dynamics among seasons in stream ecosystems.  相似文献   

11.
Dissolved organic matter (DOM) and inorganic nutrients may affect microbial communities in streams, but little is known about the impact of these factors on specific taxa within bacterial assemblages in biofilms. In this study, nutrient diffusing artificial substrates were used to examine bacterial responses to DOM (i.e., glucose, leaf leachate, and algal exudates) and inorganic nutrients (nitrate and phosphate singly and in combination). Artificial substrates were deployed for five seasons, from summer 2002 to summer 2003, in a northeastern Ohio stream. Differences were observed in the responses of bacterial taxa examined to various DOM and inorganic nutrient treatments, and the response patterns varied seasonally, indicating that resources that limit the bacterial communities change over time. Overall, the greatest responses were to labile, low-molecular-weight DOM (i.e., glucose) at times when chlorophyll a concentrations were low due to scouring during significant storm events. Different types of DOM and inorganic nutrients induced various responses among bacterial taxa in the biofilms examined, and these responses would not have been apparent if they were examined at the community level or if seasonal changes were not taken into account.  相似文献   

12.
Dissolved organic matter (DOM) and inorganic nutrients may affect microbial communities in streams, but little is known about the impact of these factors on specific taxa within bacterial assemblages in biofilms. In this study, nutrient diffusing artificial substrates were used to examine bacterial responses to DOM (i.e., glucose, leaf leachate, and algal exudates) and inorganic nutrients (nitrate and phosphate singly and in combination). Artificial substrates were deployed for five seasons, from summer 2002 to summer 2003, in a northeastern Ohio stream. Differences were observed in the responses of bacterial taxa examined to various DOM and inorganic nutrient treatments, and the response patterns varied seasonally, indicating that resources that limit the bacterial communities change over time. Overall, the greatest responses were to labile, low-molecular-weight DOM (i.e., glucose) at times when chlorophyll a concentrations were low due to scouring during significant storm events. Different types of DOM and inorganic nutrients induced various responses among bacterial taxa in the biofilms examined, and these responses would not have been apparent if they were examined at the community level or if seasonal changes were not taken into account.  相似文献   

13.
A Penicillium oxalicum strain was capable of the phosphate-sensitive utilization of phosphonoacetic acid as the sole source of phosphorus. A carbon-to-phosphorus bond-cleavage enzyme yielding acetic acid and inorganic phosphate was detected and characterized in extracts from cells grown on this phosphonate. Contrary to bacterial phosphonoacetate hydrolases, the fungal enzyme neither required nor was stimulated by divalent cations.  相似文献   

14.
The use of inorganic phosphate (Pi) and dissolved organic phosphorus (DOP) by different bacterial groups was studied in experimental mesocosms of P-starved eastern Mediterranean waters in the absence (control mesocosms) and presence of additional Pi (P-amended mesocosms). The low Pi turnover times in the control mesocosms and the increase in heterotrophic prokaryotic abundance and production upon Pi addition confirmed that the bacterial community was originally P-limited. The bacterioplankton groups taking up Pi and DOP were identified by means of microautoradiography combined with catalysed reporter deposition fluorescence in situ hybridization. Incubations with leucine were also performed for comparative purposes. All the probe-identified groups showed a high percentage of cells taking up Pi and DOP in the control, P-limited, mesocosms throughout the experiment. However, in response to Pi addition two contrasting scenarios in Pi use were observed: (i) on day 1 of the experiment Pi addition caused a clear reduction in the percentage of SAR11 cells taking up Pi, whereas Gammaproteobacteria, Roseobacter and Bacteroidetes showed similar percentages to the ones in the control mesocosms and (ii) on day 4 of the experiment, probably when the bacterial community had fully responded to the P input, all the probe-identified groups showed low percentages of cells taking up the substrate as compared with the control mesocosms. These differences are likely related to different P requirements among the bacterial groups and point out to the existence of two contrasting strategies in P use.  相似文献   

15.
Viruses have evolved different life strategies for coping with environmental challenges and this is a key explanation for their omnipresence in aquatic systems. However, factors that determine the balance between lytic versus lysogenic decision within natural virioplankton are poorly documented, primarily in freshwaters. This study was designed to investigate the experimental short‐term (24 h incubation) effects of added organic and inorganic nutrients on the two viral lifestyles in nutrient‐depleted freshwater microbial (i.e. < 0.8 μm fraction) microcosms, using mitomycin C as prophage inductor agent. In the absence of mitomycin, viral lytic production increased as a functional response to the strong stimulation of bacterial growth rates (0.7–0.8 day?1) by the added nutrients, primarily the organic nutrients which appeared scarcer than inorganic nutrients and was related to the sampling period and the geomorphological peculiarities of Lake Pavin. In the presence of mitomycin, temperate phage production (frequency of lysogenically infected bacterial cells, FLC = 17–19% of total cells) significantly exceeded lytic production (frequency of lytically infected bacterial cells, FIC = 9–11%) in natural samples (i.e. without nutrient additions) as a result of enhanced prophage induction, which relatively increased with the decreasing contact probability between viruses and their potential hosts. In contrast, addition of nutrients drastically reduced FLC (< 4%) and increased FIC (> 22%). Both variables were antagonistically correlated as was the correlation between FLC and bacterial growth rates, supporting the idea that lysogeny may represent a maintenance strategy for viruses in harsh nutrient/host conditions which appeared as major instigators of the trade‐off between the two viral lifestyles. Overall, at the community level, we reject the hypothesis that nutrients but mitomicyn C stimulate temperate phage induction, and retained the hypotheses that nutrients rather (i) stimulate lytic viruses via enhanced host growth and (ii) when limiting, promote lysogenic conversion in natural waters.  相似文献   

16.
Commercial fish emulsion was evaluated as a plant growth medium and as a nutrient base to enhance radish (Raphanus sativus L. var. sativus) growth by bacterial and actinomycete isolates. Six bacterial isolates including three actinomycetes were selected from a screening of 54 bacteria (including 23 actinomycetes) based on their ability to produce plant growth regulators (PGRs) and to colonize radish roots. These isolates were tested in the presence and absence of autoclaved or non-autoclaved fish emulsion or inorganic fertilizers. The nutrient contents and types and levels of PGRs in tissues of treated plants were assayed to determine the basis of growth promotion. Fish emulsion was found to support plant growth in a sandy soil as effectively as an applied inorganic fertilizer. The plant growth promotion by bacterial and actinomycete isolates was most pronounced in the presence of autoclaved or non-autoclaved fish emulsion than in the presence of the inorganic fertilizers. The bacterial and actinomycete isolates were capable of producing auxins, gibberellins and cytokinins and appeared to use fish emulsion as a source of nutrients and precursors for PGRs. PGR levels in planta following combined treatments of the bacterial and actinomycete isolates and fish emulsion were found to be significantly enhanced over other treatments. The effect of fish emulsion appears to be more related to its role as a nutrient base for the bacterial and actinomycete isolates rather than to the increased activity of the general microflora of treated soil. This is the first report of fish emulsion as a nutrient base for plant growth promoting rhizobacteria. These results also indicate that the successful treatment can be effective and economical for horticultural production in sandy soils such as those found in the United Arab Emirates where fish emulsion is already in use as a substitute or supplement for inorganic fertilizer.  相似文献   

17.
Estimations of bacterioplankton production and biomass werecarried out in enclosure experiments during two consecutiveyears (1989 and 1990) in oligotrophic clearwater Lake Njupfatet.The lake was limed in November 1989, and the experiments werecarried out both in 1989 (unlimed) and in 1990 (limed). Bags(3001) were manipulated with inorganic phosphorus and nitrogen,organic carbon, and metazoan zooplankton abundance. Both years,bacterial production was stimulated by inorganic nutrients aloneand in combination with organic carbon. However, the increasein bacterial production when inorganic nutrients were addedalone was much stronger in 1990 than in 1989. In 1989. bacterialproduction increased strongly only when inorganic nutrientsand organic carbon were added together. The phytoplankton communitywas dominated by the cyanobacterium Merismopedia tenuis-simaduring 1989, and the phytoplankton biomass increased only slightlywhen receiving inorganic nutrients. In 1990, when the lake hadbeen limed. M.tenuissima had completely disappeared and thephytoplankton community, dominated by Chrysophyceae and Chlorophyceae,responded strongly to additions of inorganic nutrients. Theincreased phytoplankton productivity in 1990 may have resultedin increased release of organic carbon, and this in turn thatthe carbon limitation of bacterioplankton production decreasedfrom 1989 to 1990. Zooplankton had a positive effect on bacterioplanktonproduction in 1989, but no effect in 1990. The loss of bacterialbiomass approximated 60% of the bacterial production in 1989,while in 1990 it almost equalled the bacterioplankton production.  相似文献   

18.
There is increasing evidence that hydrogen sulfide (H2S), produced by intestinal sulfate-reducing bacteria (SRB), may be involved in the etiopathogenesis of chronic diseases such as ulcerative colitis and colorectal cancer. The activity of SRB, and thus H2S production, is likely determined by the availability of sulfur-containing compounds in the intestine. However, little is known about the impact of dietary or inorganic sulfate on intestinal sulfate and SRB-derived H2S concentrations. In this study, the effects of short-term (7 day) and long-term (1 year) inorganic sulfate supplementation of the drinking water on gastrointestinal (GI) sulfate and H2S concentrations (and thus activity of resident SRBs), and the density of large intestinal sulfomucin-containing goblet cells, were examined in C3H/HeJBir mice. Additionally, a PCR-denaturing gradient gel electrophoresis (DGGE)-based molecular ecology technique was used to examine the impact of sulfate-amended drinking water on microbial community structure throughout the GI tract. Average H2S concentrations ranged from 0.1 mM (stomach) to 1 mM (cecum). A sulfate reduction assay demonstrated in situ production of H2S throughout the GI tract, confirming the presence of SRB. However, H2S generation and concentrations were greatest in the cecum and colon. Sulfate supplementation of drinking water did not significantly increase intestinal sulfate or H2S concentrations, suggesting that inorganic sulfate is not an important modulator of intestinal H2S concentrations, although it altered the bacterial profiles of the stomach and distal colon of 1-year-old mice. This change in colonic bacterial profiles may reflect a corresponding increase in the density of sulfomucin-containing goblet cells in sulfate-supplemented compared with control mice.  相似文献   

19.

The influence of ionic strength on the adhesion of Azospirillum brasilense to polystyrene has been examined by comparing water and phosphate buffer saline (PBS) as suspending media. Polystyrene supports analysed by X‐ray photoelectron spectroscopy (XPS) after adhesion in PBS for 2 h or 24 h and detachment of adhering cells showed a higher protein surface concentration, reflected by the N/C atomic concentration ratio, compared to supports analysed after adhesion in water. It was shown that PBS both favours protein release by the cells into the solution and enhances the tendency of proteins to adsorb at the support surface.

After 2 h contact time, the increase in the concentration of adsorbed proteins in PBS was related to an increase in adhesion density. However, the observation that the adhesion density after 24 h was lower in PBS than in water indicated that the amount of proteins adsorbed at the support surface controls cell adhesion in a complex way. In PBS, a thick layer of proteinaceous material retaining the bacterial cells is formed; this leads to underestimation of the density of adhering cells as well as to a heterogeneous adhesion pattern and to a relatively low adhesion density due to detachment of pellicles upon rinsing.

The ionic strength thus influences bacterial adhesion in a more subtle way than simply through double layer interactions between the cells and the support.  相似文献   

20.
Glutamine production with bacterial glutamine synthetase (GS) and the sugar-fermenting system of baker’s yeast for ATP regeneration was investigated by determining the product yield obtained with the energy source for ATP regeneration (i.e., glucose) for yeast fermentation. Fructose 1,6-bisphosphate was accumulated temporarily prior to the formation of glutamine in mixtures which consisted of dried yeast cells, GS, their substrate (glucose and glutamate and ammonia), inorganic phosphate, and cofactors. By an increase in the amounts of GS and inorganic phosphate, the amounts of glutamine formed increased to 19 to 54 g/liter, with a yield increase of 69 to 72% based on the energy source (glucose) for ATP regeneration. The analyses of sugar fermentation of the yeast in the glutamine-producing mixtures suggested that the apparent hydrolysis of ATP by a futile cycle(s) at the early stage of glycolysis in the yeast cells reduces the efficiency of ATP utilization. Inorganic phosphate inhibits phosphatase(s) and thus improves glutamine yield. However, the analyses of GS activity in the glutamine-producing mixtures suggested that the higher concentration of inorganic phosphate as well as the limited amount of ATP-ADP caused the low reactivity of GS in the glutamine-producing mixtures. A result suggestive of improved glutamine yield under the conditions with lower concentrations of inorganic phosphate was obtained by using a yeast mutant strain that had low assimilating ability for glycerol and ethanol. In the mutant, the activity of the enzymes involved in gluconeogenesis, especially fructose 1,6-bisphosphatase, was lower than that in the wild-type strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号