首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Clerte C  Hall KB 《Biochemistry》2004,43(42):13404-13415
The structure and dynamics of the polyadenylation inhibition element (PIE) RNA, free and bound to the U1A protein, have been examined using time-resolved FRET and 2-aminopurine (2AP) fluorescence. This regulatory RNA, located at the 3' end of the U1A pre-mRNA, adopts a U-shaped structure, with binding sites for a single U1A protein at each bend (box 1 and box 2). The distance between the termini of the arms of the RNA is sensitive to its three-dimensional structure. Using Cy3/Cy5 FRET efficiency to monitor binding of Mg(2+), we show that the PIE RNA binds two Mg(2+) ions, which results in a restriction of its distance distribution of conformations. Local RNA structure probing using 2AP fluorescence shows that the structure of box 2 changes in response to Mg(2+) binding, thus tentatively locating the ion binding sites. Steady-state FRET data show that the distance R between the termini of the PIE RNA stems decreases from 66 A in the free RNA, to 58 A when N-terminal RNA binding domains (RBD1) of U1A are bound, and to 53 A when U1A proteins bind. However, anisotropy measurements indicate that both Cy3 and Cy5 stack on the ends of the RNA. To examine the consequences of the restricted motion of the fluorophores, FRET data are analyzed using two different models of motion and then compared to analogous data from the Cy3/fluorescein FRET pair. We conclude that the error introduced into distance calculations by stacking of the dyes is within the error of our measurements. Distance distributions of the RNA structures show that the intramolecular distance between the arms of the PIE RNA varies on the time scale of the fluorescence measurements; the mean distance is dependent on protein binding, but the breadth of the distributions indicates that the RNA retains structural heterogeneity.  相似文献   

2.
Summary A genetic algorithm (GA) based method for docking ensembles of small, flexible ligands to receptor proteins using NMR-derived constraints is described. In this method, three translations and rotations of the ligand and the dihedral angles of the ligand are represented by binary strings and evolve under the genetic operators of cross-over, mutation, migration and selection. The fitness function for the selection process includes distance and dihedral restraints and a repulsive van der Waals term. The GA was applied to a three-atom model system as well as to the streptavidin-biotin complex using simulated intermolecular distance restraints. In both systems, the GA was able to obtain low-energy conformations when only a single binding site was simulated. Calculations were also performed using distance restraints from two distinct binding sites. In these simulations, the GA was able to obtain low-energy conformations corresponding to ligand molecules in each of the two sites. The inclusion of additional ligands in the ensemble did not result in an energetic benefit, confirming that only two ligand conformations were necessary to fulfill the distance restraints. This method allows for a direct investigation of the minimum number of ligand orientations necessary to fulfill experimental distance restraints, and simultaneously yields detailed structural information about each site.  相似文献   

3.
A novel approach to hierarchical peptide-protein and protein-protein docking is described and evaluated. Modeling procedure starts from a reduced space representation of proteins and peptides. Polypeptide chains are represented by strings of alpha-carbon beads restricted to a fine-mesh cubic lattice. Side chains are represented by up to two centers of interactions, corresponding to beta-carbons and the centers of mass of the remaining portions of the side groups, respectively. Additional pseudoatoms are located in the centers of the virtual bonds connecting consecutive alpha carbons. These pseudoatoms support a model of main-chain hydrogen bonds. Docking starts from a collection of random configurations of modeled molecules. Interacting molecules are flexible; however, higher accuracy models are obtained when the conformational freedom of one (the larger one) of the assembling molecules is limited by a set of weak distance restraints extracted from the experimental (or theoretically predicted) structures. Sampling is done by means of Replica Exchange Monte Carlo method. Afterwards, the set of obtained structures is subject to a hierarchical clustering. Then, the centroids of the resulting clusters are used as scaffolds for the reconstruction of the atomic details. Finally, the all-atom models are energy minimized and scored using classical tools of molecular mechanics. The method is tested on a set of macromolecular assemblies consisting of proteins and peptides. It is demonstrated that the proposed approach to the flexible docking could be successfully applied to prediction of protein-peptide and protein-protein interactions. The obtained models are almost always qualitatively correct, although usually of relatively low (or moderate) resolution. In spite of this limitation, the proposed method opens new possibilities of computational studies of macromolecular recognition and mechanisms of assembly of macromolecular complexes.  相似文献   

4.
Compared with folded structures, natively unfolded protein domains are over-represented in protein-protein and protein-DNA interactions. Such domains are common features of all colicins and are required for their translocation across the outer membrane of the target Escherichia coli cell. All of these domains bind to at least one periplasmic protein of the Tol or Ton family. Similar domains are found in Ton-dependent outer membrane transporters, indicating they may interact in a related manner. In this article we have studied binding of the colicin N translocation domain to its periplasmic receptor TolA, by fluorescence resonance energy transfer (FRET) using fluorescent probes attached to engineered cysteine residues and NMR techniques. The domain exhibits a random coil circular dichroism spectrum. However, FRET revealed that guanidinium hydrochloride denaturation caused increases in all measured intramolecular distances showing that, although natively unfolded, the domain is not extended. Furthermore NMR reported a compact hydrodynamic radius of 18 A. Nevertheless the FRET-derived distances changed upon binding to TolA indicating a significant structural rearrangement. Using 1H-15N NMR we show that, when bound, the peptide switches from a disordered state to an ordered state. The kinetics of binding and the associated structural change were measured by stopped-flow methods, and both events appear to occur simultaneously. The data therefore suggest that this molecular recognition involves the concerted binding and folding of a flexible but collapsed state.  相似文献   

5.
Summary The solution structure of a specific DNA complex of the minimum DNA-binding domain of the mouse c-Myb protein was determined by distance geometry calculations using a set of 1732 nuclear Overhauser enhancement (NOE) distance restraints. In order to determine the complex structure independent of the initial guess, we have developed two different procedures for the docking calculation using simulated annealing in four-dimensional space (4D-SA). One is a multiple-step procedure, where the protein and the DNA were first constructed independently by 4D-SA using only the individual intramolecular NOE distance restraints. Here, the initial structure of the protein was a random coil and that of the DNA was a typical B-form duplex. Then, as the starting structure for the next docking procedure, the converged protein and DNA structures were placed in random molecular orientations, separated by 50 Å. The two molecules were docked by 4D-SA utilizing all the restraints, including the additional 66 intermolecular distance restraints. The second procedure comprised a single step, in which a random-coil protein and a typical B-form DNA duplex were first placed 70 Å from each other. Then, using all the intramolecular and intermolecular NOE distance restraints, the complex structure was constructed by 4D-SA. Both procedures yielded the converged complex structures with similar quality and structural divergence, but the multiple-step procedure has much better convergence power than the single-step procedure. A model study of the two procedures was performed to confirm the structural quality, depending upon the number of intermolecular distance restraints, using the X-ray structure of the engrailed homeodomain-DNA complex.Abbreviations rmsd root-mean-square deviation - NOE nuclear Overhauser enhancement - 4D-SA simulated annealing in four-dimensional space - Myb-R2R3 repeats 2 and 3 of the DNA-binding domain of the c-Myb protein - DNA 16 Myb-specific binding DNA duplex with 16 base pairs - IHDD-C residues 3 to 59 of the C-chain of the engrailed homeodomain-DNA complex - DNA11 DNA duplex with base pairs 9 to 19 of the engrailed homeodomain-DNA complex  相似文献   

6.
Protein-protein interactions are abundant in signal transduction pathways and thus of crucial importance in the regulation of apoptosis. However, designing small-molecule inhibitors for these potential drug targets is very challenging as such proteins often lack well-defined binding pockets. An example for such an interaction is the binding of the anti-apoptotic BIR2 domain of XIAP to the pro-apoptotic caspase-3 that results in the survival of damaged cells. Although small-molecule inhibitors of this interaction have been identified, their exact binding sites on XIAP are not known as its crystal structures reveal no suitable pockets. Here, we apply our previously developed protocol for identifying transient binding pockets to XIAP-BIR2. Transient pockets were identified in snapshots taken during four different molecular dynamics simulations that started from the caspase-3:BIR2 complex or from the unbound BIR2 structure and used water or methanol as solvent. Clustering of these pockets revealed that surprisingly many pockets opened in the flexible linker region that is involved in caspase-3 binding. We docked three known inhibitors into these transient pockets and so determined five putative binding sites. In addition, by docking two inactive compounds of the same series, we show that this protocol is also able to distinguish between binders and nonbinders which was not possible when docking to the crystal structures. These findings represent a first step toward the understanding of the binding of small-molecule XIAP-BIR2 inhibitors on a molecular level and further highlight the importance of considering protein flexibility when designing small-molecule protein-protein interaction inhibitors.  相似文献   

7.
Qu Q  Sharom FJ 《Biochemistry》2002,41(14):4744-4752
The P-glycoprotein multidrug transporter carries out ATP-driven cellular efflux of a wide variety of hydrophobic drugs, natural products, and peptides. Multiple binding sites for substrates appear to exist, most likely within the hydrophobic membrane spanning regions of the protein. Since ATP hydrolysis is coupled to drug transport, the spatial relationship of the drug binding sites relative to the ATPase catalytic sites is of considerable interest. We have used a fluorescence resonance energy transfer (FRET) approach to estimate the distance between a bound substrate and the catalytic sites in purified P-glycoprotein. The fluorescent dye Hoechst 33342 (H33342), a high-affinity P-glycoprotein substrate, bound to the transporter and acted as a FRET donor. H33342 showed greatly enhanced fluorescence emission when bound to P-glycoprotein, together with a substantial blue shift, indicating that the drug binding site is located in a nonpolar environment. Cys428 and Cys1071 within the catalytic sites of P-glycoprotein were covalently labeled with the acceptor fluorophore NBD-Cl (7-chloro-4-nitrobenz-2-oxa-1,3-diazole). H33342 fluorescence was highly quenched when bound to NBD-labeled P-glycoprotein relative to unlabeled protein, indicating that FRET takes place from the bound dye to NBD. The distance separating the bound dye from the NBD acceptor was estimated to be approximately 38 A. Transition-state P-glycoprotein with the complex ADP*orthovanadate*Co2+ stably trapped at one catalytic site bound H33342 with similar affinity, and FRET measurements led to a similar separation distance estimate of 34 A. Since previous FRET studies indicated that a fluorophore bound within the catalytic site was positioned 31-35 A from the interfacial region of the bilayer, the H33342 binding site is likely located 10-14 A below the membrane surface, within the cytoplasmic leaflet of the membrane, in both resting-state and transition-state P-glycoprotein.  相似文献   

8.
This review discusses the many roles atomistic computer simulations of macromolecular (for example, protein) receptors and their associated small-molecule ligands can play in drug discovery, including the identification of cryptic or allosteric binding sites, the enhancement of traditional virtual-screening methodologies, and the direct prediction of small-molecule binding energies. The limitations of current simulation methodologies, including the high computational costs and approximations of molecular forces required, are also discussed. With constant improvements in both computer power and algorithm design, the future of computer-aided drug design is promising; molecular dynamics simulations are likely to play an increasingly important role.  相似文献   

9.
Structure determination of homooligomeric proteins by NMR spectroscopy is difficult due to the lack of chemical shift perturbation data, which is very effective in restricting the binding interface in heterooligomeric systems, and the difficulty of obtaining a sufficient number of intermonomer distance restraints. Here we solved the high-resolution solution structure of the 15.4 kDa homodimer CylR2, the regulator of cytolysin production from Enterococcus faecalis, which deviates by 1.1 angstroms from the previously determined X-ray structure. We studied the influence of different experimental information such as long-range distances derived from paramagnetic relaxation enhancement, residual dipolar couplings, symmetry restraints and intermonomer Nuclear Overhauser Effect restraints on the accuracy of the derived structure. In addition, we show that it is useful to combine experimental information with methods of ab initio docking when the available experimental data are not sufficient to obtain convergence to the correct homodimeric structure. In particular, intermonomer distances may not be required when residual dipolar couplings are compared to values predicted on the basis of the charge distribution and the shape of ab initio docking solutions.  相似文献   

10.
Fluorescence resonance energy transfer (FRET) is a powerful tool for studying macromolecular assemblies in vitro under near-physiological conditions. Here we present a new type of one-sample FRET (OS-FRET) method employing a novel, nonfluorescent methanethiosulfonate-linked acceptor that can be reversibly coupled to a target sulfhydryl residue via a disulfide bond. After the quenched donor emission is quantitated, the acceptor is removed by reduction, allowing measurement of unquenched donor emission in the same sample. Previous one-sample methods provide distinct advantages in specific FRET applications. The new OS-FRET method is a generalizable spectrochemical approach that can be applied to macromolecular systems lacking essential disulfide bonds and eliminates the potential systematic errors of some earlier one-sample methods. In addition, OS-FRET enables quantitative FRET measurements in virtually any fluorescence spectrometer or detection device. Compared to conventional multisample FRET methods, OS-FRET conserves sample, increases the precision of data, and shortens the time per measurement. The utility of the method is illustrated by its application to a protein complex of known structure formed by CheW and the P4-P5 fragment of CheA, both from Thermotoga maritima. The findings confirm the practicality and advantages of OS-FRET. Anticipated applications of OS-FRET include analysis of macromolecular structure, binding and conformational dynamics, and high-throughput screening for interactions and inhibitors.  相似文献   

11.
Fluorescence resonance energy transfer (FRET) was used to reveal aspects of the mechanism of signal transduction by epidermal growth factor receptors (EGFR). The superpositions of epidermal growth factor (EGF), transforming growth factor-alpha (TGFalpha) and an antibody fragment (29.1) to the carbohydrate extremity of the receptor's ectodomain as measured by FRET, show that 14% of EGFRs in A431 cells are oligomerized before growth factor binding. After binding growth factor and signaling, these oligomers dissociate before releasing growth factor. Time courses of the FRET-derived distances between constitutively oligomerized EGFRs during signal transduction show a transient structural change in the extracellular domain, which occurs simultaneously with the production of intracellular Ca2+ signals. The FRET measurements also show a slow increase in oligomerization of EGFR monomers after growth factor binding. The structural change found in the extracellular domain of oligomeric EGFRs is similar to that shown by others for EPO, Neu, Fas, and tumor necrosis factor receptors, and may therefore be a common property of the transduction of the receptor-mediated signals.  相似文献   

12.
We present analytical and experimental procedures for determining distance changes within the 30 S subunit of the Escherichia coli ribosome using F?rster resonance energy transfer (FRET). We discuss ways to contend with complexities when using FRET to measure distance changes within large multi-subunit macromolecular complexes, such as the ribosome. Complications can arise due to non-stoichiometric labeling of donor and acceptor probes, as well as environmental effects that are specific to each conjugation site. We show how to account for changes in extinction coefficients, quenching, labeling stoichiometry and other variations in the spectroscopic properties of the dye to enable more accurate calculation of distances from FRET data. We also discuss approximations that concern the orientation of the transition moments of the two dye molecules, as well as the impact of other errors in the measurement of absolute distances. Thirteen dye-pair locations with different distances using 18 independent FRET pairs conjugated to specific 30 S protein residues have been used to determine distance changes within the 30 S subunit upon association with the 50 S subunit, forming the 70 S ribosome. Here, we explain the spectroscopic methods we have used, which should be of general interest in studies that aim at obtaining quantitative distance information from FRET.  相似文献   

13.
The contraction of vertebrate striated muscle is modulated by Ca(2+) binding to the regulatory protein troponin C (TnC). Ca(2+) binding causes conformational changes in TnC which alter its interaction with the inhibitory protein troponin I (TnI), initiating the regulatory process. We have used the frequency domain method of fluorescence resonance energy transfer (FRET) to measure distances and distance distributions between specific sites in the TnC-TnI complex in the presence and absence of Ca(2+) or Mg(2+). Using sequences based on rabbit skeletal muscle proteins, we prepared functional, binary complexes of wild-type TnC and a TnI mutant which contains no Cys residues and a single Trp residue at position 106 within the TnI inhibitory region. We used TnI Trp-106 as the FRET donor, and we introduced energy acceptor groups into TnC by labeling at Met-25 with dansyl aziridine or at Cys-98 with N-(iodoacetyl)-N'-(1-sulfo-5-naphthyl)ethylenediamine. Our distance distribution measurements indicate that the TnC-TnI complex is relatively rigid in the absence of Ca(2+), but becomes much more flexible when Ca(2+) binds to regulatory sites in TnC. This increased flexibility may be propagated to the whole thin filament, helping to release the inhibition of actomyosin ATPase activity and allowing the muscle to contract. This is the first report of distance distributions between TnC and TnI in their binary complex.  相似文献   

14.
The prediction of the structure of the protein-protein complex is of great importance to better understand molecular recognition processes. During systematic protein-protein docking, the surface of a protein molecule is scanned for putative binding sites of a partner protein. The possibility to include external data based on either experiments or bioinformatic predictions on putative binding sites during docking has been systematically explored. The external data were included during docking with a coarse-grained protein model and on the basis of force field weights to bias the docking search towards a predicted or known binding region. The approach was tested on a large set of protein partners in unbound conformations. The significant improvement of the docking performance was found if reliable data on the native binding sites were available. This was possible even if data for single key amino acids at a binding interface are included. In case of binding site predictions with limited accuracy, only modest improvement compared with unbiased docking was found. The optimisation of the protocol to bias the search towards predicted binding sites was found to further improve the docking performance resulting in approximately 40% acceptable solutions within the top 10 docking predictions compared with 22% in case of unbiased docking of unbound protein structures.  相似文献   

15.
Using sets of experimental distance restraints, which characterize active or inactive receptor conformations, and the X-ray crystal structure of the inactive form of bovine rhodopsin as a starting point, we have constructed models of both the active and inactive forms of rhodopsin and the beta2-adrenergic G-protein coupled receptors (GPCRs). The distance restraints were obtained from published data for site-directed crosslinking, engineered zinc binding, site-directed spin-labeling, IR spectroscopy, and cysteine accessibility studies conducted on class A GPCRs. Molecular dynamics simulations in the presence of either "active" or "inactive" restraints were used to generate two distinguishable receptor models. The process for generating the inactive and active models was validated by the hit rates, yields, and enrichment factors determined for the selection of antagonists in the inactive model and for the selection of agonists in the active model from a set of nonadrenergic GPCR drug-like ligands in a virtual screen using ligand docking software. The simulation results provide new insights into the relationships observed between selected biochemical data, the crystal structure of rhodopsin, and the structural rearrangements that occur during activation.  相似文献   

16.
17.
Filopodia are cellular protrusions important for axon guidance, embryonic development, and wound healing. The Rho GTPase Cdc42 is the best studied inducer of filopodium formation, and several of its effectors and their interacting partners have been linked to the process. These include IRSp53, N-WASP, Mena, and Eps8. The Rho GTPase, Rif, also drives filopodium formation. The signaling pathway by which Rif induces filopodia is poorly understood, with mDia2 being the only protein implicated to date. It is thus not clear how distinct the Rif-driven pathway for filopodium formation is from the one mediated by Cdc42. In this study, we characterize the dynamics of Rif-induced filopodia by time lapse imaging of live neuronal cells and show that Rif drives filopodium formation via an independent pathway that does not involve the Cdc42 effectors N-WASP and IRSp53, the IRSp53 binding partner Mena, or the Rac effectors WAVE1 and WAVE2. Rif formed filopodia in the absence of N-WASP or Mena and when IRSp53, WAVE1, or WAVE2 was knocked down by RNAi. Rif-mediated filopodial protrusion was instead reduced by silencing mDia1 expression or overexpressing a dominant negative mutant of mDia1. mDia1 on its own was able to form filopodia. Data from acceptor photobleaching FRET studies of protein-protein interaction demonstrate that Rif interacts directly with mDia1 in filopodia but not with mDia2. Taken together, these results suggest a novel pathway for filopodia formation via Rif and mDia1.  相似文献   

18.
Despite its evolutionarily conserved function in controlling DNA replication, the chromosomal binding sites of the budding yeast Rif1 protein are not well understood. Here, we analyse genome‐wide binding of budding yeast Rif1 by chromatin immunoprecipitation, during G1 phase and in S phase with replication progressing normally or blocked by hydroxyurea. Rif1 associates strongly with telomeres through interaction with Rap1. By comparing genomic binding of wild‐type Rif1 and truncated Rif1 lacking the Rap1‐interaction domain, we identify hundreds of Rap1‐dependent and Rap1‐independent chromosome interaction sites. Rif1 binds to centromeres, highly transcribed genes and replication origins in a Rap1‐independent manner, associating with both early and late‐initiating origins. Interestingly, Rif1 also binds around activated origins when replication progression is blocked by hydroxyurea, suggesting association with blocked forks. Using nascent DNA labelling and DNA combing techniques, we find that in cells treated with hydroxyurea, yeast Rif1 stabilises recently synthesised DNA. Our results indicate that, in addition to controlling DNA replication initiation, budding yeast Rif1 plays an ongoing role after initiation and controls events at blocked replication forks.  相似文献   

19.
The discovery that the functions of most eukaryotic gene products are mediated through multi-protein complexes makes the prediction of protein interactions one of the most important current challenges in structural biology. Rigid-body docking methods can generate a large number of alternative candidates, but it is difficult to discriminate the near-native interactions from the large number of false positives. Many different scoring functions have been developed for this purpose, but in most cases, experimental and biological information is still required for accurate predictions. We explore here the use of evolutionary restraints in evaluating rigid-body docking geometries. In order to identify potential interface residues we identify functional residues based on the comparison of observed amino acid substitutions with those predicted from local environment. The interface residues identified by this method are correctly located in 85% of the cases. These predicted interface residues are used to define distance restraints that help to score rigid-body docking solutions. We have developed the pyDockRST software, which uses the percentage of satisfied distance restraints, together with the electrostatics and desolvation binding energy, to identify correct docking orientations. This methodology dramatically improves the docking results when compared to the use of energy criteria alone, and is able to find the correct orientation within the top 20 docking solutions in 80% of the cases.  相似文献   

20.
Cellular functions are regulated by molecules that interact with proteins and alter their activities. To enable such control, protein activity, and therefore protein conformational distributions, must be susceptible to alteration by molecular interactions at functional sites. Here we investigate whether interactions at functional sites cause a large change in the protein conformational distribution. We apply a computational method, called dynamics perturbation analysis (DPA), to identify sites at which interactions have a large allosteric potential D(x), which is the Kullback-Leibler divergence between protein conformational distributions with and without an interaction. In DPA, a protein is decorated with surface points that interact with neighboring protein atoms, and D(x) is calculated for each of the points in a coarse-grained model of protein vibrations. We use DPA to examine hundreds of protein structures from a standard small-molecule docking test set, and find that ligand-binding sites have elevated values of D(x): for 95% of proteins, the probability of randomly obtaining values as high as those in the binding site is 10(-3) or smaller. We then use DPA to develop a computational method to predict functional sites in proteins, and find that the method accurately predicts ligand-binding-site residues for proteins in the test set. The performance of this method compares favorably with that of a cleft analysis method. The results confirm that interactions at small-molecule binding sites cause a large change in the protein conformational distribution, and motivate using DPA for large-scale prediction of functional sites in proteins. They also suggest that natural selection favors proteins whose activities are capable of being regulated by molecular interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号