首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sphingosine 1-phosphate (S1P) has been shown to regulate expression of several genes in vascular smooth muscle cells (VSMCs) and contributes to arteriosclerosis. However, the mechanisms regulating epidermal growth factor receptor (EGFR) expression by S1P in aortic VSMCs remain unclear. Western blotting and RT-PCR analyses showed that S1P induced EGFR mRNA and protein expression in a time- and concentration-dependent manner, which was attenuated by inhibitors of MEK1/2 (U0126) and phosphatidylinositide 3-kinase (PI3K; wortmannin), and transfection with dominant negative mutants of ERK and Akt, respectively. These results suggested that S1P-induced EGFR expression was mediated through p42/p44 MAPK and PI3K/Akt pathways in VSMCs. In accordance with these findings, S1P stimulated phosphorylation of p42/p44 MAPK and Akt which was attenuated by U0126 and wortmannin, respectively. Furthermore, S1P-induced EGFR upregulation was blocked by a selective NF-kappaB inhibitor helenalin. Immunofluorescent staining and reporter gene assay revealed that S1P-induced activation of NF-kappaB was blocked by wortmannin, but not by U0126, suggesting that activation of NF-kappaB was mediated through PI3K/Akt. Moreover, S1P-induced EGFR expression was inhibited by an AP-1 inhibitor curcumin and tanshinone IIA. S1P-stimulated AP-1 subunits (c-Jun and c-Fos mRNA) expression was attenuated by U0126 and wortmannin, suggesting that MEK and PI3K/ERK cascade linking to AP-1 was involved in EGFR expression. Upregulation of EGFR by S1P may exert a phenotype modulation of VSMCs. This hypothesis was supported by pretreatment with AG1478 or transfection with shRNA of EGFR that attenuated EGF-stimulated proliferation of VSMCs pretreated with S1P, determined by XTT assay. These results demonstrated that in VSMCs, activation of Akt/NF-kappaB and ERK/AP-1 pathways independently regulated S1P-induced EGFR expression in VSMCs. Understanding the mechanisms involved in S1P-induced EGFR expression on VSMCs may provide potential therapeutic targets in the treatment of arteriosclerosis.  相似文献   

2.
3.
We have previously shown that muscarinic acetylcholine receptors (mAChRs) enhance SNU-407 colon cancer cell proliferation via the ERK1/2 pathway. Here, we examined the signaling pathways linking mAChR stimulation to ERK1/2 activation and the subsequent proliferation of SNU-407 cells. The inhibition of the epidermal growth factor receptor (EGFR) by AG1478 or protein kinase C (PKC) by GF109203X significantly reduced carbachol-stimulated ERK1/2 activation and cell proliferation. Cotreatment of the cells with AG1478 and GF109203X produced an additive effect on carbachol-stimulated ERK1/2 activation, suggesting that the EGFR and PKC pathways act in parallel. The p90 ribosomal S6 kinases (RSKs) are downstream effectors of ERK1/2 and are known to have important roles in cell proliferation. In SNU-407 cells, carbachol treatment induced RSK activation in an atropine-sensitive manner, and this RSK activation was decreased by the inhibition of either EGFR or PKC. Moreover, the RSK-specific inhibitor BRD7389 almost completely blocked carbachol-stimulated cell proliferation. Together, these data indicate that EGFR and PKC are involved in mAChR-mediated activation of ERK1/2 and RSK and the subsequent proliferation of SNU-407 colon cancer cells.  相似文献   

4.
Sphingosine 1-phosphate (S1P) has been shown to regulate smooth muscle cell proliferation, migration, and vascular maturation. S1P increases the expression of several proteins including COX-2 in vascular smooth muscle cells (VSMCs) and contributes to arteriosclerosis. However, the mechanisms regulating COX-2 expression by S1P in VSMCs remain unclear. Western blotting and RT-PCR analyses showed that S1P induced the expression of COX-2 mRNA and protein in a time- and concentration-dependent manner, which was attenuated by inhibitors of MEK1/2 (U0126) and PI3K (wortmannin), and transfection with dominant negative mutants of p42/p44 mitogen-activated protein kinases (ERK2) or Akt. These results suggested that both p42/p44 MAPK and PI3K/Akt pathways participated in COX-2 expression induced by S1P in VSMCs. In accordance with these findings, S1P stimulated phosphorylation of p42/p44 MAPK and Akt, which was attenuated by U0126, LY294002, or wortmannin, respectively. Furthermore, this up-regulation of COX-2 mRNA and protein was blocked by a selective NF-kappaB inhibitor helenalin. Consistently, S1P-stimulated translocation of NF-kappaB into the nucleus was revealed by immnofluorescence staining. Moreover, S1P-stimulated activation of NF-kappaB promoter activity was blocked by phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and helenalin, but not by U0126, suggesting that involvement of PI3K/Akt in the activation of NF-kappaB. COX-2 promoter assay showed that S1P induced COX-2 promoter activity mediated through p42/p44 MAPK, PI3K/Akt, and NF-kappaB. These results suggested that in VSMCs, activation of p42/p44 MAPK, Akt and NF-kappaB pathways was essential for S1P-induced COX-2 gene expression. Understanding the mechanisms involved in S1P-induced COX-2 expression on VSMCs may provide potential therapeutic targets in the treatment of arteriosclerosis.  相似文献   

5.
Matrix metalloproteinases (MMPs) play an important role in inflammation, tumor cell invasion, and metastasis. We found that phorbol-12-myristate-13-acetate (PMA)-stimulated invasion of the hepatocellular carcinoma (HCC) SNU-387 and SNU-398 cells and that PMA induced the secretion of MMP-9 in the cells, but did not induce the secretion of MMP-2. The PMA-induced MMP-9 secretion was abolished by treatment of a pan-protein kinase C (PKC) inhibitor, GF109203X, and an inhibitor of NF-kappaB activation, sulfasalazine, and partly inhibited by treatment of inhibitors of ERK pathway, PD98059 and U0126. In addition, the PMA-stimulated activation of the MMP-9 promoter was completely inhibited by a mutation of the NF-kappaB site within the MMP-9 promoter, but not completely by mutations of two AP-1 sites. Moreover, the MMP-9 induction by HGF and TNF-alpha was also completely inhibited by GF109203X and sulfasalazine, but not by PD98059 and U0126. These data demonstrate that the PKC-dependent NF-kappaB activation is absolute for MMP-9 induction and that the PKC-dependent ERK activation devotes to increase the expression level of MMP-9, in HCC cells.  相似文献   

6.
7.
The effects of sphingosine 1-phosphate (S1P) on prostaglandin I(2) (PGI(2)) production and cyclooxygenase (COX) expression in cultured rat vascular smooth muscle cells (VSMCs) were investigated. S1P stimulated PGI(2) production in a concentration-dependent manner, which was completely suppressed by NS-398, a selective COX-2 inhibitor, as determined by radioimmunoassay. S1P stimulated COX-2 protein and mRNA expressions in a concentration- and time-dependent manner, while it had no effect on COX-1 expression. S1P(2) and S1P(3) receptors mRNA were abundantly expressed in rat VSMCs. Suramin, an antagonist of S1P(3) receptor, almost completely inhibited S1P-induced COX-2 expression. Pretreatment of VSMCs with pertussis toxin (PTX) partially, but significantly inhibited S1P-induced PGI(2) production and COX-2 expression. S1P also activated extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). However, neither PD 98059, a selective inhibitor of ERK activation, nor SB 203580, a selective inhibitor of p38 MAPK, had a significant inhibitory effect on S1P-induced COX-2 expression, suggesting that the MAPK activation does not play main roles in S1P-induced COX-2 induction. S1P-induced COX-2 expression was inhibited by PP2, an inhibitor of Src-family tyrosine kinase, Ca(2+) depletion, and GF 109203X, an inhibitor of protein kinase C (PKC). These results suggest that S1P stimulates COX-2 induction in rat VSMCs through mechanisms involving Ca(2+)-dependent PKC and Src-family tyrosine kinase activation via S1P(3) receptor coupled to PTX-sensitive and -insensitive G proteins.  相似文献   

8.
9.
Both the epidermal growth factor receptor (EGFR) and protein kinase C (PKC) play important roles in glioblastoma invasive growth; however, the interaction between the EGFR and PKC is not well characterized in glioblastomas. Treatment with EGF stimulated global phosphorylation of the EGFR at Tyr(845), Tyr(992), Tyr(1068), and Tyr(1045) in glioblastoma cell lines (U-1242 MG and U-87 MG). Interestingly, phorbol 12-myristate 13-acetate (PMA) stimulated phosphorylation of the EGFR only at Tyr(1068) in the two glioblastoma cell lines. Phosphorylation of the EGFR at Tyr(1068) was not detected in normal human astrocytes treated with the phorbol ester. PMA-induced phosphorylation of the EGFR at Tyr(1068) was blocked by bisindolylmaleimide (BIM), a PKC inhibitor, and rottlerin, a PKCdelta-specific inhibitor. In contrast, Go 6976, an inhibitor of classical PKC isozymes, had no effect on PMA-induced EGFR phosphorylation. Furthermore, gene silencing with PKCdelta small interfering RNA (siRNA), siRNA against c-Src, and mutant c-Src(S12C/S48A) and treatment with a c-Src inhibitor (4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine) abrogated PMA-induced EGFR phosphorylation at Tyr(1068). PMA induced serine/threonine phosphorylation of Src, which was blocked by both BIM and rottlerin. Inhibition of the EGFR with AG 1478 did not significantly alter PMA-induced EGFR Tyr(1068) phosphorylation, but completely blocked EGF-induced phosphorylation of the EGFR. The effects of PMA on MAPK phosphorylation and glioblastoma cell proliferation were reduced by BIM, rottlerin, the MEK inhibitor U0126, and PKCdelta and c-Src siRNAs. Taken together, our data demonstrate that PMA transactivates the EGFR and increases cell proliferation by activating the PKCdelta/c-Src pathway in glioblastomas.  相似文献   

10.
High-density lipoprotein (HDL) has a significant cardioprotective effects. HDL induces cyclooxygenase-2 (COX-2) expression and prostacyclin I-2 (PGI-2) release in vascular endothelial cells, which contributes to its anti-atherogenic effects. However, the underlying mechanisms are not fully understood. In the present study, we observed that HDL-stimulated COX-2 expression and PGI-2 production in human umbilical vein endothelial cells (HUVECs) in a time- and dose-dependent manner. These effects triggered by HDL were inhibited by pertussis toxin (PTX), protein kinase C (PKC) inhibitor GF109203X, and ERK inhibitor PD98059, suggesting that Gαi/Gαo-coupled GPCR, PKC, and ERK pathways are involved in HDL-induced COX-2/PGI-2 activation. More importantly, we found that silencing of sphingosine kinase 2 (SphK-2) also blocked HDL-induced COX-2/PGI-2 activation. In addition, HDL-activated SphK-2 phosphorylation accompanied by increased S1P level in the nucleus. Our ChIP data demonstrated that SphK-2 is associated with CREB at the COX-2 promoter region. Collectively, these results indicate that HDL induces COX-2 expression and PGI-2 release in endothelial cells through activation of PKC, ERK1/2, and SphK-2 pathways. These findings implicate a novel mechanism underlying anti-atherothrombotic effects of HDL.  相似文献   

11.
12.
Up-regulation of intercellular adhesion molecule-1 (ICAM-1) is frequently implicated in lung inflammation. Sphingosine-1-phosphate (S1P) has been shown to play a key role in inflammation via adhesion molecules induction, and then causes lung injury. However, the mechanisms underlying S1P-induced ICAM-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain unclear. The effect of S1P on ICAM-1 expression was determined by Western blot and real-time PCR. The involvement of signaling pathways in these responses was investigated by using the selective pharmacological inhibitors and transfection with siRNAs. S1P markedly induced ICAM-1 expression and monocyte adhesion which were attenuated by pretreatment with the inhibitor of S1PR1 (W123), S1PR3 (CAY10444), c-Src (PP1), EGFR (AG1478), PDGFR (AG1296), MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), PI3K (LY294002), or AP-1 (Tanshinone IIA) and transfection with siRNA of S1PR1, S1PR3, c-Src, EGFR, PDGFR, p38, p42, JNK1, c-Jun, or c-Fos. We observed that S1P-stimulated p42/p44 MAPK and p38 MAPK activation was mediated via a c-Src/EGFR and PDGFR-dependent pathway. S1P caused the c-Src/EGFR/PDGFR complex formation. On the other hand, we demonstrated that S1P induced p42/p44 MAPK and p38 MAPK-dependent Akt activation. In addition, S1P-stimulated JNK1/2 phosphorylation was attenuated by SP600125 or PP1. Finally, S1P enhanced c-Fos mRNA levels and c-Jun phosphorylation. S1P-induced c-Jun activation was reduced by PP1, AG1478, AG1296, U0126, SP600125, SB202190, or LY294002. These results demonstrated that S1P-induced ICAM-1 expression and monocyte adhesion were mediated through S1PR1/3/c-Src/EGFR, PDGFR/p38 MAPK, p42/p44 MAPK/Akt-dependent AP-1 activation.  相似文献   

13.
Cytosolic phospholipase A2 (cPLA2) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandins (PG) synthesis induced by bacterial lipopolysaccharide (LPS) and cytokines. However, the intracellular signaling pathways mediating LPS-induced cPLA2 expression and PGE2 synthesis in canine tracheal smooth muscle cells (TSMCs) remains unknown. LPS-induced expression of cPLA2 and release of PGE2 was attenuated by inhibitors of tyrosine kinase (genistein), phosphatidylcholine-phospholipase C (D609), phosphatidylinositol-phospholipase C (U73122), PKC (GF109203X and staurosporine), removal of Ca2+ by BAPTA/AM plus EDTA, MEK1/2 (PD98059), p38 (SB202190), JNK (SP600125), and phosphatidylinositol 3-kinase (PI3-K; LY294002 and wortmannin). The involvement of MPAKs in LPS-induced responses was further confirmed by transfection of TSMCs with dominant negative mutants of ERK2 and p38. LPS-induced cPLA2 expression and PGE2 synthesis was inhibited by a selective NF-kappaB inhibitor (helenalin) and transfection with dominant negative mutants of NF-kappaB inducing kinase (NIK), IkappaB kinase (IKK)-alpha, and IKK-beta, consistent with that LPS-stimulated both IkappaB-alpha degradation and NF-kappaB translocation into nucleus in these cells. LPS-stimulated cPLA2 phosphorylation was inhibited by PD98059, GF109203X, and staurosporine, indicating the regulation by p42/p44 MAPK and PKC. Moreover, LPS-induced up-regulation of cPLA2 and COX-2 linked to PGE2 synthesis was inhibited by AACOCF3 (a selective cPLA2 inhibitor), implying the involvement of cPLA2 in these responses. These findings suggest that phosphorylation and expression of cPLA2 correlates with the release of PGE2 from LPS-challenged TSMCs, at least in part, mediated through MAPKs and NF-kappaB signaling pathways. LPS-mediated responses were modulated by PLC, Ca2+, PKC, tyrosine kinase, and PI3-K in TSMCs.  相似文献   

14.
Aim of the present paper was to investigate the signaling pathways of P2Y2 in rat thyroid PC Cl3 cell line and its effects on proliferation. This study demonstrates that P2Y2 activation provoked: (a) a cytosol-to-membrane translocation of PKC-alpha, -betaI and -epsilon; (b) the phosphorylation of the extra cellular signal-regulated kinases 1 and 2 (ERK1/2); (c) the expression of c-Fos protein; (d) no effects on the G1/S progression and overall cell proliferation. The P2Y2-stimulated ERK1/2 phosphorylation was: (a) completely blocked by PD098059, a mitogen-activated protein kinase (MEK) inhibitor or by W-7, a Ca2+-calmodulin (CaM) antagonist; (b) reduced by GF109203X, inhibitor of PKCs, or AG1478, inhibitor of EGFR tyrosine kinase, or LY294002/wortmannin, inhibitors of phosphoinositide 3-kinases, or cytochalasin D, inhibitor of actin microfilament bundles polymerization. The c-Fos induction was greatly diminished by Go6976 or PD098059, and completely abolished when combined. In conclusion, data indicate that the P2Y2-induced phosphorylation of ERK1/2 and the induction of c-Fos are due to the operation of CaM, with PKC, PI3K, EGFR and receptor endocytosis mechanisms endorsing the signalling. On the other hand, no mitogenic effects of P2Y2 are whatsoever noticed in PC Cl3 cells.  相似文献   

15.
16.
17.
18.
19.
The functional significance of protease-activated receptors (PARs) in endothelial cells is largely undefined, and the intracellular consequences of their activation are poorly understood. Here, we show that the serine protease thrombin, a PAR-1-selective peptide (TFLLRN), and SLIGKV (PAR-2-selective peptide) induce cyclooxygenase-2 (COX-2) protein and mRNA expression in human endothelial cells without modifying COX-1 expression. COX-2 induction was accompanied by sustained production of 6-keto-PGF1alpha, the stable hydrolysis product of prostacyclin, and this was inhibited by indomethacin and the COX-2-selective inhibitor NS398. PAR-1 and PAR-2 stimulation rapidly activated both ERK1/2 and p38MAPK, and pharmacological blockade of MEK with either PD98059 or U0126 or of p38MAPK by SB203580 or SB202190 strongly inhibited thrombin- and SLIGKV-induced COX-2 expression and 6-keto-PGF1alpha formation. Thrombin and peptide agonists of PAR-1 and PAR-2 increased luciferase activity in human umbilical vein endothelial cells infected with an NF-kappaB-dependent luciferase reporter adenovirus, and this, as well as PAR-induced 6-keto-PGF1alpha synthesis, was inhibited by co-infection with adenovirus encoding wild-type or mutated (Y42F) IkappaBalpha. Thrombin- and SLIGKV-induced COX-2 expression and 6-keto-PGF1alpha generation were markedly attenuated by the NF-kappaB inhibitor PG490 and partially inhibited by the proteasome pathway inhibitor MG-132. Activation of PAR-1 or PAR-2 promoted nuclear translocation and phosphorylation of p65-NF-kappaB, and thrombin-induced but not PAR-2-induced p65-NF-kappaB phosphorylation was reduced by inhibition of MEK or p38MAPK. Activation of PAR-4 by AYPGKF increased phosphorylation of ERK1/2 and p38MAPK without modifying NF-kappaB activation or COX-2 induction. Our data show that PAR-1 and PAR-2, but not PAR-4, are coupled with COX-2 expression and sustained endothelial production of vasculoprotective prostacyclin by mechanisms that depend on ERK1/2, p38MAPK, and IkappaBalpha-dependent NF-kappaB activation.  相似文献   

20.
Intercellular adhesion molecule 1 (ICAM-1) has been implicated in playing a key role in the mechanism of inflammatory process initiated in response to environmental agents, and during normal hematopoietic cell differentiation. Though induction of ICAM-1 by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) in myeloid cells has been reported, the molecular mechanism by which TPA upregulates ICAM-1 expression remains unclear. In the present study, we investigated the signaling mechanism associated with TPA-induced ICAM-1 expression in ML-1 cells. Herein, our microarray, flow cytometry, and Western blot analysis indicated that ICAM-1 was constitutively expressed at a low level in ML-1 cells, but its expression was further upregulated at both the mRNA and protein levels in response to TPA. ICAM-1 expression in response to TPA was inhibited by pretreatment with GF109203X [a specific inhibitor of protein kinase C (PKC)], or with PD98059 and U0126 (specific inhibitors of MEK), suggesting the importance of PKC, and Erk1/2 signaling cascades in this response. Interestingly, ICAM-1 expression in response to TPA-induced PKC activation was linked to the generation of reactive oxygen species (ROS), as pretreatment with NAC (an ROS scavenger) blocked both ErK1/2 activation and ICAM-1 expression induced by TPA. In addition, TPA-induced ICAM-1 expression was blocked by inhibition of nuclear factor-kappaB (NF-kappaB) activation following pretreatment with BAY11-7085 (a specific inhibitor of NF-kappaB activation). TPA-induced NF-kappaB activation was shown by increased degradation of IkB (NF-kappaB specific inhibitory protein). Together, these observations demonstrated that TPA, a potent activator of PKC, induces ICAM-1 expression via a ROS- and ERK1/2-dependent signaling mechanism in ML-1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号