首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Late-successional forests in the upper Great Lakes region are susceptible to nitrogen (N) saturation and subsequent nitrate (NO3) leaching loss. Endemic wind disturbances (i.e., treefall gaps) alter tree uptake and soil N dynamics; and, gaps are particular susceptible to NO3 leaching loss. Inorganic N was measured throughout two snow-free periods in throughfall, forest floor leachates, and mineral soil leachates in gaps (300–2,000 m2, 6–9 years old), gap-edges, and closed forest plots in late-successional northern hardwood, hemlock, and northern hardwood–hemlock stands. Differences in forest water inorganic N among gaps, edges, and closed forest plots were consistent across these cover types: NO3 inputs in throughfall were significantly greater in undisturbed forest plots compared with gaps and edges; forest floor leachate NO3 was significantly greater in gaps compared to edges and closed forest plots; and soil leachate NO3 was significantly greater in gaps compared to the closed forest. Significant differences in forest water ammonium and pH were not detected. Compared to suspected N-saturated forests with high soil NO3 leaching, undisturbed forest plots in these late-successional forests are not losing NO3 (net annual gain of 2.8 kg ha−1) and are likely not N-saturated. Net annual NO3 losses were observed in gaps (1.3 kg ha−1) and gap-edges (0.2 kg ha−1), but we suspect these N leaching losses are a result of decreased plant uptake and increased soil N mineralization associated with disturbance, and not N-saturation.  相似文献   

2.
The Ferrous Wheel Hypothesis (Davidson et al. 2003) postulates the abiotic formation of dissolved organic N (DON) in forest floors, by the fast reaction of NO2 with dissolved organic C (DOC). We investigated the abiotic reaction of NO2 with dissolved organic matter extracted from six different forest floors under oxic conditions. Solutions differed in DOC concentrations (15–60 mg L−1), NO2 concentrations (0, 2, 20 mg NO2 -N L−1) and DOC/DON ratio (13.4–25.4). Concentrations of added NO2 never decreased within 60 min, therefore, no DON formation from added NO2 took place in any of the samples. Our results suggest that the reaction of NO2 with natural DOC in forest floors is rather unlikely.  相似文献   

3.
Seasonal variations of dissolved inorganic nitrogen (DIN) (NO3–N and NH4–N) and dissolved organic nitrogen (DON) were determined in Fuirosos, an intermittent stream draining an unpolluted Mediterranean forested catchment (10.5 km2) in Catalonia (Spain). The influence of flow on streamwater concentrations and seasonal differences in quality and origin of dissolved organic matter, inferred from dissolved organic carbon to nitrogen ratios (DOC:DON ratios), were examined. During baseflow conditions, nitrate and ammonium had opposite behaviour, probably controlled by biological processes such as vegetation uptake and mineralization activity. DON concentrations did not have a seasonal trend. During storms, nitrate and DON increased by several times but discharge was not a good predictor of nutrient concentrations. DOC:DON ratios in streamwater were around 26, except during the months following drought when DOC:DON ratios ranged between 42 and 20 during baseflow and stormflow conditions, respectively. Annual N export during 2000–2001 was 70 kg km−1 year−1, of which 75% was delivered during stormflow. The relative contribution of nitrogen forms to the total annual export was 57, 35 and 8% as NO3–N, DON and NH4–N, respectively.  相似文献   

4.
Traditional biogeochemical theories suggest that ecosystem nitrogen retention is controlled by biotic N limitation, that stream N losses should increase with successional age, and that increasing N deposition will accelerate this process. These theories ignore the role of dissolved organic nitrogen (DON) as a mechanism of N loss. We examined patterns of organic and inorganic N export from sets of old-growth and historically (80–110 years ago) logged and burned watersheds in the northeastern US, a region of moderate, elevated N deposition. Stream nitrate concentrations were strongly seasonal, and mean (± SD) nitrate export from old-growth watersheds (1.4 ± 0.6 kg N ha−1 y−1) was four times greater than from disturbed watersheds (0.3 ± 0.3 kg N ha−1 y−1), suggesting that biotic control over nitrate loss can persist for a century. DON loss averaged 0.7 (± 0.2) kg N ha−1 y−1 and accounted for 28–87% of total dissolved N (TDN) export. DON concentrations did not vary seasonally or with successional status, but correlated with dissolved organic carbon (DOC), which varied inversely with hardwood forest cover. The patterns of DON loss did not follow expected differences in biotic N demand but instead were consistent with expected differences in DOC production and sorption. Despite decades of moderate N deposition, TDN export was low, and even old-growth forests retained at least 65% of N inputs. The reasons for this high N retention are unclear: if due to a large capacity for N storage or biological removal, N saturation may require several decades to occur; if due to interannual climate variability, large losses of nitrate may occur much sooner. Received 27 April 1999; accepted 30 May 2000.  相似文献   

5.
Although tropical wet forests play an important role in the global carbon (C) and nitrogen (N) cycles, little is known about the origin, composition, and fate of dissolved organic C (DOC) and N (DON) in these ecosystems. We quantified and characterized fluxes of DOC, DON, and dissolved inorganic N (DIN) in throughfall, litter leachate, and soil solution of an old-growth tropical wet forest to assess their contribution to C stabilization (DOC) and to N export (DON and DIN) from this ecosystem. We found that the forest canopy was a major source of DOC (232 kg C ha–1 y–1). Dissolved organic C fluxes decreased with soil depth from 277 kg C ha–1 y–1 below the litter layer to around 50 kg C kg C ha–1 y–1 between 0.75 and 3.5m depth. Laboratory experiments to quantify biodegradable DOC and DON and to estimate the DOC sorption capacity of the soil, combined with chemical analyses of DOC, revealed that sorption was the dominant process controlling the observed DOC profiles in the soil. This sorption of DOC by the soil matrix has probably led to large soil organic C stores, especially below the rooting zone. Dissolved N fluxes in all strata were dominated by mineral N (mainly NO3). The dominance of NO3 relative to the total amount nitrate of N leaching from the soil shows that NO3 is dominant not only in forest ecosystems receiving large anthropogenic nitrogen inputs but also in this old-growth forest ecosystem, which is not N-limited.  相似文献   

6.
Abstract Sugar maple (Acer saccharum Marsh.)-dominated northern hardwood forests of the Great Lakes Region commonly receive elevated levels of atmospheric nitrate (NO3) deposition, which can alter belowground carbon (C) cycling. Past research has demonstrated that chronic experimental NO3 deposition (3 g N m−2 y−1 above ambient) elicits a threefold increase in the leaching loss of dissolved organic carbon (DOC). Here, we used DOC collected from tension-cup lysimeters to test whether increased DOC export under experimental NO3 deposition originated from forest floor or mineral soil organic matter (SOM). We used DOC radiocarbon dating to quantify C sources and colorimetric assays to measure DOC aromaticity and soluble polyphenolic content. Our results demonstrated that DOC exports are primarily derived from new C (<50-years-old) in the forest floor under both ambient and experimental NO3 deposition. Experimental NO3 deposition increased soluble polyphenolic content from 25.03 ± 4.26 to 49.19 ± 4.23 μg phenolic C mg DOC−1, and increased total aromatic content as measured by specific UV absorbance. However, increased aromatic compounds represented a small fraction (<10%) of the total observed increased DOC leaching. In combination, these findings suggest that experimental NO3 deposition has altered the production or retention as well as phenolic content of DOC formed in forest floor, however exact mechanisms are uncertain. Further elucidation of the mechanism(s) controlling enhanced DOC leaching is important for understanding long-term responses of Great Lakes forests to anthropogenic N deposition and the consequences of those responses for aquatic ecosystems.  相似文献   

7.
This study evaluated whether nitrogen (N) saturated upland forests can degrade downstream water quality in the Tatara River Basin, northern Kyushu, western Japan. Our hypothesis is that elevated atmospheric N deposition degrades downstream water quality in a watershed containing N-saturated forests because a considerable amount of atmospherically deposited N passes into the streams without being retained. Synoptic stream water samplings were conducted at 23 sites across a wide range of land-use categories in the basin over 1 year. A long-term temporal analysis of downstream water quality over the last 30 years (1977–2007) was conducted and compared with long-term trends in related factors such as urban/agricultural activity, sewage wastewater treatment, atmospheric N deposition, and forest condition. The results showed that atmospherically deposited N to N-saturated forests can be a large enough non-point source of N leaving the watershed to impact downstream water quality. This was highlighted by the reduction in pollutant exports derived from urban/agricultural activities, an increase in atmospheric N deposition, and the maturation of coniferous plantation forests in the past 30 years. These have led to reductions in total phosphorus and organic nitrogen concentrations in downstream water, whereas downstream nitrate (NO3 ) concentrations increased over the last 30 years. The consequent increase in the downstream N:P ratio indicated P limitation. Reducing the NO3 exports from N-saturated upland forests is suggested as a strategy to improve regional downstream NO3 pollution, but involves intercontinental-scale action in reducing atmospheric N emissions.  相似文献   

8.
This study examined impacts of succession on N export from 20 headwater stream systems in the west central Cascades of Oregon, a region of low anthropogenic N inputs. The seasonal and successional patterns of nitrate (NO3−N) concentrations drove differences in total dissolved N concentrations because ammonium (NH4−N) concentrations were very low (usually < 0.005 mg L−1) and mean dissolved organic nitrogen (DON) concentrations were less variable than nitrate concentrations. In contrast to studies suggesting that DON levels strongly dominate in pristine watersheds, DON accounted for 24, 52, and 51% of the overall mean TDN concentration of our young (defined as predominantly in stand initiation and stem exclusion phases), middle-aged (defined as mixes of mostly understory reinitiation and older phases) and old-growth watersheds, respectively. Although other studies of cutting in unpolluted forests have suggested a harvest effect lasting 5 years or less, our young successional watersheds that were all older than 10 years still lost significantly more N, primarily as NO3−N, than did watersheds containing more mature forests, even though all forest floor and mineral soil C:N ratios were well above levels reported in the literature for leaching of dissolved inorganic nitrogen. The influence of alder may contribute to these patterns, although hardwood cover was quite low in all watersheds; it is possible that in forested ecosystems with very low anthropogenic N inputs, even very low alder cover in riparian zones can cause elevated N exports. Only the youngest watersheds, with the highest nitrate losses, exhibited seasonal patterns of increased summer uptake by vegetation as well as flushing at the onset of fall freshets. Older watersheds with lower N losses did not exhibit seasonal patterns for any N species. The results, taken together, suggest a role for both vegetation and hydrology in N retention and loss, and add to our understanding of N cycling by successional forest ecosystems influenced by disturbance at various spatial and temporal scales in a region of relatively low anthropogenic N input.  相似文献   

9.
An Unexpected Nitrate Decline in New Hampshire Streams   总被引:7,自引:2,他引:5  
Theories of forest nitrogen (N) cycling suggest that stream N losses should increase in response to chronic elevated N deposition and as forest nutrient requirements decline with age. The latter theory was supported initially by measurements of stream NO3 concentration in old-growth and successional stands on Mount Moosilauke, New Hampshire (Vitousek and Reiners 1975; Bioscience 25:376–381). We resampled 28 of these and related streams to evaluate their response to 23 years of forest aggradation and chronic N deposition. Between 1973–74 and 1996–97, mean NO3 concentration in quarterly samples from Mount Moosilauke decreased by 71% (25 μmol/L), Ca2+ decreased by 24% (8 μmol/L), and Mg2+ decreased by 22% (5 μmol/L). Nitrate concentrations decreased in every stream in every season, but spatial patterns among streams persisted: Streams draining old-growth stands maintained higher NO3 concentrations than those draining successional stands. The cause of the NO3 decline is not evident. Nitrogen deposition has changed little, and although mechanisms such as insect defoliation and soil frost may contribute to the temporal patterns of nitrate loss, they do not appear to fully explain the NO3 decline across the region. Although the role of climate remains uncertain, interannual climate variation and its effects on biotic N retention may be responsible for the synchronous decrease in NO3 across all streams, overriding expected increases due to chronic N deposition and forest aging. Received 4 December 2001; accepted 30 May 2002.  相似文献   

10.
Atmospheric N Deposition Increases Organic N Loss from Temperate Forests   总被引:2,自引:0,他引:2  
Atmospheric deposition of nitrogen (N) resulting from fossil fuel combustion has increased N inputs to temperate forests worldwide with large consequences for forest productivity and water quality. Recent work has illustrated that dissolved organic N (DON) often dominates N loss from unpolluted forests and that the relative magnitude of dissolved inorganic N (DIN) loss increases with atmospheric loading. In contrast to DIN, DON loss is thought to be controlled by soil dynamics that operate independently of N supply and demand and thus should track dissolved organic carbon (DOC) following strict stoichiometric constraints. Conversely, DON loss may shift with N supply if soil (SOM) or dissolved organic matter (DOM) is stoichiometrically altered. Here, we assess these two explanations of DON loss, which we refer to as the Passive Carbon Vehicle and the Stoichiometric Enrichment hypotheses, by analyzing patterns in soil and stream C and N in forest watersheds spanning a broad gradient in atmospheric N loading (5–45 kg N ha−1 y−1). We show that soil N and DON losses are not static but rather increase asymptotically with N loading whereas soil C and DOC do not, resulting in enrichment of organic N expressed as decreased soil C:N and stream DOC:DON ratios. DON losses from unpolluted sites are consistent with conservative dissolution and transport of refractory SOM. As N supply increases, however, N enrichment of organic losses is greater than expected from simple dissolution of enriched soils, suggesting activation of novel pathways of DON production or direct N enrichment of DOM. We suggest that our two hypotheses represent domains of control over forest DON loss as N supply increases but also that stoichiometric enrichment of bulk soils alone cannot fully account for large DON losses in the most N-polluted forests.  相似文献   

11.
We report on soil leaching of dissolved inorganic nitrogen (DIN) along transects across exposed edges of four coniferous and four deciduous forest stands. In a 64-m edge zone, DIN leaching below the main rooting zone was enhanced relative to the interior (at 128 m from the edge) by 21 and 14 kg N ha−1 y−1 in the coniferous and deciduous forest stands, respectively. However, the patterns of DIN leaching did not univocally reflect those of DIN throughfall deposition. DIN leaching in the first 20 m of the edges was lower than at 32–64 m from the edge (17 vs. 36 kg N ha−1 y−1 and 15 vs. 24 kg N ha−1 y−1 in the coniferous and deciduous forests, respectively). Nitrogen stocks in the mineral topsoil (0–30 cm) were, on average, 943 kg N ha−1 higher at the outer edges than in the interior, indicating that N retention in the soil is probably one of the processes involved in the relatively low DIN leaching in the outer edges. We suggest that a complex of edge effects on biogeochemical processes occurs at the forest edges as a result of the interaction between microclimate, tree dynamics (growth and litterfall), and atmospheric deposition of N and base cations.  相似文献   

12.
The modification of large areas of tropical forest to agricultural uses has consequences for the movement of inorganic nitrogen (N) from land to water. Various biogeochemical pathways in soils and riparian zones can influence the movement and retention of N within watersheds and affect the quantity exported in streams. We used the concentrations of NO3 and NH4 + in different hydrological flowpaths leading from upland soils to streams to investigate inorganic N transformations in adjacent watersheds containing tropical forest and established cattle pasture in the southwestern Brazilian Amazon Basin. High NO3 concentrations in forest soil solution relative to groundwater indicated a large removal of N mostly as NO3 in flowpaths leading from soil to groundwater. Forest groundwater NO3 concentrations were lower than in other Amazon sites where riparian zones have been implicated as important N sinks. Based on water budgets for these watersheds, we estimated that 7.3–10.3 kg N ha−1 y−1 was removed from flowpaths between 20 and 100 cm, and 7.1–10.2 kg N ha−1 y−1 was removed below 100 cm and the top of the groundwater. N removal from vertical flowpaths in forest exceeded previously measured N2O emissions of 3.0 kg N ha−1 y−1 and estimated emissions of NO of 1.4 kg N ha−1 y−1. Potential fates for this large amount of nitrate removal in forest soils include plant uptake, denitrification, and abiotic N retention. Conversion to pasture shifted the system from dominance by processes producing and consuming NO3 to one dominated by NH4 +, presumably the product of lower rates of net N mineralization and net nitrification in pasture compared with forest. In pasture, no hydrological flowpaths contained substantial amounts of NO3 and estimated N removal from soil vertical flowpaths was 0.2 kg N ha−1 y−1 below the depth of 100 cm. This contrasts with the extent to which agricultural sources dominate N inputs to groundwater and stream water in many temperate regions. This could change, however, if pasture agriculture in the tropics shifts toward intensive crop cultivation.  相似文献   

13.
Biogeochemical theory emphasizes nitrogen (N) limitation and the many factors that can restrict N accumulation in temperate forests, yet lacks a working model of conditions that can promote naturally high N accumulation. We used a dynamic simulation model of ecosystem N and δ15N to evaluate which combination of N input and loss pathways could produce a range of high ecosystem N contents characteristic of forests in the Oregon Coast Range. Total ecosystem N at nine study sites ranged from 8,788 to 22,667 kg ha−1 and carbon (C) ranged from 188 to 460 Mg ha−1, with highest values near the coast. Ecosystem δ15N displayed a curvilinear relationship with ecosystem N content, and largely reflected mineral soil, which accounted for 96–98% of total ecosystem N. Model simulations of ecosystem N balances parameterized with field rates of N leaching required long-term average N inputs that exceed atmospheric deposition and asymbiotic and epiphytic N2-fixation, and that were consistent with cycles of post-fire N2-fixation by early-successional red alder. Soil water δ15NO3 patterns suggested a shift in relative N losses from denitrification to nitrate leaching as N accumulated, and simulations identified nitrate leaching as the primary N loss pathway that constrains maximum N accumulation. Whereas current theory emphasizes constraints on biological N2-fixation and disturbance-mediated N losses as factors that limit N accumulation in temperate forests, our results suggest that wildfire can foster substantial long-term N accumulation in ecosystems that are colonized by symbiotic N2-fixing vegetation.  相似文献   

14.
Here we report measurements of organic and inorganic nitrogen (N) fluxes from the high-elevation Green Lakes Valley catchment in the Colorado Front Range for two snowmelt seasons (1998 and 1999). Surface water and soil samples were collected along an elevational gradient extending from the lightly vegetated alpine to the forested subalpine to assess how changes in land cover and basin area affect yields and concentrations of ammonium-N (NH4-N), nitrate-N (NO3-N), dissolved organic N (DON), and particulate organic N (PON). Streamwater yields of NO3-N decreased downstream from 4.3 kg ha−1 in the alpine to 0.75 kg ha−1 at treeline, while yields of DON were much less variable (0.40–0.34 kg ha−1). Yields of NH4-N and PON were low and showed little variation with basin area. NO3-N accounted for 40%–90% of total N along the sample transect and was the dominant form of N at all but the lowest elevation site. Concentrations of DON ranged from approximately 10% of total N in the alpine to 45% in the subalpine. For all sites, volume-weighted mean concentrations of total dissolved nitrogen (TDN) were significantly related to the DIN:DON ratio (R 2 = 0.81, P < 0.001) Concentrations of NO3-N were significantly higher at forested sites that received streamflow from the lightly vegetated alpine reaches of the catchment than in a control catchment that was entirely subalpine forest, suggesting that the alpine may subsidize downstream forested systems with inorganic N. KCl-extractable inorganic N and microbial biomass N showed no relationship to changes in soil properties and vegetative cover moving downstream in catchment. In contrast, soil carbon–nitrogen (C:N) ratios increased with increasing vegetative cover in catchment and were significantly higher in the subalpine compared to the alpine (P < 0.0001) Soil C:N ratios along the sample transect explained 78% of the variation in dissolved organic carbon (DOC) concentrations and 70% of the variation in DON concentrations. These findings suggest that DON is an important vector for N loss in high-elevation ecosystems and that streamwater losses of DON are at least partially dependent on catchment soil organic matter stoichiometry. Received 26 July 2001; accepted 6 May 2002.  相似文献   

15.
Borken  W.  Xu  Y.J.  Beese  F. 《Plant and Soil》2004,258(1):121-134
Fertilization of nutrient-depleted and degraded forest soils may be required to sustain utilization of forests. In some European countries, the application of composts may now be an alternative to the application of inorganic fertilizers because commercial compost production has increased and compost quality has been improved. There is, however, concern that compost amendments may cause increased leaching of nitrogen, trace metals and toxic organic compounds to groundwater. The objective of this study was to assess the risk of ammonium (NH4 +), nitrate (NO3 ) and dissolved organic nitrogen (DON) leaching following a single compost application to silty and sandy soils in mature beech (Fagus sylvatica L.), pine (Pinus silvestris L.) and spruce (Picea abies Karst.) forests at Solling and Unterlüß in Lower Saxony, Germany. Mature compost from separately collected organic household waste was applied to the soil surface at a rate of 6.3 kg m–2 in the summer of 1997 and changes in NH4 +, NO3 and DON concentrations in throughfall and soil water at 10 and 100 cm soil depths were determined for 32 months. The spruce forests had the highest N inputs by throughfall water and the highest N outputs in both the control and compost plots compared with the pine and beech forests. Overall, the differences in total N outputs at 100 cm soil depth between the control and compost plots ranged between 0.3 and 11.2 g N m–2 for the entire 32-month period. The major leaching of these amounts occurred during the first 17 months after compost amendments, but there was no significant difference in total N outputs (–0.2 to 1.8 g N m–2) between the control and compost plots during the remaining 15 months. Most of the mineral soils acted as a significant sink for NO3 and DON as shown by a reduction of their outputs from 10 to 100 cm depth. Based on these results, we conclude that application of mature compost with high inorganic N contents could diminish the groundwater quality in the first months after the amendments. A partial, moderate application of mature compost with low inorganic N content to nutrient depleted forest soils can minimize the risk of NO3 leaching.  相似文献   

16.
Abstract Most experimental additions of nitrogen to forest ecosystems apply the N to the forest floor, bypassing important processes taking place in the canopy, including canopy retention of N and/or conversion of N from one form to another. To quantify these processes, we carried out a large-scale experiment and determined the fate of nitrogen applied directly to a mature coniferous forest canopy in central Maine (18–20 kg N ha−1 y−1 as NH4NO3 applied as a mist using a helicopter). In 2003 and 2004 we measured NO3 , NH4 +, and total dissolved N (TDN) in canopy throughfall (TF) and stemflow (SF) events after each of two growing season applications. Dissolved organic N (DON) was greater than 80% of the TDN under ambient inputs; however NO3 accounted for more than 50% of TF N in the treated plots, followed by NH4 + (35%) and DON (15%). Although NO3 was slightly more efficiently retained by the canopy under ambient inputs, canopy retention of NH4 +as a percent of inputs increased markedly under fertilization. Recovery of less than 30% of the fertilizer N in TF suggested that the forest canopy retained more than 70% of the applied N (>80% when corrected for N which bypassed tree surfaces at the time of fertilizer addition). Results from plots receiving 15N enriched NO3 and NH4 + confirmed bulk N estimations that more NO3 than NH4 + was washed from the canopy by wet deposition. The isotope data did not show evidence of canopy nitrification, as has been reported in other spruce forests receiving much higher N inputs. Conversions of fertilizer-N to DON were observed in TF for both 15NH4 + and 15NO3 additions, and occurred within days of the application. Subsequent rain events were not significantly enriched in 15N, suggesting that canopy DON formation was a rapid process related to recent N inputs to the canopy. We speculate that DON may arise from lichen and/or microbial N cycling rather than assimilation and re-release by tree tissues in this forest. Canopy retention of experimentally added N may meet and exceed calculated annual forest tree demand, although we do not know what fraction of retained N was actually physiologically assimilated by the plants. The observed retention and transformation of DIN within the canopy demonstrate that the fate and ecosystem consequences of N inputs from atmospheric deposition are likely influenced by forest canopy processes, which should be considered in N addition studies. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Evidence for abiotic immobilization of nitrogen (N) in soil is accumulating, but remains controversial. Identifying the fate of N from atmospheric deposition is important for understanding the N cycle of forest ecosystems. We studied soils of two Abies pinsapo fir forests under Mediterranean climate seasonality in southern Spain—one with low N availability and the other with symptoms of N saturation. We hypothesized that biotic and abiotic immobilization of nitrate (NO3 ) would be lower in soils under these forests compared to more mesic temperate forests, and that the N saturated stand would have the lowest rates of NO3 immobilization. Live and autoclaved soils were incubated with added 15NO3 (10 μg N g−1 dry soil; 99% enriched) for 24 h, and the label was recovered as total dissolved-N, NO3 , ammonium (NH4 +), or dissolved organic-N (DON). To evaluate concerns about possible iron interference in analysis of NO3 concentrations, both flow injection analysis (FIA) and ion chromatography (IC) were applied to water extracts, soluble iron was measured in both water and salt extracts, and standard additions of NO3 to salt extracts were analyzed. Good agreement between FIA and IC analysis, low concentrations of soluble Fe, and 100% (±3%) recovery of NO3 standard additions all pointed to absence of an interference problem for NO3 quantification. On average, 85% of the added 15NO3 label was recovered as 15NO3 , which supports our hypothesis that rates of immobilization were generally low in these soils. A small amount (mean = 0.06 μg N g−1 dry soil) was recovered as 15NH4 + in live soils and none in sterilized soils. Mean recovery as DO15N ranged from 0.6 to 1.5 μg N g−1 dry soil, with no statistically significant effect of sterilization or soil type, indicating that this was an abiotic process that occurred at similar rates in both soils. These results demonstrate a detectable, but modest rate of abiotic immobilization of NO3 to DON, supporting our first hypothesis. These mineral soils may not have adequate carbon availability to support the regeneration of reducing microsites needed for high rates of NO3 reduction. Our second hypothesis regarding lower expected abiotic immobilization in soils from the N-saturated site was not supported. The rates of N deposition in this region may not be high enough to have swamped the capacity for soil NO3 immobilization, even in the stand showing some symptoms of N saturation. A growing body of evidence suggests that soil abiotic NO3 immobilization is common, but that rates are influenced by a combination of factors, including the presence of plentiful available carbon, reduced minerals in anaerobic microsites and adequate NO3 supply.  相似文献   

18.
Sugar maple (Acer saccharum Marsh.)-dominated northern hardwood forests in the upper Lakes States region appear to be particularly sensitive to chronic atmospheric NO3 deposition. Experimental NO3 deposition (3 g NO3 N m−2 y−1) has significantly reduced soil respiration and increased the export of DOC/DON and NO3 across the region. Here, we evaluate the possibility that diminished microbial activity in mineral soil was responsible for these ecosystem-level responses to NO3 deposition. To test this alternative, we measured microbial biomass, respiration, and N transformations in the mineral soil of four northern hardwood stands that have received 9 years of experimental NO3 deposition. Microbial biomass, microbial respiration, and daily rates of gross and net N transformations were not changed by NO3 deposition. We also observed no effect of NO3 deposition on annual rates of net N mineralization. However, NO3 deposition significantly increased (27%) annual net nitrification, a response that resulted from rapid microbial NO3 assimilation, the subsequent turnover of NH4+, and increased substrate availability for this process. Nonetheless, greater rates of net nitrification were insufficient to produce the 10-fold observed increase in NO3 export, suggesting that much of the exported NO3 resulted directly from the NO3 deposition treatment. Results suggest that declines in soil respiration and increases in DOC/DON export cannot be attributed to NO3-induced physiological changes in mineral soil microbial activity. Given the lack of response we have observed in mineral soil, our results point to the potential importance of microbial communities in forest floor, including both saprotrophs and mycorrhizae, in mediating ecosystem-level responses to chronic NO3 deposition in Lake States northern hardwood forests.  相似文献   

19.
The N, P, and S cycles in pristine forests are assumed to differ from those of anthropogenically impacted areas, but there are only a few studies to support this. Our objective was therefore to assess the controls of N, P, and S release, immobilization, and transport in a remote tropical montane forest. The study forest is located on steep slopes of the northern Andes in Ecuador. We determined the concentrations of NO3-N, NH4-N, dissolved organic N (DON), PO4-P, dissolved organic P (DOP), SO4-S, dissolved organic S (DOS), and dissolved organic C (DOC) in rainfall, throughfall, stemflow, lateral flow (in the organic layer), litter leachate, mineral soil solution, and stream water of three 8–13 ha catchments (1900–2200 m a.s.l.). The organic forms of N, P, and S contributed, on average, 55, 66, and 63% to the total N, P, and S concentrations in all ecosystem fluxes, respectively. The organic layer was the largest source of all N, P, and S species except for inorganic P and S. Most PO4 was released in the canopy by leaching and most SO4 in the mineral soil by weathering. The mineral soil was a sink for all studied compounds except for SO4. Consequently, concentrations of dissolved inorganic and organic N and P were as low in stream water (TDN: 0.34–0.39 mg N l−1, P not detectable) as in rainfall (TDN: 0.39–0.48 mg N l−1, P not detectable), whereas total S concentrations were elevated (stream water: 0.04–0.15, rainfall: 0.01–0.07 mg S l−1). Dissolved N, P, and S forms were positively correlated with pH at the scale of soil peda except inorganic S. Soil drying and rewetting promoted the release of dissolved inorganic N. High discharge levels following heavy rainstorms were associated with increased DOC, DON, NO3-N and partly also NH4-N concentrations in stream water. Nitrate-N concentrations in the stream water were positively correlated with stream discharge during the wetter period of the year. Our results demonstrate that the sources and sinks of N, P, and S were element-specific. More than half of the cycling N, P, and S was organic. Soil pH and moisture were important controls of N, P, and S solubility at the scale of individual soil peda whereas the flow regime influenced the export with stream water.  相似文献   

20.
It has long been assumed that the peat underlying tropical peat swamp forests accumulates because the extreme conditions (water logged, nutrient poor, anaerobic and acidic—pH 2.9–3.5) impede microbial activity. Litterbag studies in a tropical Malaysian peat swamp (North Selangor peat swamp forest) showed that although the sclerophyllous, toxic leaves of endemic peat forest plants (Macaranga pruinosa, Campnosperma coriaceum, Pandanus atrocarpus, Stenochlaena palustris) were barely decomposed by bacteria and fungi (decay rates of only 0.0006–0.0016 k day−1), leaves of M. tanarius, a secondary forest species were almost completely decomposed (decay rates of 0.0047–0.005 k day−1) after 1 year. Thus it is intrinsic properties of the leaves (that are adaptations to deter herbivory in the nutrient poor environment) that impede microbial breakdown. The water of the peat swamp was very high in dissolved organic carbon (70–84 mg l−1 DOC). Laboratory studies revealed initial rapid leaching of DOC from leaves (up to 1,720 mg l−1 from 4 g of leaves in 7 days), but the DOC levels then fell rapidly. The leaching of DOC resulted in weight loss but the physical structure of the leaves remained intact. It is suggested that the DOC is used as a substrate for microbial growth hence lowering the concentration of DOC in the water and transferring energy from the leaves to other trophic levels. This would explain how nutrient poor tropical peatswamps support diverse, abundant flora and fauna despite low nutrient levels and lack of rapid litter cycling such as occurs in other types of tropical rainforests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号