首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Ecological features and conservation requirements of populations at the latitudinal limits of a species’ geographical range frequently differ from those in other parts of the range. Identifying such differences is key to implementing effective conservation strategies for threatened range‐edge populations especially, in the context of rapid global warming, at the lower‐latitude range edge. We studied habitat selection and diet of the endangered Cantabrian Capercaillie Tetrao urogallus cantabricus in a recently discovered population at the southernmost edge of the sub‐species’ range. This is the only Western Capercaillie population in the Mediterranean biogeographical region. We combined non‐systematic surveys based on questionnaires, reports and field sampling with data from radiotracking to assess habitat selection. Diet was surveyed by micro‐histological methods from droppings collected in the new population, which inhabits Pyrenean Oak Quercus pyrenaica forests and Scots Pine Pinus sylvestris plantations, and in two Cantabrian populations inhabiting Eurosiberian forests. Capercaillie preferred large (> 500 ha) and medium‐sized (100–500 ha) Pyrenean Oak forest fragments and large Scots Pine plantations. Forest fragments smaller than 100 ha and non‐forested habitats were always avoided. Diet differed markedly between Mediterranean and Eurosiberian populations. Bilberry Vaccinium myrtillus is common in the diet of most Capercaillie populations but was scarce in the study area and so was rare in the diet of the new population. Instead, Rockrose Halimium lasianthum was described for the first time as a major food resource for the Capercaillie and was consumed in autumn and winter. Pine needles were also heavily consumed in winter. We document for the first time the strong preference of Capercaillie for Pyrenean Oak forests and a moderately high consumption of the leaves, buds and acorns of this tree species throughout the year. Habitat selection and diet of this Mediterranean population differ from those of the core Cantabrian and other populations. Our results suggest a wider environmental tolerance (phenotypic plasticity) in the species than previously recognized. We advocate specific protection for this unique range‐edge Capercaillie population and its Pyrenean Oak forest habitat.  相似文献   

2.
Abstract: The capercaillie (Tetrao urogallus) in Central Europe is an endangered species of grouse that is thought to be highly susceptible to human disturbance, possibly causing local populations to decline. We investigated the behavioral response of capercaillie in the Black Forest, Germany, and the French Pyrenees to an off-trail hiker by measuring flushing distances. Flushing distance varied with capercaillie sex, visibility of the hiker, intensity of winter tourism, and hunting pressure. Independent of the study area, males flushed at consistently longer distances than females, and lower visual blocking between bird and hiker resulted in longer flushing distances. Capercaillie flew at longer distances from an approaching hiker in areas with high intensity of winter tourism or hunting pressure than in undisturbed areas. We recommend the establishment of regulations requiring hikers to stay on trails and to close trails where intertrail distances fall below 100 m (90% of all flushing events appeared within 50 m). Furthermore, planting or preserving evergreen conifer trees in dense rows along critical parts of disturbance sources, reducing the degree of visibility between capercaillie and recreationists would increase habitat for capercaillie in forests with predictable recreation activities.  相似文献   

3.
We compared habitat use and diets of young Capercaillie and Black Grouse broods in a boreal forest in southeast Norway. We used pointing dogs to search for broods (N = 83) in mature “natural” forest types and examined the crop content of 66 chicks 1–9 weeks old. We also measured the abundance of insects in the habitats where broods were found. Although overlapping substantially in both habitat and diets, there were notable differences: Capercaillie broods were more frequently recorded in bilberry-dominated forest types, whereas Black Grouse preferentially used pine bog forest, a more open habitat with little bilberry. Capercaillie chicks ate proportionally more insects, particularly lepidopteran larvae, and insects dominated their diet for a longer period of time (until age 28–29 days) than in Black Grouse (14–15 days). After reaching their peaks, the quantity of insects in the crops declined rapidly especially in Capercaillie, and in one of 2 years this occurred at a time when insects, including larvae, were still abundant in the habitats. Among plant foods, both species ate large amounts of Bilberry (Vaccinium myrtillus) and Bog Whortleberry (V. uliginosum). The main difference between species was a large proportion of both over-wintered and new, not yet ripe, berries of Cranberry (Oxycoccus quadripetalus) in Black Grouse, and a higher proportion of the forb Melampyrum sylvaticum in Capercaillie. The difference in diets reflected their differential use of habitats; the Vaccinium-preferred habitats of Capercaillie were richer in insects, particularly larvae, than the pine bog habitat preferred by Black Grouse. Because insects, especially larvae, comprised a larger proportion of the diet of Capercaillie chicks and chicks of this species need more food to sustain their rapid growth, Capercaillie is likely to be more sensitive to variation in insect food than Black Grouse. Also, by reducing the abundance of bilberry, the main host plant of larvae chick food, clearcutting forestry has negative effects on the brood habitat quality of both species.  相似文献   

4.
Populations at the rear edge of the species’ range are often at a high risk of extinction due to their isolation, fragmentation and small population sizes. However, these populations also play a relevant role in the conservation of biodiversity since they may represent a valuable genetic resource. The endangered Cantabrian Capercaillie (Tetrao urogallus cantabricus) inhabits deciduous forests of the Cantabrian Mountains of Spain, at the southwestern limit of the species’ range. Recently, nine Cantabrian Capercaillie leks were discovered in Pyrenean oak forests of the southern slope of the Cantabrian range, where the subspecies historically occurred. To elucidate if the origin of this peripheral population nucleus is the result of a historical range contraction or a recent re-colonization from the core population, we sampled moulted feathers from all the known leks in the southern peripheral forests and from the adjacent main core population, based on nine microsatellite loci genotypes. No significant genetic differentiation was detected between main core and peripheral forests suggesting that gene flow is not interrupted between these nuclei. Contrary to expected, peripheral forests did not represent sink populations, since gene flow mainly occurred from southern peripheral to northern main core forests. Therefore, the origin of these birds inhabiting the peripheral nucleus seems not to be a recent colonization but relicts from the former distribution range that have remained unnoticed in a drier and warmer environment than described so far for the species. Cantabrian Capercaillie faces a high risk of extinction in the southernmost forests of its distribution, not only because of its peripheral location but also due to its small population size, low genetic diversity and low incoming gene flow. According to our results, this peripheral nucleus could represent an expanding edge for the population if Pyrenean oak forests continue to spread out southwards and consequently stress the need for conservation programs to preserve habitat availability and forest connectivity.  相似文献   

5.
Dry grasslands are of great interest for nature conservation in Europe, because they have a central role in the conservation of numerous rare and endangered species. In this study carried out in the Brenta mountain group (Italian alps), we investigated the effect of environmental factors mainly controlled by topography, on the biodiversity trends across different dry grassland habitats where the threatened alpine stenoendemic Erysimum aurantiacum grows. Plant community data and ecological factors were analysed by means of a multi‐habitat CCA approach and by analysis of biodiversity gradients in 7 natural and semi‐natural habitats. We found that species turnover and biodiversity patterns vary as a function of multi‐factorial ecological gradients. For the single habitats, elevation gradient was the main factor explaining compositional variation, followed by inclination and proportion of exposed rock surface. Despite its endangered status, E. aurantiacum showed a relatively high degree of ecological plasticity across these semiarid grassland habitats that probably allows it to survive in different environments, including in some cases those impacted by human activities. This prompts for habitat‐ more than species‐level conservation actions. According to their characteristics and threats, habitat‐specific management practices are recommended for long term conservation of plant species communities in the different ecological niches.  相似文献   

6.
We described an extension of the known distribution range of the Cantabrian Capercaillie Tetrao urogallus cantabricus into an atypical area and habitat for the species. Nine Capercaillie leks and 14 cocks were registered in Mediterranean Quercus pyrenaica forests in an area of 1,500 km2, of which 4,500 forest hectares were surveyed. At present, this population represents both the southern-most distribution for Capercaillie and the only one inhabiting Mediterranean Q. pyrenaica forests, what suggests a wider adaptation of this (sub)species than previously thought. This population and its habitat need to be better studied, as well as to be considered in conservation planning for Cantabrian Capercaillie.  相似文献   

7.
Fragmentation of natural habitats can be detrimental for species if individuals fail to cross habitat boundaries to reach new locations, thereby reducing functional connectivity. Connectivity is crucial for species shifting their ranges under climate change, making it important to understand factors that might prevent movement through human‐modified landscapes. In tropical regions, rain forests are being fragmented by agricultural expansion, potentially isolating populations of highly diverse forest‐dependent species. The likelihood of crossing habitat boundaries is an important determinant of species dispersal through fragmented landscapes, and so we examined movement across rain forest‐oil palm plantation boundaries on Borneo by using relatively mobile nymphalid butterflies as our model study taxon. We marked 1666 individuals from 65 species, and 19 percent (100/527) of recaptured individuals crossed the boundary. Boundary crossing was relatively frequent in some species, and net movement of individuals was from forest into plantation. However, boundary crossing from forest into plantation was detected in less than 50 percent (12/28) of recaptured species and was dominated by small‐sized butterfly species whose larval host plants occurred within plantations. Thus, while oil palm plantations may be relatively permeable to some species, they may act as barriers to the movement of forest‐dependent species (i.e., species that require rain forest habitat to breed), highlighting the importance of maintaining forest connectivity for conserving rain forest species.  相似文献   

8.
The demographic consequences of changes in habitat use driven by human modification of landscape, and/or changes in climate, are important for any species. We investigated habitat–performance relationships in a declining island population of a large mammal, the moose (Alces alces), in an environment that is predator‐free but dominated by humans. We used a combination of demographic data, knowledge of habitat selection, and multiannual movement data of female moose (n = 17) to understand how space use patterns affect fecundity and calf survival. The calving rate was 0.64 and was similar to calving rates reported in other populations. Calf survival was 0.22 (annually) and 0.32 (postsummer), which are particularly low compared to other populations where postsummer survival is typically above 0.7. Home ranges were mainly composed of arable land (>40%), and selection for arable land was higher in winter than in summer, which contrasts with previous studies. Females that spent more time in broadleaf forest in the summer prior to the rut had higher fecundity rates, while more time spent in arable land resulted in lower fecundity rates. Females that spent more time in thicket/scrubland habitats during winter had lower calf survival, while females that had higher use of mixed forests tended to have higher calf survival. The dominance, and subsequent use, of suboptimal foraging habitats may lead to poor body condition of females at parturition, which may lower calf body weights and affect the mother's ability to lactate. In addition, our results indicated that the growing season has advanced significantly in recent decades, which may be causing a mismatch between parturition and optimal resource availability. These effects may exacerbate the female's ability to meet the energetic demands of lactation. Therefore, the observed low calf survival appears to be caused by a combination of factors related to current land use and may also be due to changing vegetation phenology. These results have important implications for the management of species in human‐dominated landscapes in the face of climate change, and for an increased understanding of how species may adapt to future land use and climate change.  相似文献   

9.
One consequence of climate change is an increasing mismatch between timing of food requirements and food availability. Such a mismatch is primarily expected in avian long-distance migrants because of their complex annual cycle, and in habitats with a seasonal food peak. Here we show that insectivorous long-distance migrant species in The Netherlands declined strongly (1984–2004) in forests, a habitat characterized by a short spring food peak, but that they did not decline in less seasonal marshes. Also, within generalist long-distance migrant species, populations declined more strongly in forests than in marshes. Forest-inhabiting migrant species arriving latest in spring declined most sharply, probably because their mismatch with the peak in food supply is greatest. Residents and short-distance migrants had non-declining populations in both habitats, suggesting that habitat quality did not deteriorate. Habitat-related differences in trends were most probably caused by climate change because at a European scale, long-distance migrants in forests declined more severely in western Europe, where springs have become considerably warmer, when compared with northern Europe, where temperatures during spring arrival and breeding have increased less. Our results suggest that trophic mismatches may have become a major cause for population declines in long-distance migrants in highly seasonal habitats.  相似文献   

10.
Sequence data from a broad geographical region and different habitats show that the Inocybe praetervisa clade is comprised of four closely related species. These species of section Marginatae are characterized by having nodulose spores and a stipe that is abundantly pruinose only in the upper half. Inocybe praetervisa occurs in Southern Europe in mountainous mixed coniferous forests, and is not confirmed from Northern Europe. Inocybe rivularis occurs in northern boreal forests up to the lower alpine zone, associated with Betula in moist habitats, and is not confirmed from Southern Europe. Inocybe taxocystis is confirmed as a later synonym of I. favrei. The species has a wide geographical distribution range in Europe, mainly restricted to the alpine zone and moist soils, associated with Salix herbacea. Inocybe arctica is here described as a new species. It occurs in the arctic and higher alpine zones, associated with Dryas octopetala, Salix polaris, S. reticulata and S. herbacea. All species except I. arctica are shown to have an intercontinental distribution range and are confirmed from North America. Sequence data suggest the occurrence of one additional species in the alpine zone of China. A key to the species in the I. praetervisa group is provided.  相似文献   

11.
Large areas of tropical moist forests have been converted to cattle pastures, generating complex landscapes where different habitats are represented by small patches with an uneven spatial distribution. Here, we describe how bird communities respond to the different elements present in a livestock landscape that was originally dominated by tropical moist forest. We surveyed six habitats: open pastures, pastures with shrubs, early‐ and middle‐secondary forests, mature forest, and pastures invaded by bracken ferns (Pteridium aquilinum). Bird diversity was high in secondary and mature forests, and low in fern‐invaded sites and open pastures. Fern‐dominated sites had the lowest bird species richness, and trophic guild diversity of all habitats. Habitat structure affected both bird species richness and densities in similar ways. Tree species richness was the habitat attribute that had a bigger positive effect on bird species richness. Bird community structure varied among sampled habitats, separating habitats in two major groups (forests and pastures). Our data indicate that bracken fern‐invaded pastures were the worst habitat condition for avian communities. To increase bird diversity, we recommend to eliminate or manage bracken fern and to increase shrub and tree cover in open pastures to provide food resources and shelter for birds. Finally, we encourage the maintenance of secondary and mature forest remnants as a strategy to conserve resident birds within a landscape dominated by livestock activities.  相似文献   

12.
The Western Capercaillie (Tetrao urogallus L.) is a grouse species of open boreal or high altitude forests of Eurasia. It is endangered throughout most mountain range habitat areas in Europe. Two major genetically identifiable lineages of Western Capercaillie have been described to date: the southern lineage at the species' southernmost range of distribution in Europe, and the boreal lineage. We address the question of genetic differentiation of capercaillie populations from the Rhodope and Rila Mountains in Bulgaria, across the Dinaric Mountains to the Slovenian Alps. The two lineages' contact zone and resulting conservation strategies in this so-far understudied area of distribution have not been previously determined. The results of analysis of mitochondrial DNA control region sequences of 319 samples from the studied populations show that Alpine populations were composed exclusively of boreal lineage; Dinaric populations of both, but predominantly (96%) of boreal lineage; and Rhodope-Rila populations predominantly (>90%) of southern lineage individuals. The Bulgarian mountains were identified as the core area of the southern lineage, and the Dinaric Mountains as the western contact zone between both lineages in the Balkans. Bulgarian populations appeared genetically distinct from Alpine and Dinaric populations and exhibited characteristics of a long-term stationary population, suggesting that they should be considered as a glacial relict and probably a distinct subspecies. Although all of the studied populations suffered a decline in the past, the significantly lower level of genetic diversity when compared with the neighbouring Alpine and Bulgarian populations suggests that the isolated Dinaric capercaillie is particularly vulnerable to continuing population decline. The results are discussed in the context of conservation of the species in the Balkans, its principal threats and legal protection status. Potential conservation strategies should consider the existence of the two lineages and their vulnerable Dinaric contact zone and support the specificities of the populations.  相似文献   

13.
Depending on the habitats they live in, temperate ungulates have adapted to different degrees to seasonally changing forage and weather conditions, and to specific escape strategies from predators. Alpine chamois, a mountain ungulate, and red deer, originally adapted to open plains, would therefore be expected to differ in their physiological responses to potential stressors. Based on 742 chamois and 1557 red deer fecal samples collected year‐round every 2 weeks for 4 years at the same locations within a strictly protected area in the Swiss Alps, we analyzed glucocorticoid metabolite (FGM) concentrations for both species. Results from linear mixed effects models revealed no physiological stress response to changing visitor numbers, but instead to drought conditions for both species during summer. In winter, FGM concentrations increased with increasing snow height in both species, but this response was modulated by temperature in red deer. Chamois showed a stronger stress response to increasing snow height during November and December than between January and March, while FGM concentrations increased with decreasing temperature throughout winter. An increase in FGM concentrations with decreasing forage digestibility during winter was found only for red deer. The results are thus partly in contradiction to expectations based on feeding type and adaptations to different habitats between the two species. The lack of a response to forage digestibility in chamois may reflect either better adaptation to difficult feeding conditions in subalpine forests, or, by contrast, strong constraints imposed by forage quality. The similar responses of both species to weather conditions in winter suggest that climatic factors at the elevations examined here are sufficiently harsh to be limiting to temperate ungulates regardless of their specific adaptations to this environment.  相似文献   

14.
The interactions between invasive plants and their habitats may vary at different phases of the invasion process and depend on the phenotypic plasticity or local adaptations of each species. In this study, we investigated whether habitat changes during the invasion process are related to variations in the physiological traits (allelopathic properties) and genetic differentiation of daisy fleabane (Erigeron annuus (L.) Pers.). E. annuus is a winter annual invasive species that originated in North America and is now distributed throughout Europe. Genetic and genotypic diversity analyses were performed for 37 populations of E. annuus based on inter simple sequence repeat (ISSR) polymorphisms. In total, 684 plants were analyzed; 342 were from stable habitats and 342 were from disturbed habitats. The genetic differences among the populations from the different habitats were studied using a Bayesian cluster analysis and an analysis of molecular variance (AMOVA) and by calculating the genetic and genotypic diversity parameters. A germination test using the juglone index was employed to examine the potential allelopathic properties of the plants from the different habitats. Bayesian cluster analysis, AMOVA and allelopathic effects evaluation revealed differences in the allelopathic potential and genetic structure of the E. annuus populations from the disturbed and stable habitats. This differentiation of populations could be associated with founder effects or with different selection pressures among habitats.  相似文献   

15.
In agricultural landscapes, linear habitats, such as hedgerows at field margins increase structural connectivity among forest patches, potentially providing dispersal corridors for forest herbs. The spatial structure of linear habitats, however, also results in edge effects and perturbations that can influence the individual and population performance of forest plants. This study compares the stage structure and components of growth and reproduction of 14 Trillium grandiflorum populations in hedgerows and forests. Hedgerow Trillium tended to grow faster and, when mature, produced more flowers and more ovules per flowers than forest Trillium, a pattern possibly associated to differences in nutrients and light availability between the two habitats. Seed production and germination rate, however, did not differ between hedgerows and forests. At the population level, seedlings and juveniles were proportionally less abundant in hedgerows than in forests. Although well-established plants can thrive in hedgerows, reduced recruitment may eventually limit the capacity to establish new populations and therefore hamper migration along hedgerow-corridors. Considering the strategies by which plants persist in linear habitats becomes particularly relevant at a time when species are expected to be much in need of dispersal corridors because of climatic stress.  相似文献   

16.
We analyzed the differences in species richness, community composition, population structure and within-tree location of epiphytic bromeliads in contiguous secondary and mature forests in a premontane area in Costa Rica. Diversity in the mature forest was highest, and the communities differed in their composition as well as in the recruitment rates of the dominant species. Guzmania monostachia and Catopsis nutans dominated the secondary forests, whereas Tillandsia fasciculata and T. tricolor were more abundant in the mature forest. The secondary forest species showed high rates of seedling recruitment while the opposite was found for the mature forest species. Species presence and abundance among and within habitats did not correlate with their physiological (i.e. CAM vs. C3 photosynthesis) or morphological attributes. The spatial distribution patterns were similar among habitats; bromeliads tended to aggregate on a few relatively large phorophytes. The species shared a similar vertical stratification within habitats, except for the two dominant species in the early and mid-successional stages, although its ecological implication is not clear. With some exceptions, conspecifics of different ages were located on similar substrate types (i.e. stems, primary, secondary, or tertiary branches) within the tree-crowns, which suggests limited within-tree dispersion. Differences in species composition and rates of seedling recruitment among secondary and mature forest may arise from ecophysiological differences among species; however, the combined effect of seed availability and dispersal differences may have a larger influence. Thus, epiphyte community assembly can only be understood when the differences in habitat conditions, the availability of propagules, their dispersal characteristics and requirements for seedling establishment are known.  相似文献   

17.
Forest clearing for winter sport activities is the major force driving loss and fragmentation of the alpine forests. The establishment of ski-pistes involves impacts on every ecosystem component. To assess the extent of this threat we studied ground-dwelling arthropods (namely ground beetles and spiders) and small mammals (shrews and voles) at two ski resorts in north-western Italian Alps by pitfall trapping. Diversity parameters (mean abundance, species richness and Shannon index) of spiders and macropterous carabids increased from forest interior to open habitats (i.e., ski-piste or pasture), whereas parameters of brachypterous carabids significantly decreased from forest interior to open habitats. Diversity parameters of macropterous ground beetles were higher on pastures than on ski-pistes. Small mammals were virtually absent from ski-pistes. Observed frequencies in the three adjacent habitats were significantly different from expected ones for the bank vole Myodes glareolus and the pygmy shrew Sorex minutus. Generalized linear models showed that abundance, species richness and diversity of spiders and macropterous carabids of ski-pistes were best modelled by combination of factors, including grass cover and width of the ski-piste. Indicator Species Analysis showed that species that significantly preferred ski-pistes were less than those preferring pastures, and species which were exclusive of ski-pistes were very few. To retain arthropod ground-dwelling fauna of open habitats environmentally friendly ways of constructing pistes should be developed. After tree clearing, only the roughest ground surfaces should be levelled, in order to preserve as much natural vegetation as possible. Where necessary, ski-pistes should be restored through the recovery of local vegetation.  相似文献   

18.
Numerous studies have shown that the genetic diversity of species inhabiting temperate regions has been shaped by changes in their distributions during the Quaternary climatic oscillations. For some species, the genetic distinctness of isolated populations is maintained during secondary contact, while for others, admixture is frequently observed. For the winter moth (Operophtera brumata), an important defoliator of oak forests across Europe and northern Africa, we previously determined that contemporary populations correspond to genetic diversity obtained during the last glacial maximum (LGM) through the use of refugia in the Iberian and Aegean peninsulas, and to a lesser extent the Caucasus region. Missing from this sampling were populations from the Italian peninsula and from North Africa, both regions known to have played important roles as glacial refugia for other species. Therefore, we genotyped field‐collected winter moth individuals from southern Italy and northwestern Tunisia—the latter a region where severe oak forest defoliation by winter moth has recently been reported—using polymorphic microsatellite. We reconstructed the genetic relationships of these populations in comparison to moths previously sampled from the Iberian and Aegean peninsulas, the Caucasus region, and western Europe using genetic distance, Bayesian clustering, and approximate Bayesian computation (ABC) methods. Our results indicate that both the southern Italian and the Tunisian populations are genetically distinct from other sampled populations, and likely originated in their respective refugium during the LGM after diverging from a population that eventually settled in the Iberian refugium. These suggest that winter moth populations persisted in at least five Mediterranean LGM refugia. Finally, we comment that outbreaks by winter moth in northwestern Tunisia are not the result of a recent introduction of a nonnative species, but rather are most likely due to land use or environmental changes.  相似文献   

19.
ABSTRACT Wolverine (Gulo gulo) distribution in British Columbia, Canada, includes multiple-use lands where human use and resource extraction may influence habitat selection. We evaluated seasonal habitat use by resident adult wolverines using radiotelemetry locations from 2 multiple-use landscapes in British Columbia. Food, predation risk, and human disturbance hypotheses were considered in logistic regression analyses of used and random landscapes. Male wolverine habitat associations were most supported by the food hypothesis in both summer and winter. Moose (Alces alces) winter ranges, valley bottom forests, and avalanche terrain were positively associated with winter male wolverine use. Habitat use by male wolverines in winter was also negatively associated with helicopter skiing areas in the Columbia Mountains. Habitat associations of females were more complex; combinations of variables supporting food, predation risk, or human disturbance hypotheses were included in most supported models from both summer and winter in both study areas. Females were associated with alpine and avalanche environments where hoary marmot (Marmota caligata) and Columbia ground squirrel (Spermophilus columbianus) prey are found in summer. Roaded and recently logged areas were negatively associated with female wolverines in summer. In the Columbia Mountains, where winter recreation was widespread, females were negatively associated with helicopter and backcountry skiing. Moose winter ranges within rugged landscapes were positively associated with females during winter. Our analysis suggests wolverines were negatively responding to human disturbance within occupied habitat. The population consequences of these functional habitat relationships will require additional focused research. Our spatially explicit models can be used to support conservation planning for resource extraction and tourism industries operating in landscapes occupied by wolverines.  相似文献   

20.
Alpine ecosystems, characterized by cold climates and short growing seasons, are thought to be most vulnerable to climate change. Warmer temperatures and earlier snowmelt extend the growing season length and increase drought stress for alpine plants, resulting in changes to their distribution. Anemone narcissiflora ssp. sachalinensis is a perennial herb that grows in the alpine snow-meadows of northern Japan. In the last few decades, its distribution has shifted toward later snowmelt habitat in the Taisetsu Mountains of Hokkaido. We recorded demographic data for this species at early, middle and late snowmelt habitats over four years (2009–2012), and constructed transition matrix models to evaluate how demographic parameters and population growth rate vary between local habitats along a snowmelt gradient. The proportion of reproductive plants was low and seed production was limited in the early snowmelt habitat, with drier soil conditions, in comparison to the middle and late snowmelt habitats, with moist soil conditions. Evidence of the transition from small plants to those in the reproductive stage was limited in the early snowmelt habitat, suggesting that growth was inhibited; the local population in this habitat was estimated to be sustained by seed migration from later snowmelt habitats. These results indicate that advancing snowmelt under climate change may decrease the reproductive activity and population growth rate of snow-meadow plants if seed migration from later snowmelt populations is limited, resulting in the extinction of local populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号