首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
富油能源微藻的筛选及产油性能评价   总被引:3,自引:0,他引:3  
为了筛选具有产油潜力的能源微藻,以实验室保藏的20株淡水和海洋微藻(绿藻门18株,真眼点藻纲1株,硅藻纲1株)为研究对象,利用光径为3 cm柱状光生物反应器通气分批培养,通过测定微藻培养物的生物量和总脂含量等指标,从中筛选生长速度快、生物量和总脂含量高的微藻。结果表明:20株微藻的生物量和总脂含量分别在1.81~7.88g/L和16.0%~55.9% dw(% Dry weight)之间,筛选得到具有产油潜力的微藻9株,分别是栅藻(Scenedesmus sp.)(6.34g/L,55.9% dw)、麻织绿球藻(Chlorococcum tatrense)(5.93g/L,46.9% dw)、眼点拟微绿球藻(Nannochloropsis oculata)(7.88g/L,35.0% dw)、油面绿球藻(Chlorococcum oleofaciens)(5.58g/L,45.9% dw)、多形拟绿球藻(Pseudochlorococcum polymorphum)(6.10g/L,40.0% dw)、八月衣藻(Chlamydomonas augustae)(5.78g/L,40.5% dw)、椭圆小球藻(Chlorella ellipsoidea)(5.56g/L,40.7%dw)、椭圆绿球藻(Chlorococcum ellipsoideum)(5.41g/L,38.0% dw)、雪绿球藻(Chlorococcum nivale)(5.55g/L,36.3% dw),其中最具产业化潜力的微藻为栅藻(Scenedesmus sp.),其总脂收获量和单位体积总脂产率分别为3.5 g/L和218.7mg/L·d。  相似文献   

2.
为了筛选具有产油能力的微藻,从自然界水体中分离出14株微藻,根据形态特点对它们进行了初步鉴定。对其中12株微藻在自养和异养条件下的生长特性和产油性能进行了比较。通过微藻的生长曲线,生物量和油脂含量等指标,从中筛选出高产藻株并对该藻株进行了分子生物学鉴定。结果表明:藻株Y06在12种微藻中的油脂产量和产率最高,经18S rDNA鉴定确定为栅藻(Scenedesmus abundans)。藻株Y06在自养条件下的油脂产率为9.40 mg/(L.d),在异养条件下的油脂产率为201.29 mg/(L.d)。  相似文献   

3.
一株富含碳水化合物微藻的筛选和分子鉴定   总被引:1,自引:0,他引:1  
微藻生长快,单位体积碳水化合物产率高,是发酵生产生物乙醇的理想原料。本研究采用通气培养系统,对初筛得到的10株微藻进行分批培养,以单位体积碳水化合物产率为主要指标,筛选富含碳水化合物的优良藻种。研究结果显示:10株微藻的生物质干重、可溶性糖含量、碳水化合物含量和碳水化合物产率变化范围分别在0.922~1.965 g/L、4.42%~19.23%、26.8%~60.9% 和36.17~149.67 mg·L-1·d-1之间,其中藻株GZ-57的碳水化合物产率和可溶糖含量最高,分别为149.67 mg·L-1·d-1 和19.23%,表明藻株GZ-57是一株具有培养潜力的高产碳水化合物微藻。进一步对其进行形态特征及基于18S rDNA、ITS序列的分子系统学分析,发现藻株GZ-57与栅藻科(Scenedesmaceae)链带藻属(Desmodesmus)的极大链带藻(Desmodesmus maximus)亲缘关系较近,因此将其鉴定为极大链带藻(Desmodesmus maximus)。  相似文献   

4.
微藻作为21世纪生物柴油的理想燃料已被人们广泛的关注,但是目前微藻种类很多,如何从诸多的微藻中筛选油脂含量高的微藻已成为人们函待解决的问题。从东北地区水样中分离纯化出93种藻种,采用尼罗红染色法对其中30株藻种进行了筛选获得了8种具有产油潜力的藻种,并利用自制的柱式反应器微藻评价装置对这8株藻株进行了产油能力的评价,获得了一株总脂产率达到133.9 mg/(L·d)的产油能源微藻。在此基础上,对该藻株进行了18S r RNA的鉴定,确定为Chlorella sp.。  相似文献   

5.
以分离获得的一株新型自絮凝凯式拟小球藻(Parachlorella kessleri) F01为材料, 自养单步培养法为对照, 设计两步培养法, 研究阶段Ⅰ添加葡萄糖兼养和阶段Ⅱ营养元素限制处理对藻细胞油脂积累及絮凝性能的影响。分别采用血球板计数法、干重法、脂染色法测定藻细胞浓度、生物量和总脂含量, 三维荧光光谱分析藻细胞胞外聚合物(Extracellular polymeric substances, EPS)组分和含量。结果表明: (1)两步培养法阶段Ⅰ兼养培养最适葡萄糖浓度为10 g/L, 10d收获时藻细胞油脂产率204.25 mg/(L·d), 是对照组的16.20倍; 静置12h的藻细胞自絮凝率96.1%, 与对照组差异不显著。(2)在阶段Ⅰ基础上, 阶段Ⅱ进行不同元素限制处理培养1d, 低糖组和低糖低氮协同处理组的藻细胞油脂产率分别为242.64和227.61 mg/(L·d), 分别比阶段Ⅰ增加18.8%和11.4%; 培养4d, 低糖、无糖、低氮和低糖低氮协同4种处理组油脂产量显著高于对照组和阶段Ⅰ, 其中低糖低氮协同处理组最高, 达到3.08 g/L, 是对照组的23.69倍, 比阶段Ⅰ增加了51.0%, 而且阶段Ⅱ中4种处理组藻细胞的自絮凝率基本在85.0%以上, 能满足收获要求。(3) F01藻细胞EPS中蛋白类色氨酸物质含量高低与藻细胞自絮凝率大小密切相关, 不同培养处理通过改变藻细胞EPS中蛋白类色氨酸物质的含量而影响其絮凝性能。自絮凝凯式拟小球藻F01是生物柴油生产的优良潜力藻种, 两步培养法能大幅提升其产油效益。产油微藻的自絮凝优势与两步培养法结合, 有望成为解决微藻生物柴油生产技术瓶颈的关键突破口。  相似文献   

6.
以一种生长快、油脂含量高的小球藻(Chlorella sp. XQ-200419)为实验材料, 利用测定净光合放氧速率的方法研究了pH对其光合作用的影响; 使用改良的BG-11培养基在微藻环形培养池模拟系统中进行分批培养, 培养周期为8d, 培养过程中使用 pH控制仪在线监测藻液的pH, 根据pH变化, 自动接通、关闭CO2通气管道, 将藻液pH分别控制在5.06.0, 7.08.0, 8.09.0, 9.010.0, 10.011.0内, 研究pH对生长速率、生物质面积产率、总脂含量和总脂面积产率的影响。主要结果如下: 藻液pH对小球藻Chlorella sp. XQ-200419光合放氧、生长速率、生物质产率、总脂含量和产率都有显著影响, 适宜的pH范围是7.09.0, 在此范围内, 光合放氧、生长速率、生物质产率、总脂含量和产率均保持较高水平, 且pH的影响不显著; pH低于7.0, 高于9.0, 其光合放氧、生长速率、生物质产率、总脂含量和产率都显著降低。这表明pH对小球藻Chlorella sp. XQ-200419光合作用的影响和对生长、产油的影响是一致的。pH 7.08.0, 小球藻的生物质平均面积产率和总脂平均面积产率都达到最大值, 分别是8.9 g/(m2d)和2269.5 mg/(m2d); 当藻液pH超过10.0, 生物质平均面积产率和总脂平均面积产率分别降低42.1%和60.0%。适合于小球藻生长的pH也有利于其积累油脂, 所以, pH对小球藻产油的影响是一种适宜模式, 而非胁迫模式。规模化培养小球藻Chlorella sp. XQ-200419, 通过补充CO2将藻液pH控制在7.09.0内, 可以获得高生物质产率和总脂产率。研究结果反映出pH对小球藻光合作用、生长和产油影响的规律, 也为规模化培养小球藻生产微藻油脂过程中合理控制藻液pH提供了依据。    相似文献   

7.
【目的】筛选具有较快生长速率及较强产油能力的微藻,探究所获得微藻的生理生化性能及不同培养方式对其生物量、产油能力、碳消耗等生长特性的影响与藻种对pH的适应能力。【方法】通过磷酸香草醛测定法及尼罗红染色对微藻进行初筛复筛,通过设置光合自养、异养和混养等3种培养方式,并采用气质联用等方法,研究不同培养方式对所获微藻生长特性、所产油脂脂肪酸组成以及碳代谢等方面的影响。【结果】筛选出两株产油能力较强的藻株H、Z_8,其油脂产量分别可达1.14±0.05 g/L和1.33±0.10 g/L,经形态观察和分子生物学鉴定初步表明藻株H属布朗单针藻(Chlorolobion braunii)、藻株Z_8属链带藻(Desmodesmus intermedius)。构建了不同培养方式下微藻动力学模型,H、Z_8属于生长偶联型。当培养环境的pH处于6.0–9.0,对藻株H、Z_8的总脂量与生物量无明显差异(P0.05)。【结论】筛选获得的藻株H、Z_8中C16与C18脂肪酸占总脂肪酸的比率能达到90%以上。藻种在混养条件下生物量积累优于异养,但异养条件下更加有利于油脂的积累,且H、Z_8均具有较为宽泛的pH适应能力,是具有一定产业化应用潜力的优良产油藻株。  相似文献   

8.
分别从山西省汾河流域、运城盐湖等水体采集水样,使用微挑法、平板涂布法对其中的微藻进行了分离纯化,并对分离得到的29株微藻和购买的3株微藻,进行了高脂藻株的筛选。结果表明:采用干重法对32株微藻的生长量进行测定,其干重介于48.9~422.2 mg/L之间;采用氯仿甲醇法对32株微藻的总脂含量进行测定,其总脂含量介于5.4%DW~30.1%DW之间;采用尼罗红荧光染色法对32株微藻的中性脂相对含量进行测定,其单位体积的荧光值介于4.1~181.5之间。综合评价藻株的总脂产率,最终筛选到山西省NY017盐生杜氏藻(Dunaliella salina)、NY023线形菱形藻(Nitzschia linearis)以及NY025谷皮菱形藻(Nitzschia palea)为高脂藻株,油脂产率分别为3.25、3.03、2.11 mg.L-1.d-1,具有生产生物柴油的潜力。  相似文献   

9.
微藻油脂不仅可以作为功能油脂,同时也是生产生物柴油的重要原料之一。为解决微藻生长与油脂积累之间的矛盾,利用藻菌共培养技术在缺氮条件下将无菌小球藻与细菌以不同初始比例进行共培养,通过测定藻细胞生物量、油脂含量和脂肪酸比例等来研究藻菌共培养对小球藻生长和油脂积累的影响。结果表明,在小球藻与固氮菌B2. 3 70∶1(V/V)共培养体系中,小球藻的生物量和油脂含量较同样条件下单独培养小球藻有了显著提高。其生物量最高可达1. 68g/L、总脂含量为45. 2%、总脂产率为75. 94 mg/(L·d)、中性脂含量为23. 0%及中性脂产率为38. 65mg/(L·d),其生物量和油脂含量分别较单独小球藻培养时提高了66. 3%和47. 7%。同时细菌的加入显著提高了藻细胞内C18∶1脂肪酸的比例。结论表明,通过藻菌共培养技术能够有效提高微藻生物油脂的质量和产量,具有较好的实际利用价值。  相似文献   

10.
微藻被认为是制备生物柴油燃料的理想原料。本文利用尼罗红染色法对宁波大学种质库63株微藻进行筛选,并跟踪中性脂的动态积累过程。得到产油最高的前三种藻为假微型海链藻(Thalassiosira pseudonana)、蛋白核小球藻(Chlorella pyrenoidosa)和绿色巴夫藻(Pavlovaviridis)。而且三种微藻细胞内的中性脂均在指数生长后期或平台期开始大量积累。利用透射电镜观察假微型海链藻不同生长时期脂肪体的变化,结果与尼罗红染色法检测到的中性脂积累情况一致。本研究筛选出的中性脂含量最高的假微型海链藻,在进一步获取其最佳产油培养条件后可能具有开发利用前景。  相似文献   

11.
研究从我国海南博鳌海边的淡水池塘水样分离获得一株绿藻ENN41。显微形态观察表明,ENN41的形态特征属于葡萄藻。进一步克隆ENN41的核糖体小亚基18S rRNA片段,利用分子生物学软件进行比对分析,结果表明ENN41的18S rRNA基因序列与布朗葡萄藻(Botryococcus braunii)同源性最高,说明ENN41为一株布朗葡萄藻(B.braunii)。ENN41在柱式反应器中培养16d,单位体积产率为0.483 g/(Ld),粗烃占干重的含量为56.6%;主要脂肪酸为油酸(C18:1)、十八碳四烯酸(C18:4)和棕榈酸(C16:0),三者之和占总脂肪酸的72.6%;利用尼罗红染色,清晰可见大量的油脂分布在细胞内和胞外基质中。ENN41在板式反应器中培养16d,单位体积产率为0.234 g/(Ld),粗烃占干重的含量为20.0%。上述研究表明,ENN41是具有较高的生长速度和粗烃积累能力的布朗葡萄藻(B.braunii)藻株,具有产业化应用潜力。  相似文献   

12.
产油微藻的分离、筛选及自养培养氮源、碳源的优化   总被引:6,自引:0,他引:6  
从云南滇池的水样中分离筛选得到一株自养产油小球藻(Chlorella vulgaris,C.vulgaris),其油脂产率可达28.6mg/(L·d),进一步考察了不同氮源、氮源浓度和添加无机碳源对其自养生长和油脂积累的影响。结果表明,硝酸钠为优化氮源,氮元素的优化浓度为123mg/L,油脂含量随氮元素浓度升高而降低;添加NaHCO3显著提高了C.vulgaris生物量产率和油脂产率,其优化浓度为800mg/L。在氮源和碳源的优化浓度下,C.vulgaris的最大生物量产率和油脂产率可达332.8mg/(L·d)和100.2mg/(L·d),分别是对照组的3.6和3.4倍。  相似文献   

13.
异养细胞种子/光自养培养方法是一种可异养培养的能源微藻培养的有效方法,但已有文献尚未从工艺优化角度考察其发展潜力。为了获得较高细胞密度的用于光自养培养的种子和提高光自养培养的细胞密度与油脂产率,对异养细胞种子/光自养培养的培养基和培养条件进行了优化。结果表明,采用优化后的培养基,椭圆小球藻在摇瓶中异养培养的最高藻细胞密度可达11.04 g/L,比在初始培养基条件下提高了28.0%,在5 L发酵罐中异养培养的藻细胞密度达到73.89 g/L;在2 L柱式光生物反应器中光自养培养的藻细胞密度、油脂含量和油脂产率分别达1.62 g/L、36.34%和6.1 mg/(L·h),油脂成分主要为含C16-C18碳链的脂肪酸,是制备生物柴油的理想原料。经过优化,异养细胞种子/光自养培养这一方法能够显著地提高椭圆小球藻产油脂的能力,这进一步表明异养细胞种子/光自养培养方法有望成为可异养的能源微藻的高效培养方式。  相似文献   

14.
Microalgae are recognized for serving as a sustainable source for biodiesel production. This study investigated the effect of nitrogen starvation strategies and photobioreactor design on the performance of lipid production and of CO(2) fixation of an indigenous microalga Chlorella vulgaris ESP-31. Comparison of single-stage and two-stage nitrogen starvation strategies shows that single-stage cultivation on basal medium with low initial nitrogen source concentration (i.e., 0.313 g/L KNO(3)) was the most effective approach to enhance microalgal lipid production, attaining a lipid productivity of 78 mg/L/d and a lipid content of 55.9%. The lipid productivity of C. vulgaris ESP-31 was further upgraded to 132.4 mg/L/d when it was grown in a vertical tubular photobioreactor with a high surface to volume ratio of 109.3 m(2)/m(3) . The high lipid productivity was also accompanied by fixation of 6.36 g CO(2) during the 10-day photoautotrophic growth with a CO(2) fixation rate of 430 mg/L/d. Analysis of fatty acid composition of the microalgal lipid indicates that over 65% of fatty acids in the microalgal lipid are saturated [i.e., palmitic acid (C16:0) and stearic acid (C18:0)] and monounsaturated [i.e., oleic acid (C18:1)]. This lipid quality is suitable for biodiesel production.  相似文献   

15.
【背景】藻类是生产生物柴油的主要原料,而一些真菌和细菌能够与藻类共生并提高生物柴油产量,因此藻-菌共生培养技术成为国内外研究的热点。【目的】研究共生真菌Simplicilliumlanosoniveum对衣藻Chlamydomonas reinhardtii细胞生长和脂类合成的影响。【方法】将分离的蓝藻共生真菌和衣藻混合(共生)培养。【结果】与衣藻单独培养相比,混合培养衣藻的比生长速率(0.20 d-1)、细胞产率[0.17 g/(L·d)]和生物量(2.85 g/L)分别提高了10.3%、51.3%和55.7%;脂类比合成速率[0.68 mg/(g·d)]、合成速率[1.95 mg/(L·d)]和含量(220.4 mg/g)分别提高了33.3%、107.5%和32.0%,并且脂类中的饱和脂肪酸以及单不饱和脂肪酸C18-1和C18-2的比例上升,有利于生物柴油的加工。【结论】真菌Simplicilliumlanosoniveum能够促进衣藻的生长和脂类合成,因此藻-菌混合培养可用于生物柴油原料的生产。  相似文献   

16.
能够耐受纤维素预处理中抑制剂的酿酒酵母对高效、经济生产纤维素乙醇至关重要。利用诱变结合驯化工程选育了一株可耐受复合抑制剂(1.3g/L糠醛、5.3g/L乙酸及1.0g/L苯酚)的工业酿酒酵母YYJ003。在pH 4.0的含有抑制剂的培养基中,耐受菌株乙醇产率是原始菌株的7.8倍,糠醛转化速率提高了5倍。在pH 5.5的复合抑制剂条件下,YYJ003发酵时间(16h)比野生菌株发酵时间(22h)缩短6h。在pH 4.0的未脱毒的玉米秸秆水热法预处理水解液中YYJ003的乙醇产率达到0.50g/g(乙醇/葡萄糖),乙醇产速达到4.16g/(L·h),而对照菌株无乙醇产出。  相似文献   

17.
Lipid production is an important indicator for evaluating microalgal species for biodiesel production. In this study, a new green microalga was isolated from a salt lake in Egypt and identified as Asteromonas gracilis. The main parameters such as biomass productivity, lipid content, and lipid productivity were evaluated in A. gracilis, cultivated in nutrient-starved (nitrogen, phosphorous), and salinity stress as a one-factor-at-a-time method. These parameters in general did not vary significantly from the standard nutrient growth media when these factors were utilized separately. Hence, response surface methodology (RSM) was assessed to study the combinatorial effect of different concentrations of the abovementioned factor conditions and to maximize the biomass productivity, lipid content, and lipid productivity of A. gracilis by determining optimal concentrations. RSM optimized media, including 1.36 M NaCl, 1 g/L nitrogen, and 0.0 g/L phosphorus recorded maximum biomass productivity, lipid content, and lipid productivity (40.6 mg/L/day, 39.3%, and 15.9 mg/L/day, respectively) which agreed well with the predicted values (40.1 mg/L/day, 43.6%, and 14.6 mg/L/day, respectively). Fatty acid profile of A. gracilis was composed of C16:0, C16:1, C18:0, C18:3, C18:2, C18:1, and C20:5, and the properties of fuel were also in agreement with international standards. These results suggest that A. gracilis is a promising feedstock for biodiesel production.  相似文献   

18.
A Panax notoginseng cell culture was successfully scaled up from shake flask to 1.0-L bubble column reactor and concentric-tube airlift reactor. High-density bioreactor batch cultivation was carried out using a modified MS medium. The maximum cell density in batch cultures reached 20.1, 21.0 and 24.1 g/L in the shake flask, bubble column and airlift reactors, respectively, and their corresponding biomass productivity was 950, 1140 and 1350 mg/(L x d) for each. The productivity of ginseng saponin was 70, 96 and 99 mg/(L x d) in the flask, bubble column and airlift reactors, respectively; and the polysaccharide productivity reached 104, 119 and 151 mg/(L x d) for each. Furthermore, a fed-batch cultivation strategy was developed on the basis of specific oxygen uptake rate (SOUR), i.e., sucrose feeding before a sharp decrease of SOUR, and the highest cell density of 29.7 g/L was successfully achieved in the airlift bioreactor on day 17 with a very high biomass productivity of 1520 mg/(L x d). The concentrations of ginseng saponin and polysaccharide reached about 2.1 and 3.0 g/L, respectively, and their productivity was 106 (saponin) and 158 mg/(L x d) (polysaccharide). This work successfully demonstrated the high-density bioreactor cultivation of P. notoginseng cells in pneumatically agitated bioreactors and the reproduction of the shake flask culture results in bioreactors. The cell density, biomass productivity, production titer and productivity of both ginseng saponin and polysaccharide obtained here were the highest that have been reported on a reactor scale for all the ginseng species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号