首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
This study aimed to investigate mechanisms of neuromuscular fatigue during maximal concentric and isometric leg extensions inducing similar torque decrements. Nine physically active men performed two separate fatiguing sessions maintained until similar torque decreases were obtained. The first session, only conducted under isokinetic concentric conditions (CON), consisted of three series of 30 maximal voluntary concentric knee extensions (60 degrees/s). The second session, exclusively isometric (ISO), mimicked the torque decreases registered during the CON session while performing three long-lasting ISO contractions. Maximal voluntary torque, activation level (twitch interpolation technique), electromyographic activity (root mean square and median frequency) of the vastus lateralis muscle, and electrically evoked doublet-twitch mechanical properties were measured before and at the end of each of the three series. After the three series, similar torque decrements were obtained for both fatiguing procedures. The total fatiguing contraction durations were not different among procedures. With equivalent voluntary torque decrements, the doublet-twitch amplitude reduction was significantly greater (P<0.01) during the two first series of the CON procedure compared with ISO. No difference was observed for the third series. Although no difference was recorded with fatigue for median frequency changes between CON and ISO, activation levels and root mean square values demonstrated greater reductions (P<0.05) for all three series during the ISO procedure compared with CON. Performing CON or ISO fatiguing exercises demonstrated different fatigue origins. With CON exercises, peripheral fatigue developed first, followed by central fatigue, whereas with ISO exercises the fatigue pattern was inverted.  相似文献   

2.
In the present study, we aimed to provide a robust comparison of the fatigability of the knee extensors following isometric (ISO) and concentric (CON) tasks. Twenty young adults (25 ± 4 yr, 10 women) randomly performed the ISO and CON quadriceps intermittent fatigue test, consisting of ten (5 s on/5-s off, ISO) or one-hundred (0.5-s on/0.5-s off, CON) contractions with 10 % increments per stage until exhaustion. Performance fatigability was quantified as maximal isometric (MVIC) and concentric (MVCC) torque loss. Voluntary activation and contractile function (peak-twitch) were investigated using peripheral nerve stimulation. Number of stages (6.2 ± 0.7 vs. 4.9 ± 0.8; P < 0.001) and torque-time integral (20,166 ± 7,821 vs. 11,285 ± 4,933 Nm.s; P < 0.001) were greater for ISO than CON. MVIC, MVCC and voluntary activation decreased similarly between sessions (P > 0.05) whereas peak-twitch amplitude decreased more for CON (P < 0.001). The number of contractions was similar across sexes (ISO: men = 62 ± 8, women = 61 ± 5; CON: men = 521 ± 67, women = 458 ± 76, P > 0.05). MVCC was more reduced in women for both sessions (all P < 0.05), while MVIC loss was similar between sexes. We concluded that, despite greater torque-time integral and duration for ISO, both sessions induced a similar performance fatigability at exhaustion. Contractile function was more altered in CON. Finally, sex-related difference in fatigability depends on the contraction mode used during testing.  相似文献   

3.
Aim. The purpose of this study was to determine the neuromuscular fatigue profiles during 100 s isometric (ISO), concentric (CON), and eccentric (ECC) activity.

Methods. Twelve subjects (age 25.1±3.7 years, mass 70.1±8.2 kg, mean±SD) performed ISO, CON and ECC maximal voluntary contractions and 100 s endurance trials on an isokinetic dynamometer. Raw EMG data were recorded throughout each trial from the rectus femoris of the right limb. Corresponding data for integrated electromyography (IEMG), percentile frequency shifts (MPFS) and peak torque output were divided into five 5 s epochs and subsequently normalised with the first epoch being the reference point, in order to assess changes over time.

Results. There were no significant differences between ECC, CON and ISO peak torque output (211±63 vs 169±41 vs 177±61 Nm; ECC, CON, ISO) and IEMG activity (280±143 vs 305±146 vs 287±143 mV; ECC, CON, ISO) during maximal contractions. Serial reductions in torque output were greatest in ISO in which torque output during the final epoch was 31±13% of initial values, similar to the final torque values in CON (58±15%), but significantly less than ECC (108.6±38.6%; P<0.001) values. In CON and ECC, IEMG was maintained (95±27% and 93±21%; CON and ECC), whereas IEMG for ISO decreased to 38±13% of initial values. The greatest reduction in MPFS occurred in CON (69±10%) compared to ISO (78±9%; P<0.05) and ECC (93±6%; P<0.001).

Conclusion. These data demonstrate distinct neuromuscular fatigue profiles for the different types of muscle contraction. Whereas eccentric activity was largely fatigue resistant, isometric and concentric contractions displayed different neuromuscular fatigue profiles.  相似文献   


4.
Bilateral deficit (BLD) describes the phenomenon of a reduction in performance during synchronous bilateral (BL) movements when compared to the sum of identical unilateral (UL) movements. Despite a large body of research investigating BLD of maximal voluntary force (MVF) there exist a paucity of research examining the BLD for explosive strength. Therefore, this study investigated the BLD in voluntary and electrically-evoked explosive isometric contractions of the knee extensors and assessed agonist and antagonist neuromuscular activation and measurement artefacts as potential mechanisms. Thirteen healthy untrained males performed a series of maximum and explosive voluntary contractions bilaterally (BL) and unilaterally (UL). UL and BL evoked twitch and octet contractions were also elicited. Two separate load cells were used to measure MVF and explosive force at 50, 100 and 150 ms after force onset. Surface EMG amplitude was measured from three superficial agonists and an antagonist. Rate of force development (RFD) and EMG were reported over consecutive 50 ms periods (0–50, 50–100 and 100–150 ms). Performance during UL contractions was compared to combined BL performance to measure BLD. Single limb performance during the BL contractions was assessed and potential measurement artefacts, including synchronisation of force onset from the two limbs, controlled for. MVF showed no BLD (P = 0.551), but there was a BLD for explosive force at 100 ms (11.2%, P = 0.007). There was a BLD in RFD 50–100 ms (14.9%, P = 0.004), but not for the other periods. Interestingly, there was a BLD in evoked force measures (6.3–9.0%, P<0.001). There was no difference in agonist or antagonist EMG for any condition (P≥0.233). Measurement artefacts contributed minimally to the observed BLD. The BLD in volitional explosive force found here could not be explained by measurement issues, or agonist and antagonist neuromuscular activation. The BLD in voluntary and evoked explosive force might indicate insufficient stabiliser muscle activation during BL explosive contractions.  相似文献   

5.
This study aimed to investigate the motor unit firing property immediately after concentric or eccentric contraction exercise. Eighteen healthy men performed repetitive maximal isokinetic knee extension exercises with only concentric or eccentric contraction until they exerted less than 80% of the baseline strength. Before and after the fatiguing exercise, high-density surface electromyography of the vastus lateralis was recorded during submaximal ramp-up isometric contraction and individual motor units were identified. Only motor units that could be tracked before and after exercise were analyzed. Muscle cross-sectional area of the vastus lateralis was measured using ultrasound, and electrically evoked torque was recorded before and after the exercise. Sixty-five and fifty-three motor units were analyzed before and after the concentric and eccentric contractions, respectively. The results showed that motor units with moderate to high recruitment thresholds significantly decreased recruitment thresholds under both conditions, and the motor unit discharge rates significantly increased after concentric contraction compared to eccentric contraction. A greater muscle cross-sectional area was observed with concentric contraction. The evoked torque was significantly decreased under both conditions, but no difference between the conditions. These results suggest that fatiguing exercise with concentric contraction contributes to greater neural input to muscles and metabolic responses than eccentric contraction.  相似文献   

6.
Muscle force is potentiated by countermovement; this phenomenon is called stretch-shortening cycle (SSC) effect. In this study, we examined the factors strongly related to SSC effect in vivo, focusing on tendon elongation, preactivation, and residual force enhancement. Twelve healthy men participated in this study. Ankle joint angle was passively moved by a dynamometer, with a range of motion from 15° dorsiflexion (DF) to 15° plantarflexion (PF). Muscle contraction was evoked by electrical stimulation, with stimulation timing adjusted to elicit three types of contraction: (1) concentric contraction without preliminary contraction (CON), (2) concentric contraction after preliminary eccentric contraction (ECC), and (3) concentric contraction after preliminary isometric contraction (ISO). Joint torque was recorded at DF5°, PF0°, and PF5°, respectively. SSC effect was calculated as the ratio of joint torque obtained in ECC or ISO with respect to that obtained in CON at the aforementioned three joint angles. SSC effect was prominent in the first half of movement in both ECC (DF5°, 329.3 ± 101.2%; PF0°, 159.2 ± 29.4%; PF5°, 125.5 ± 20.8%) and ISO (DF5°, 276.4 ± 87.0%; PF0°, 134.5 ± 24.5%; PF5°, 106.8 ± 18.0%) conditions. SSC effect was significantly larger in ECC than in ISO at all joint angles (P < 0.001). Even without preliminary eccentric contraction (i.e., ISO condition), SSC effect was clearly large, indicating that a significant part of SSC effect is derived from preactivation. However, the active lengthening-induced force potentiation mechanism (residual force enhancement) also contributes to SSC effect.  相似文献   

7.
This study aimed to clarify the influence of the intensity of a conditioning contraction on subsequent isometric twitch and maximal voluntary concentric torques. Subjects (n=12men) performed voluntary isometric plantar flexion for six seconds as a conditioning contraction, at intensities of 40%, 60%, 80% and 100% of a maximal voluntary isometric contraction (MVIC). Before and immediately after the conditioning contraction, isometric twitch and maximal voluntary concentric (180°/s) plantar flexion torques were determined. Surface electromyograms were recorded from the triceps surae muscles and M-wave amplitudes and root-mean-square values of the electromyographic signals (RMS(EMG)) were calculated. The isometric twitch torque increased significantly after conditioning contraction at all intensities (P<0.05), whereas maximal voluntary concentric torque increased significantly only at 80% and 100% MVIC conditions (P<0.05). It is concluded that during a six second conditioning contraction, the effect of the intensity of a conditioning contraction on subsequent torque development is different between an isometric twitch and maximal voluntary concentric contractions, with the latter being less affected.  相似文献   

8.
Electromechanical delay (EMD) in isometric contractions of knee extensors evoked by voluntary, tendon reflex (TR) and electrical stimulation (ES) was investigated in 21 healthy young subjects. The subject performed voluntary knee extensions with maximum effort (maximal voluntary contraction, MVC), and at 30%, 60% and 80% MVC. Patellar tendon reflexes were evoked with the reflex hammer being dropped from 60°, 75° and 90° positions. In the percutaneous ES evoked contractions, single switches were triggered with pulses of duration 1.0 ms and of intensities 90, 120 and 150 V. Electromyograms of the vastus lateralis and rectus femoris muscles were recorded using surface electrodes. The isometric knee extension force was recorded using a load cell force transducer connected to the subject's lower leg. The major finding of this study was that EMD of the involuntary contractions [e.g. mean 22.1 (SEM 1.32) ms in TR 90°; mean 17.2 (SEM 0.62) ms in ES 150 V] was significantly shorter than that of the voluntary contractions [e.g. mean 38.7 (SEM 1.18) ms in MVC,P < 0.05]. The relationships between EMD, muscle contractile properties and muscle fibre conduction velocity were also investigated. Further study is needed to explain fully the EMD differences found between the voluntary and involuntary contractions.  相似文献   

9.
High intensity strength training causes changes in steroid hormone concentrations. This could be altered by the muscular contraction type: eccentric or concentric. The aim of this study was to compare the effect of the completion of a short concentric (CON) and concentric/eccentric (CON/ECC) trial on the urinary steroid profile, both with the same total work. 18 males performed the trials on an isokinetic dynamometer (BIODEX III) exercising quadriceps muscles, right and left, on different days. Trial 1(CON): 4×10 Concentric knee extension + relax knee flexion, speed 60°/second; rest 90 seconds between each series and 4 minutes between each leg exercise. Trial 2(CON/ECC): 4×5 concentric knee extension + Eccentric knee flexion under similar conditions. Urine samples were taken before the exercise and one hour after finishing it. Androsterone, Etiocholanolone, DHEA, Androstenedione, Testosterone, Epitestosterone, Dehydrotestosterone, Estrone, B-Estradiol, Tetrahydrocortisone, Tetrahydrocortisol, Cortisone and Cortisol (free, glucoconjugated and sulfoconjugated) urinary values were determined using gas chromatography/mass spectrometry techniques. No significant differences were noted in Total Work and Average Peak Torque, although Maximum Peak Torque in the CON/ECC trial was higher than in the CON trial. These results demonstrate no changes in the steroid profile before and after trials, or when comparing CON to CON/ECC trials. The data suggest that eccentric contractions do not cause hormonal changes different to the ones produced by concentric contractions, when they are performed in strength short trials with the same total workload.  相似文献   

10.
Explosive torque has been demonstrated to relate to static balance. However, sports injuries occur dynamically and unpredictably, yet the relationship between explosive torque and balance response to dynamic perturbations is unknown. This study investigated the relationship between explosive torque of the plantar flexors and knee extensors and the centre of mass (COM) response to unexpected perturbations. Thirty-three healthy subjects (17 females, 16 males) were assessed for maximal and explosive isometric knee extension (KE) and plantar flexion (PF) torque and COM response (velocity (COMV), displacement (COMD)) to unexpected platform translations. Relationships between explosive torque and balance measures were investigated using Pearson’s correlation and multiple regression. A negative relationship between PF explosive torque at 50, 100, and 150 ms and COMV at 300, 400, and 500 ms (r = −0.363 to −0.508, p ≤ 0.049), and COMD at 400 and 500 ms (r = −0.349 to −0.416, p ≤ 0.046) was revealed. A negative relationship between KE explosive torque at 50, 100, and 150 ms and COMV at 400 ms (r = −0.381 to −0.411, p ≤ 0.029) but not COMD was also revealed. Multiple regression found PF 100 ms predicted 17.3% of variability in COMD at 500 ms and 25.8% of variability in COMV at 400 ms. These results suggest that producing torque rapidly may improve COM response to unexpected perturbation.  相似文献   

11.
The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender.  相似文献   

12.
A modified Cybex II isokinetic dynamometer was used to evaluate the problems associated with measuring the concentric force-velocity characteristics of human knee extensor muscles. Three contraction protocols were investigated, simple voluntary contractions (VC); releases from maximal voluntary isometric contractions (VR) and releases from. isometric femoral nerve stimulated contractions (FNR). Percutaneous stimulation of the quadriceps was unsuitable for dynamic contractions as the proportion of the muscle activated varied with the angle of knee flexion. Isometric length-tension relationships and isokinetic contractions at seven angular velocities between 0.5 and 5.2 rad · s–1 were recorded in five subjects. During isometric and slow dynamic contractions the voluntary forces were often greater than those obtained by femoral nerve stimulation, probably due to subjects stretching the rectus femoris during voluntary manoeuvres. It was found that the VC protocol produced acceptable isokinetic force recordings only at velocities below 3.1 rad · s–1 in most subjects whilst VR contractions resulted in unexpectedly low forces at velocities below 1.57 rad · s–1. Of the three techniques employed, FNR, although uncomfortable for subjects, provided the most accurate and reliable method of measuring force-velocity characteristics of knee extensor muscles. FNR contractions produced a force-velocity curve which showed a smooth decline in force with increasing velocity up to 5.2 rad · s–1. VC contractions appear to be an acceptable alternative for testing the muscles provided the angular velocity is less than 3.1 rad · s–1 and the subjects can be prevented from stretching the rectus femoris during the movement.  相似文献   

13.
Postactivation potentiation (PAP), a mechanism by which the torque of a muscle twitch is increased following a conditioning contraction, is well documented in muscular physiology, but little is known about its effect on the maximal rate of torque development and functional significance during voluntary movements. The objective of this study was to investigate the PAP effect on the rate of isometric torque development of electrically induced and voluntary contractions. To that purpose, the electromechanical responses of the thumb adductor muscles to a single electrical stimulus (twitch), a train of 15 pulses at 250 Hz (HFT(250)), and during ballistic (i.e., rapid torque development) voluntary contractions at torque levels ranging from 10 to 75% of maximal voluntary contraction (MVC) were recorded before and after a conditioning 6-s MVC. The results showed that the rate of torque development was significantly (P < 0.001) increased after the conditioning MVC, but the effect was greater for the twitch ( approximately 200%) compared with the HFT(250) ( approximately 17%) or ballistic contractions (range: 9-24%). Although twitch potentiation was maximal immediately after the conditioning MVC, maximal potentiation for HFT(250) and ballistic contractions was delayed to 1 min after the 6-s MVC. Furthermore, the similar degree of potentiation for the rate of isometric torque development between tetanic and voluntary ballistic contractions indicates that PAP is not related to the modality of muscle activation. These observations suggest that PAP may be considered as a mechanism that can influence our contractions during daily tasks and can be utilized to improve muscle performance in explosive sports.  相似文献   

14.
IntroductionThe aim of this study was to assess the effects of neuromuscular fatigue on stretch reflex-related torque and electromyographic activity of spastic knee extensor muscles in hemiplegic patients. The second aim was to characterize the time course of quadriceps muscle fatigue during repetitive concentric contractions.MethodsEighteen patients performed passive, isometric and concentric isokinetic evaluations before and after a fatigue protocol using an isokinetic dynamometer. Voluntary strength and spasticity were evaluated following the simultaneous recording of torque and electromyographic activity of rectus femoris (RF), vastus lateralis (VL) and biceps femoris (BF).ResultsIsometric knee extension torque and the root mean square (RMS) value of VL decreased in the fatigued state. During the fatigue protocol, the normalized peak torque decreased whereas the RMS of RF and BF increased between the first five and last five contractions. There was a linear decrease in the neuromuscular efficiency-repetitions relationships for RF and VL. The peak resistive torque and the normalized RMS of RF and VL during passive stretching movements were not modified by the fatigue protocol for any stretch velocity.DiscussionThis study showed that localized quadriceps muscle fatigue caused a decrease in voluntary strength which did not modify spasticity intensity. Changes in the distribution of muscle fiber type, with a greater number of slow fibers on the paretic side, may explain why the stretch reflex was not affected by fatigue.  相似文献   

15.
The aim of this study was to investigate the differences in the length-dependent changes in quadriceps muscle torque during voluntary isometric and isokinetic contractions performed after severe muscle-damaging exercise. Thirteen physically active men (age = 23.8 ± 3.2 years, body weight = 77.2 ± 4.5 kg) performed stretch-shortening cycle (SSC) exercise comprising 100 drop jumps with 30-second intervals between each jump. Changes in the voluntary and electrically evoked torque in concentric and isometric conditions at different muscle lengths, muscle soreness, and plasma creatine kinase (CK) activity were assessed within 72 hours after SSC exercise. Isokinetic knee extension torque decreased significantly (p < 0.05) at all joint angles after SSC exercise. At 2 minutes and at 72 hours after SSC exercise, the changes in knee torque were significantly smaller at 80° (where 180° = full knee extension) than at 110-130°. At 2 minutes after SSC exercise, the optimal angle for isokinetic knee extension torque shifted by 9.5 ± 8.9° to a longer muscle length (p < 0.05). Electrically induced torque at low-frequency (20-Hz) stimulation decreased significantly more at a knee joint angle of 130° than at 90°. The subjects felt acute muscle pain and CK activity in the blood increased to 1,593.9 ± 536.2 IU·L?1 within 72 hours after SSC exercise (p < 0.05). This study demonstrates that the effect of muscle-damaging exercise on isokinetic torque is greatest for contractions at short muscle lengths. These findings have practical importance because the movements in most physical activities are dynamic in nature, and the decrease in torque at various points in the range of motion during exercise might affect overall performance.  相似文献   

16.
The aim of the study was to examine alterations in contractile and neural processes in response to an isometric fatiguing contraction performed with EMG feedback (constant-EMG task) when exerting 40% of maximal voluntary contraction (MVC) torque with the knee extensor muscles. A task with a torque feedback (constant-torque task) set at a similar intensity served as a reference task. Thirteen men (26+/-5 yr) attended two experimental sessions that were randomized across days. Endurance time was greater for the constant-EMG task compared with the constant-torque task (230+/-156 s vs. 101+/-32s, P<0.01). Average EMG activity for the knee extensor muscles increased from 33.5+/-4.5% to 54.7+/-21.7% MVC EMG during the constant-torque task (P<0.001), whereas the torque exerted during the constant-EMG task decreased from 42.8+/-3.0% to 17.9+/-5.6% MVC torque (P<0.001). Comparable reductions in knee extensors MVC (-15.7+/-8.7% for the constant-torque task vs. -17.5+/-9.8% for the constant-EMG task, P>0.05) and voluntary activation level were observed at exhaustion. In contrast, excitation-contraction coupling process, assessed with an electrically evoked twitch and doublet, was altered significantly more at the end of the constant-EMG task despite the absence of M-wave changes for both tasks. Present results suggest that prolonged contractions using EMG biofeedback should be used cautiously in rehabilitation programs.  相似文献   

17.
We investigated the capacity for torque development and muscle activation at the onset of fast voluntary isometric knee extensions at 30, 60, and 90 degrees knee angle. Experiments were performed in subjects (n = 7) who had high levels (>90%) of activation at the plateau of maximal voluntary contractions. During maximal electrical nerve stimulation (8 pulses at 300 Hz), the maximal rate of torque development (MRTD) and torque time integral over the first 40 ms (TTI40) changed in proportion with torque at the different knee angles (highest values at 60 degrees ). At each knee angle, voluntary MRTD and stimulated MRTD were similar (P < 0.05), but time to voluntary MRTD was significantly longer. Voluntary TTI40 was independent (P > 0.05) of knee angle and on average (all subjects and angles) only 40% of stimulated TTI40. However, among subjects, the averaged (across knee angles) values ranged from 10.3 +/- 3.1 to 83.3 +/- 3.2% and were positively related (r2 = 0.75, P < 0.05) to the knee-extensor surface EMG at the start of torque development. It was concluded that, although all subjects had high levels of voluntary activation at the plateau of maximal voluntary contraction, among subjects and independent of knee angle, the capacity for fast muscle activation varied substantially. Moreover, in all subjects, torque developed considerably faster during maximal electrical stimulation than during maximal voluntary effort. At different knee angles, stimulated MRTD and TTI40 changed in proportion with stimulated torque, but voluntary MRTD and TTI40 changed less than maximal voluntary torque.  相似文献   

18.
Although activity of the rectus femoris (RF) differs from that of the other synergists in quadriceps femoris muscle group during physical activities in humans, it has been suggested that the activation pattern of the vastus intermedius (VI) is similar to that of the RF. The purpose of present study was to examine activation of the VI during isometric hip flexion. Ten healthy men performed isometric hip flexion contractions at 25%, 50%, 75%, and 100% of maximal voluntary contraction at hip joint angles of 90°, 110° and 130°. Surface electromyography (EMG) was used to record activity of the four quadriceps femoris muscles and EMG signals were root mean square processed and normalized to EMG amplitude during an isometric knee extension with maximal voluntary contraction. The normalized EMG was significantly higher for the VI than for the vastus medialis during hip flexion at 100% of maximal voluntary contraction at hip joint angles of 110° and 130° (P < 0.05). The onset of VI activation was 230–240 ms later than the onset of RF activation during hip flexion at each hip joint angle, which was significantly later than during knee extension at 100% of maximal voluntary contraction (P < 0.05). These results suggest that the VI is activated later than the RF during hip flexion. Activity of the VI during hip flexion might contribute to stabilize the knee joint as an antagonist and might help to smooth knee joint motion, such as in the transition from hip flexion to knee extension during walking, running and pedaling.  相似文献   

19.
We studied the effect of pennate vs. fusiform muscle architecture on the rate of torque development (RTD) by examining the predominately fusiform elbow flexors (EF) and highly-pennate knee extensors (KE). Seventeen male volunteers (28.4 ± 6.2 years) performed explosive isometric EF and KE contractions (MVCs). Biceps brachii and vastus lateralis fascicle angles were measured to confirm their architecture, and both the rate of voluntary muscle activation (root-mean-square EMG in the 50 ms before contraction onset; EMG-50) and electromechanical delay (EMD; depicting muscle-tendon series elasticity) were assessed as control variables to account for their influence on RTD. MVC torque, early (RTD50) and late (RTD200) RTDs were calculated and expressed as absolute and normalized values. Absolute MVC torque (+412%), RTD50 (+215%), and RTD200 (+427%) were significantly (p < 0.001) higher in KE than EF. However, EF RTD50 was faster (+178%) than KE after normalization (p = 0.02). EMG-50 and EMD did not differ between muscle groups. The results suggest that the faster absolute RTD in KE is largely associated with its higher maximal torque capacity, however in the absence of differences in rates of muscle activation, fiber type, and EMD the fusiform architecture of EF may be considered a factor allowing its faster early RTD relative to strength capacity.  相似文献   

20.
Analysis of functional movements using surface electromyography (EMG) often involves recording both eccentric and concentric muscle activity during a stretch-shorten cycle (SSC). The techniques used for amplitude normalization are varied and are independent of the type of muscle activity involved. The purpose of this study was: (i) to determine the effect of 11 amplitude normalization techniques on the coefficient of variation (CV) during the eccentric and concentric phases of the SSC; and (ii) to establish the effect of the normalization techniques on the EMG signal under variable load and velocity. The EMG signal of the biceps brachii of eight normal subjects was recorded under four SSC conditions and three levels of isometric contraction. The 11 derived normalization values were total rms, mean rms and peak rms (100 ms time constant) for the isometric contractions and the mean rms and peak rms values of the ensemble values for each set of isotonic contractions. Normalization using maximal voluntary isometric contractions (MVIC), irrespective of rms processing (total, mean or peak), demonstrated greater CV above the raw data for both muscle actions. Mean ensemble values and submaximal isometric recordings reduced the CV of concentric data. No amplitude normalization technique reduced the CV for eccentric data under loaded conditions. An ANOVA demonstrated significant (P < 0.01) main effects for load and velocity on concentric raw data and an interaction (P < 0.05) for raw eccentric data. No significant effects were demonstrated for changes in velocity when the data were normalized using mean rms values. The reduction of the CV should not be at the expense of true biological variance and current normalization techniques poorly serve the analysis of eccentric muscle activity during the SSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号