首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change and invasive species pose important conservation issues separately, and should be examined together. We used existing long term climate datasets for the US to project potential climate change into the future at a finer spatial and temporal resolution than the climate change scenarios generally available. These fine scale projections, along with new species distribution modeling techniques to forecast the potential extent of invasive species, can provide useful information to aide conservation and invasive species management efforts. We created habitat suitability maps for Pueraria montana (kudzu) under current climatic conditions and potential average conditions up to 30 years in the future. We examined how the potential distribution of this species will be affected by changing climate, and the management implications associated with these changes. Our models indicated that P. montana may increase its distribution particularly in the Northeast with climate change and may decrease in other areas.  相似文献   

2.
Climate change presents a new challenge for the management of invasive exotic species that threaten both biodiversity and agricultural productivity. The invasion of exotic perennial grasses throughout the globe is particularly problematic given their impacts on a broad range of native plant communities and livelihoods. As the climate continues to change, pre-emptive long-term management strategies for exotic grasses will become increasingly important. Using species distribution modelling we investigated potential changes to the location of climatically suitable habitat for some exotic perennial grass species currently in Australia, under a range of future climate scenarios for the decade centred around 2050. We focus on eleven species shortlisted or declared as the Weeds of National Significance or Alert List species in Australia, which have also become successful invaders in other parts of the world. Our results indicate that the extent of climatically suitable habitat available for all of the exotic grasses modelled is projected to decrease under climate scenarios for 2050. This reduction is most severe for the three species of Needle Grass (genus Nassella) that currently have infestations in the south-east of the continent. Combined with information on other aspects of establishment risk (e.g. demographic rates, human-use, propagule pressure), predictions of reduced climatic suitability provide justification for re-assessing which weeds are prioritised for intensive management as the climate changes.  相似文献   

3.
Climate change and invasive species are two of the most serious threats of biodiversity. A general concern is that these threats interact, and that a globally warming climate could favour invasive species. In this study we investigate the invasive potential of one of the “100 of the world’s worst invasive species”, the big-headed ant Pheidole megacephala. Using ecological niche models, we estimated the species’ potential suitable habitat in 2020, 2050 and 2080. With an ensemble forecast obtained from five different modelling techniques, 3 Global Circulation Models and 2 CO2 emission scenarios, we generated world maps with suitable climatic conditions and assessed changes, both qualitatively and quantitatively. Almost one-fifth (18.5 %) of the landmass currently presents suitable climatic conditions for P. megacephala. Surprisingly, our results also indicate that the invasion of big-headed ants is not only unlikely to benefit from climate change, but may even suffer from it. Our projections show a global decrease in the invasive potential of big-headed ants as early as 2020 and becoming even stronger by 2080 reaching a global loss of 19.4 % of area with favourable climate. The decrease is observable in all 6 broad regions, being greatest in the Oceania and lowest in Europe.  相似文献   

4.
Interactions between climate change and non-native invasive species may combine to increase invasion risk to native ecosystems. Changing climate creates risk as new terrain becomes climatically suitable for invasion. However, climate change may also create opportunities for ecosystem restoration on invaded lands that become climatically unsuitable for invasive species. Here, I develop a bioclimatic envelope model for cheatgrass ( Bromus tectorum ), a non-native invasive grass in the western US, based on its invaded distribution. The bioclimatic envelope model is based on the Mahalanobis distance using the climate variables that best constrain the species' distribution. Of the precipitation and temperature variables measured, the best predictors of cheatgrass are summer, annual, and spring precipitation, followed by winter temperature. I perform a sensitivity analysis on potential cheatgrass distributions using the projections of 10 commonly used atmosphere–ocean general circulation models (AOGCMs) for 2100. The AOGCM projections for precipitation vary considerably, increasing uncertainty in the assessment of invasion risk. Decreased precipitation, particularly in the summer, causes an expansion of suitable land area by up to 45%, elevating invasion risk in parts of Montana, Wyoming, Utah, and Colorado. Conversely, increased precipitation reduces habitat by as much as 70%, decreasing invasion risk. The strong influence of precipitation conditions on this species' distribution suggests that relying on temperature change alone to project future change in plant distributions may be inadequate. A sensitivity analysis provides a framework for identifying key climate variables that may limit invasion, and for assessing invasion risk and restoration opportunities with climate change.  相似文献   

5.
Global species range dynamics are intrinsically influenced by the interplay between human activities and climate compatibility. Snowflake coral (Carijoa riisei) is a soft octacoral species that belongs to the family Clavulariidae and can rapidly grow to colonise new habitats. This species has successfully colonised numerous habitats, displacing native species and disrupting the ecological balance in the introduced habitats. Recent investigations into species invasions in aquatic ecosystems suggest that anthropogenic activities and climate change will accelerate the introduction, establishment, and spread of invasive species to new habitats. In this study, we utilised ensemble species distribution modelling to investigate shifts in the invasive potential of Snowflake coral in current and future climatic settings on a global scale. Future distribution was forecasted using four Representative Concentration Pathways (RCPs 2.6, 4.5, 6.0, and 8.5) across two periods (2040–2050 and 2090–2100). The results accurately predicted the known distributional range of the species. Temperature, distance to the port, and bathymetry were identified as the three most significant predictor variables. The low and medium habitat suitability regions increased in all scenarios and periods. In the high habitat suitability category, only RCP 4.5 and RCP 6.0 in the 2090–2100 period exhibited an increase in percentage area. Under the worst-case climate scenario, RCP 8.5 (2090–2100), the high-suitability regions displayed a surprising decline in area percentage, which can be attributed to the temperature thresholds of the species. Our findings indicate that the species has a greater potential to spread under current climatic conditions than previously reported, and its expansion may further accelerate in the future. This highlights the urgent need for more intensive surveys employing advanced detection tools and the implementation of proactive management measures to protect vulnerable ecosystems that could be impacted by this species.  相似文献   

6.
Wild-type I. cylindrica (cogongrass) is one of the top ten worst invasive plants in the world, negatively impacting agricultural and natural resources in 73 different countries throughout Africa, Asia, Europe, New Zealand, Oceania and the Americas1-2. Cogongrass forms rapidly-spreading, monodominant stands that displace a large variety of native plant species and in turn threaten the native animals that depend on the displaced native plant species for forage and shelter. To add to the problem, an ornamental variety [I. cylindrica var. koenigii (Retzius)] is widely marketed under the names of Imperata cylindrica ''Rubra'', Red Baron, and Japanese blood grass (JBG). This variety is putatively sterile and noninvasive and is considered a desirable ornamental for its red-colored leaves. However, under the correct conditions, JBG can produce viable seed (Carol Holko, 2009 personal communication) and can revert to a green invasive form that is often indistinguishable from cogongrass as it takes on the distinguishing characteristics of the wild-type invasive variety4 (Figure 1). This makes identification using morphology a difficult task even for well-trained plant taxonomists. Reversion of JBG to an aggressive green phenotype is also not a rare occurrence. Using sequence comparisons of coding and variable regions in both nuclear and chloroplast DNA, we have confirmed that JBG has reverted to the green invasive within the states of Maryland, South Carolina, and Missouri. JBG has been sold and planted in just about every state in the continental U.S. where there is not an active cogongrass infestation. The extent of the revert problem in not well understood because reverted plants are undocumented and often destroyed.Application of this molecular protocol provides a method to identify JBG reverts and can help keep these varieties from co-occurring and possibly hybridizing. Cogongrass is an obligate outcrosser and, when crossed with a different genotype, can produce viable wind-dispersed seeds that spread cogongrass over wide distances5-7. JBG has a slightly different genotype than cogongrass and may be able to form viable hybrids with cogongrass. To add to the problem, JBG is more cold and shade tolerant than cogongrass8-10, and gene flow between these two varieties is likely to generate hybrids that are more aggressive, shade tolerant, and cold hardy than wild-type cogongrass. While wild-type cogongrass currently infests over 490 million hectares worldwide, in the Southeast U.S. it infests over 500,000 hectares and is capable of occupying most of the U.S. as it rapidly spreads northward due to its broad niche and geographic potential3,7,11. The potential of a genetic crossing is a serious concern for the USDA-APHIS Federal Noxious Week Program. Currently, the USDA-APHIS prohibits JBG in states where there are major cogongrass infestations (e.g., Florida, Alabama, Mississippi). However, preventing the two varieties from combining can prove more difficult as cogongrass and JBG expand their distributions. Furthermore, the distribution of the JBG revert is currently unknown and without the ability to identify these varieties through morphology, some cogongrass infestations may be the result of JBG reverts. Unfortunately, current molecular methods of identification typically rely on AFLP (Amplified Fragment Length Polymorphisms) and DNA sequencing, both of which are time consuming and costly. Here, we present the first cost-effective and reliable PCR-based molecular genotyping method to accurately distinguish between cogongrass and JBG revert.  相似文献   

7.
As the range of the invasive and highly polyphagous gypsy moth (Lymantria dispar) expands, it increasingly overlaps with forest areas that have been subject to invasion by non-native shrubs. We explored the potential for interactions between these co-occurring invasions through a gypsy moth feeding trial using the following three highly invasive, exotic shrubs: honeysuckle (Lonicera maackii), privet (Ligustrum sinense) and burning bush (Euonymus alatus). We compared these with two native shrubs: spicebush (Lindera benzoin) and pawpaw (Asimina triloba). We fed gypsy moth caterpillars foliage exclusively from one of the five shrubs and measured their relative consumptive rate (RCR), relative growth rate (RGR), and development time (DT). The RCR of gypsy moth was strongly influenced by the species of foliage (F = 31.9; P < 0.0001) with little or no consumption of honeysuckle and privet. Caterpillar RGR was influenced by the shrub species (F = 66.2; P < 0.0001), and those caterpillars fed spicebush, honeysuckle or privet lost weight over the course of the assay. Caterpillar DT was also significantly (F = 11.79, P < 0.0001) influenced by the shrub species and those fed honeysuckle, privet and spicebush died prior to molting. Overall, our data suggest that honeysuckle, privet, and spicebush could benefit (indirectly) from the invasion of gypsy moth, while burning bush and pawpaw could be negatively impacted due to direct effects (herbivory). Similarly, invading gypsy moth populations could be sustained on a shrub layer of burning bush and pawpaw in the event of canopy defoliation. Further field and laboratory analysis is needed to clarify herbivore resistance of invasive shrubs, and to investigate the potential interactions among co-occurring insect and plant invasions.  相似文献   

8.
Cogongrass (Imperata cylindria) is an invasive weed and harmful to ecological systems and agricultural production in many countries. It was found that plant extracts and root exudates of sweet potato (Ipomoea batatas) exhibit allelopathic potential and inhibit the growth of cogongrass to a greater extent than either barnyardgrass (Echinochloa crus-galli), Indian goose-grass (Eleushine indica), or lettuce (Lactuca sativa) in bioassays. Greenhouse trials indicated that sweet potato soil reduced the emergence of the noxious weed by 50 %, yet exhibited either weaker inhibition or the promotion of barnyardgrass, Bidens (Bidens pilosa), and Leucaena (Leucaena leucocephala), while the desired growth of upland rice (Oryza sativa) was not affected. In cogongrass fields, the incorporation of 1–2 tons aboveground parts and cultivation of sweet potato provided 80–85 % weed control. On the other hand, the reduction of congograss in fields may be offset by the alternate invasion of B. pilosa which multiplied its biomass by 2–6 times with sweet potato amended soils. The findings of this study indicate that sweet potato is an effective crop in the biologic management of the invasive cogongrass in agricultural fields, thus the interactive mechanism between sweet potato and the invasive weed demands further investigation. Ecologically, this study highlights the specificity of allelopathic interactions between cogongrass and sweet potato that is helpful to minimize the disturbance from infestation of this invasive weed against native species and crops.  相似文献   

9.

Background

Climate change is increasingly being implicated in species'' range shifts throughout the world, including those of important vector and reservoir species for infectious diseases. In North America (México, United States, and Canada), leishmaniasis is a vector-borne disease that is autochthonous in México and Texas and has begun to expand its range northward. Further expansion to the north may be facilitated by climate change as more habitat becomes suitable for vector and reservoir species for leishmaniasis.

Methods and Findings

The analysis began with the construction of ecological niche models using a maximum entropy algorithm for the distribution of two sand fly vector species (Lutzomyia anthophora and L. diabolica), three confirmed rodent reservoir species (Neotoma albigula, N. floridana, and N. micropus), and one potential rodent reservoir species (N. mexicana) for leishmaniasis in northern México and the United States. As input, these models used species'' occurrence records with topographic and climatic parameters as explanatory variables. Models were tested for their ability to predict correctly both a specified fraction of occurrence points set aside for this purpose and occurrence points from an independently derived data set. These models were refined to obtain predicted species'' geographical distributions under increasingly strict assumptions about the ability of a species to disperse to suitable habitat and to persist in it, as modulated by its ecological suitability. Models successful at predictions were fitted to the extreme A2 and relatively conservative B2 projected climate scenarios for 2020, 2050, and 2080 using publicly available interpolated climate data from the Third Intergovernmental Panel on Climate Change Assessment Report. Further analyses included estimation of the projected human population that could potentially be exposed to leishmaniasis in 2020, 2050, and 2080 under the A2 and B2 scenarios. All confirmed vector and reservoir species will see an expansion of their potential range towards the north. Thus, leishmaniasis has the potential to expand northwards from México and the southern United States. In the eastern United States its spread is predicted to be limited by the range of L. diabolica; further west, L. anthophora may play the same role. In the east it may even reach the southern boundary of Canada. The risk of spread is greater for the A2 scenario than for the B2 scenario. Even in the latter case, with restrictive (contiguous) models for dispersal of vector and reservoir species, and limiting vector and reservoir species occupancy to only the top 10% of their potential suitable habitat, the expected number of human individuals exposed to leishmaniasis by 2080 will at least double its present value.

Conclusions

These models predict that climate change will exacerbate the ecological risk of human exposure to leishmaniasis in areas outside its present range in the United States and, possibly, in parts of southern Canada. This prediction suggests the adoption of measures such as surveillance for leishmaniasis north of Texas as disease cases spread northwards. Potential vector and reservoir control strategies—besides direct intervention in disease cases—should also be further investigated.  相似文献   

10.
Future climate change has been predicted to affect the potential distribution of plant species. However, only few studies have addressed how invasive species may respond to future climate change despite the known effects of plant species invasion on nutrient cycles, ecosystem functions, and agricultural yields. In this study, we predicted the potential distributions of two invasive species, Rumex crispus and Typha latifolia, under current and future (2050) climatic conditions. Future climate scenarios considered in our study include A1B, A2, A2A, B1, and B2A. We found that these two species will lose their habitat under the A1B, A2, A2A, and B1 scenarios. Their distributions will be maintained under future climatic conditions related to B2A scenarios, but the total area will be less than 10% of that under the current climatic condition. We also investigated variations of the most influential climatic variables that are likely to cause habitat loss of the two species. Our results demonstrate that rising mean annual temperature, variations of the coldest quarter, and precipitation of the coldest quarter are the main factors contributing to habitat loss of R. crispus. For T. latifolia, the main factors are rising mean annual temperature, variations in temperature of the coldest quarter, mean annual precipitation, and precipitation of the coldest quarter. These results demonstrate that the warmer and wetter climatic conditions of the coldest season (or month) will be mainly responsible for habitat loss of R. crispus and T. latifolia in the future. We also discuss uncertainties related to our study (and similar studies) and suggest that particular attention should be directed toward the manner in which invasive species cope with rapid climate changes because evolutionary change can be rapid for species that invade new areas.  相似文献   

11.
The invasion of ecosystems by non-native species is a major driver of biodiversity loss worldwide. A critical component of effective land management to control invasion is the identification and active protection of areas at high risk of future invasion. The Appalachian Trail Decision Support System (A.T.-DSS) was developed to inform regional natural resource management by integrating remote sensing data, ground-based measurements and predictive modelling products. By incorporating NASA''s remote sensing data and modelling capacities from the Terrestrial Observation and Prediction System (TOPS), this study examined the current habitat suitability and projected suitable habitat for the invasive species tree-of-heaven (Ailanthus altissima) as a prototype application of the A.T.-DSS. Species observations from forest surveys, geospatial data, climatic projections and maximum entropy modelling were used to identify regions potentially susceptible to tree-of-heaven invasion. The modelling result predicted a 48% increase in suitable area over the study area, with significant expansion along the northern extremes of the Appalachian Trail.  相似文献   

12.
《Journal of Asia》2019,22(3):666-674
Climate change and land-use change are the most powerful drivers for the invasion of alien species. To understand the integrated effects of these two drivers on pest invasion risk in the future, this study assessed how they impact the invasion risk of Thrips palmi Karny, which is the most serious invasive species in the Korean peninsula. The potential distribution of T. palmi was projected with a MaxEnt model for current and future climate change scenarios (RCP 4.5 and 8.5) based on occurrence records. The potential distribution extends to the north over time, except the eastern high mountainous area, for both RCPs in 2075. The MaxEnt outputs were filtered with agricultural area using data from three land-use change scenarios derived from the Shared Socio-economic Pathways (SSPs), because T. palmi populations can only be sustained in agricultural areas. The potential risk of T. palmi, based on the potential distribution probability in the future agricultural area, increased over time under all RCPs-SSPs combinations. The total area of T. palmi occurrence increased under RCPs-SSP1 and -SSP2 but decreased under RCPs-SSP3, due to agricultural areas being converted to urban areas. In conclusion, based on future climate change scenarios, T. palmi could be distributed throughout the Korean peninsula in the future. The invasion risk in agricultural areas will increase substantially; thus, intensive control measures for T. palmi are required in the future. Our research suggests that using both climate change and land-use change in pest risk mapping study can provide informative data for management strategy.  相似文献   

13.
Pest Risk Assessments (PRAs) routinely employ climatic niche models to identify endangered areas. Typically, these models consider only climatic factors, ignoring the ‘Swiss Cheese’ nature of species ranges due to the interplay of climatic and habitat factors. As part of a PRA conducted for the European and Mediterranean Plant Protection Organization, we developed a climatic niche model for Parthenium hysterophorus, explicitly including the effects of irrigation where it was known to be practiced. We then downscaled the climatic risk model using two different methods to identify the suitable habitat types: expert opinion (following the EPPO PRA guidelines) and inferred from the global spatial distribution. The PRA revealed a substantial risk to the EPPO region and Central and Western Africa, highlighting the desirability of avoiding an invasion by P. hysterophorus. We also consider the effects of climate change on the modelled risks. The climate change scenario indicated the risk of substantial further spread of P. hysterophorus in temperate northern hemisphere regions (North America, Europe and the northern Middle East), and also high elevation equatorial regions (Western Brazil, Central Africa, and South East Asia) if minimum temperatures increase substantially. Downscaling the climate model using habitat factors resulted in substantial (approximately 22–53%) reductions in the areas estimated to be endangered. Applying expert assessments as to suitable habitat classes resulted in the greatest reduction in the estimated endangered area, whereas inferring suitable habitats factors from distribution data identified more land use classes and a larger endangered area. Despite some scaling issues with using a globally conformal Land Use Systems dataset, the inferential downscaling method shows promise as a routine addition to the PRA toolkit, as either a direct model component, or simply as a means of better informing an expert assessment of the suitable habitat types.  相似文献   

14.
Cogongrass (Imperata cylindrica) is considered one of the worst invasive species in the world. The species is readily adaptable to a wide range of environmental conditions and upon invasion reduces forest productivity, alters nutrient cycling, and threatens native species biodiversity. This paper explores seven major ecological hypotheses (Propagule Pressure Hypothesis, Natural Enemies or Enemy Release Hypothesis, Empty Niche Hypothesis, Invasional Meltdown Hypothesis, Evolution of Increased Competitive Ability Hypothesis/Superior Competitor Hypothesis, Novel Weapons Hypothesis, and Diversity—Invasibility (Elton’s) Hypothesis) that explain the invasiveness of cogongrass in the southeastern United States. Information gathered from this review can be used to reduce the spread of cogongrass and is applicable for control of other invasive species as well.  相似文献   

15.
Climatic niche shifts have been documented in a number of invasive species by comparing the native and adventive climatic ranges in which they occur. However, these shifts likely represent changes in the realized climatic niches of invasive species, and may not necessarily be driven by genetic changes in climatic affinities. Until now the role of rapid niche evolution in the spread of invasive species remains a challenging issue with conflicting results. Here, we document a likely genetically-based climatic niche expansion of an annual plant invader, the common ragweed (Ambrosia artemisiifolia L.), a highly allergenic invasive species causing substantial public health issues. To do so, we looked for recent evolutionary change at the upward migration front of its adventive range in the French Alps. Based on species climatic niche models estimated at both global and regional scales we stratified our sampling design to adequately capture the species niche, and localized populations suspected of niche expansion. Using a combination of species niche modeling, landscape genetics models and common garden measurements, we then related the species genetic structure and its phenotypic architecture across the climatic niche. Our results strongly suggest that the common ragweed is rapidly adapting to local climatic conditions at its invasion front and that it currently expands its niche toward colder and formerly unsuitable climates in the French Alps (i.e. in sites where niche models would not predict its occurrence). Such results, showing that species climatic niches can evolve on very short time scales, have important implications for predictive models of biological invasions that do not account for evolutionary processes.  相似文献   

16.
The invasion success of exotic plants is often attributed to escape from natural enemies in their introduced ranges and subsequent evolutionary change in resource allocation from defense to growth and reproduction. We tested this idea by comparing resistance, tolerance, and growth between native (China) and invasive (US) populations of kudzu (Peuraria montana var. lobata) exposed to natural herbivores in the native range. The percentage of foliar damage was much higher in invasive populations than in native populations, indicating that plants from invasive populations had lower resistance to herbivory. Regression of total mass on percentage of foliar damage showed no significant differences in tolerance to herbivory between native and invasive populations. However, stem diameter and mass were significantly greater in invasive populations than in native populations. Our results may suggest geographic variation in herbivory damage and plant growth among kudzu native and invasive populations, but the role of herbivores influencing kudzu invasion requires further investigation.  相似文献   

17.
The longhorn crazy ant (Paratrechina longicornis) is a globally distributed ant species with a high invasion risk, suggesting the need to use species distribution modeling to evaluate its potential distribution. Therefore, this study aimed to predict the potential distribution of longhorn crazy ants in response to climate change by using CLIMEX and Maxent and identifying the climatic factors that influence their habitat. Then, the model outcomes were used to construct an ensemble map to evaluate invasion risk in South Korea. The results indicated that temperature-related variables mainly affect the distribution of the longhorn crazy ant, and the two models showed consensus regions in South America, Africa, Australia, and Southeast Asia. Due to climate change, it was expected that the northern limit would somewhat rise. In South Korea, high-risk areas were predicted to be located along the coasts, but they would expand as a consequence of climate change. Since the invasion of longhorn crazy ants has occurred via commercial trades, a relatively high risk in coastal areas demands a high level of attention. We expect that this study will provide initial insight into selecting areas for longhorn crazy ant quarantine with ensemble species distribution modeling.  相似文献   

18.
Evidence of climatic niche shift during biological invasion   总被引:10,自引:1,他引:9  
Niche-based models calibrated in the native range by relating species observations to climatic variables are commonly used to predict the potential spatial extent of species' invasion. This climate matching approach relies on the assumption that invasive species conserve their climatic niche in the invaded ranges. We test this assumption by analysing the climatic niche spaces of Spotted Knapweed in western North America and Europe. We show with robust cross-continental data that a shift of the observed climatic niche occurred between native and non-native ranges, providing the first empirical evidence that an invasive species can occupy climatically distinct niche spaces following its introduction into a new area. The models fail to predict the current invaded distribution, but correctly predict areas of introduction. Climate matching is thus a useful approach to identify areas at risk of introduction and establishment of newly or not-yet-introduced neophytes, but may not predict the full extent of invasions.  相似文献   

19.
Will northern fish populations be in hot water because of climate change?   总被引:1,自引:0,他引:1  
Predicted increases in water temperature in response to climate change will have large implications for aquatic ecosystems, such as altering thermal habitat and potential range expansion of fish species. Warmwater fish species, such as smallmouth bass, Micropterus dolomieu , may have access to additional favourable thermal habitat under increased surface-water temperatures, thereby shifting the northern limit of the distribution of the species further north in Canada and potentially negatively impacting native fish communities. We assembled a database of summer surface-water temperatures for over 13 000 lakes across Canada. The database consists of lakes with a variety of physical, chemical and biological properties. We used general linear models to develop a nation-wide maximum lake surface-water temperature model. The model was extended to predict surface-water temperatures suitable to smallmouth bass and under climate-change scenarios. Air temperature, latitude, longitude and sampling time were good predictors of present-day maximum surface-water temperature. We predicted lake surface-water temperatures for July 2100 using three climate-change scenarios. Water temperatures were predicted to increase by as much as 18 °C by 2100, with the greatest increase in northern Canada. Lakes with maximum surface-water temperatures suitable for smallmouth bass populations were spatially identified. Under several climate-change scenarios, we were able to identify lakes that will contain suitable thermal habitat and, therefore, are vulnerable to invasion by smallmouth bass in 2100. This included lakes in the Arctic that were predicted to have suitable thermal habitat by 2100.  相似文献   

20.
The distributions of many species are not at equilibrium with their environment. This includes spreading non-native species and species undergoing range shifts in response to climate change. The habitat associations of these species may change during range expansion as less favourable climatic conditions at expanding range margins constrain species to use only the most favourable habitats, violating the species distribution model assumption of stationarity. Alternatively, changes in habitat associations could result from density-dependent habitat selection; at range margins, population densities are initially low so species can exhibit density-independent selection of the most favourable habitats, while in the range core, where population densities are higher, species spread into less favourable habitat. We investigate if the habitat preferences of the non-native common waxbill Estrilda astrild changed as they spread in three directions (north, east and south-east) in the Iberian Peninsula. There are different degrees of climatic suitability and colonization speed across range expansion axes, allowing us to separate the effects of climate from residence time. In contrast to previous studies we find a stronger effect of residence time than climate in influencing the prevalence of common waxbills. As well as a strong additive effect of residence time, there were some changes in habitat associations, which were consistent with density-dependent habitat selection. The combination of broader habitat associations and higher prevalence in areas that have been colonised for longer means that species distribution models constructed early in the invasion process are likely to underestimate species’ potential distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号