共查询到20条相似文献,搜索用时 10 毫秒
1.
The dissection of the genetic architecture of quantitative traits, including the number and locations of quantitative trait loci (QTL) and their main and epistatic effects, has been an important topic in current QTL mapping. We extend the Bayesian model selection framework for mapping multiple epistatic QTL affecting continuous traits to dynamic traits in experimental crosses. The extension inherits the efficiency of Bayesian model selection and the flexibility of the Legendre polynomial model fitting to the change in genetic and environmental effects with time. We illustrate the proposed method by simultaneously detecting the main and epistatic QTLs for the growth of leaf age in a doubled-haploid population of rice. The behavior and performance of the method are also shown by computer simulation experiments. The results show that our method can more quickly identify interacting QTLs for dynamic traits in the models with many numbers of genetic effects, enhancing our understanding of genetic architecture for dynamic traits. Our proposed method can be treated as a general form of mapping QTL for continuous quantitative traits, being easier to extend to multiple traits and to a single trait with repeat records. 相似文献
2.
Estimating the genetic architecture of quantitative traits 总被引:20,自引:0,他引:20
Understanding and estimating the structure and parameters associated with the genetic architecture of quantitative traits is a major research focus in quantitative genetics. With the availability of a well-saturated genetic map of molecular markers, it is possible to identify a major part of the structure of the genetic architecture of quantitative traits and to estimate the associated parameters. Multiple interval mapping, which was recently proposed for simultaneously mapping multiple quantitative trait loci (QTL), is well suited to the identification and estimation of the genetic architecture parameters, including the number, genomic positions, effects and interactions of significant QTL and their contribution to the genetic variance. With multiple traits and multiple environments involved in a QTL mapping experiment, pleiotropic effects and QTL by environment interactions can also be estimated. We review the method and discuss issues associated with multiple interval mapping, such as likelihood analysis, model selection, stopping rules and parameter estimation. The potential power and advantages of the method for mapping multiple QTL and estimating the genetic architecture are discussed. We also point out potential problems and difficulties in resolving the details of the genetic architecture as well as other areas that require further investigation. One application of the analysis is to improve genome-wide marker-assisted selection, particularly when the information about epistasis is used for selection with mating. 相似文献
3.
Mackay TF 《Current opinion in genetics & development》2004,14(3):253-257
Understanding the genetic architecture of quantitative traits begins with identifying the genes regulating these traits, mapping the subset of genetically varying quantitative trait loci (QTLs) in natural populations, and pinpointing the molecular polymorphisms defining QTL alleles. Studies in Drosophila have revealed large numbers of pleiotropic genes that interact epistatically to regulate quantitative traits, and large numbers of QTLs with sex-, environment- and genotype-specific effects. Multiple molecular polymorphisms in regulatory regions of candidate genes are often associated with variation for complex traits. These observations offer valuable lessons for understanding the genetic basis of variation for complex traits in other organisms, including humans. 相似文献
4.
5.
Many quantitative traits are measured repeatedly during the life of an organism. Such traits are called dynamic traits. The pattern of the changes of a dynamic trait is called the growth trajectory. Studying the growth trajectory may enhance our understanding of the genetic architecture of the growth trajectory. Recently, we developed an interval-mapping procedure to map QTL for dynamic traits under the maximum-likelihood framework. We fit the growth trajectory by Legendre polynomials. The method intended to map one QTL at a time and the entire QTL analysis involved scanning the entire genome by fitting multiple single-QTL models. In this study, we propose a Bayesian shrinkage analysis for estimating and mapping multiple QTL in a single model. The method is a combination between the shrinkage mapping for individual quantitative traits and the Legendre polynomial analysis for dynamic traits. The multiple-QTL model is implemented in two ways: (1) a fixed-interval approach where a QTL is placed in each marker interval and (2) a moving-interval approach where the position of a QTL can be searched in a range that covers many marker intervals. Simulation study shows that the Bayesian shrinkage method generates much better signals for QTL than the interval-mapping approach. We propose several alternative methods to present the results of the Bayesian shrinkage analysis. In particular, we found that the Wald test-statistic profile can serve as a mechanism to test the significance of a putative QTL. 相似文献
6.
Rostam Abdollahi-Arpanahi Abbas Pakdel Ardeshir Nejati-Javaremi Mohammad Moradi Shahrbabak Farhad Ghafouri-Kesbi 《Journal of applied genetics》2014,55(3):373-381
The genetic architecture of a quantitative trait refers to the number of genetic variants, allele frequencies, and effect sizes of variants that affect a trait and their mode of gene action. This study was conducted to investigate the effect of four shapes of allelic frequency distributions (constant, uniform, L-shaped and U-shaped) and different number of trait-affecting loci (50, 100, 200, 500) on allelic frequency changes, long term genetic response, and maintaining genetic variance. To this end, a population of 440 individuals composed of 40 males and 400 females as well as a genome of 200 cM consisting of two chromosomes and with a mutation rate of 2.5?×?10?5 per locus was simulated. Selection of superior animals was done using best linear unbiased prediction (BLUP) with assumption of infinitesimal model. Selection intensity was constant over 30 generations of selection. The highest genetic progress obtained when the allelic frequency had L-shaped distribution and number of trait-affecting loci was high (500). Although quantitative genetic theories predict the extinction of genetic variance due to artificial selection in long time, our results showed that under L- and U-shapped allelic frequency distributions, the additive genetic variance is persistent after 30 generations of selection. Further, presence or absence of selection limit can be an indication of low (<50) or high (>100) number of trait-affecting loci, respectively. It was concluded that the genetic architecture of complex traits is an important subject which should be considered in studies concerning long-term response to selection. 相似文献
7.
Replicated analysis of the genetic architecture of quantitative traits in two wild great tit populations 下载免费PDF全文
Anna W. Santure Jocelyn Poissant Isabelle De Cauwer Kees van Oers Matthew R. Robinson John L. Quinn Martien A. M. Groenen Marcel E. Visser Ben C. Sheldon Jon Slate 《Molecular ecology》2015,24(24):6148-6162
Currently, there is much debate on the genetic architecture of quantitative traits in wild populations. Is trait variation influenced by many genes of small effect or by a few genes of major effect? Where is additive genetic variation located in the genome? Do the same loci cause similar phenotypic variation in different populations? Great tits (Parus major) have been studied extensively in long‐term studies across Europe and consequently are considered an ecological ‘model organism’. Recently, genomic resources have been developed for the great tit, including a custom SNP chip and genetic linkage map. In this study, we used a suite of approaches to investigate the genetic architecture of eight quantitative traits in two long‐term study populations of great tits—one in the Netherlands and the other in the United Kingdom. Overall, we found little evidence for the presence of genes of large effects in either population. Instead, traits appeared to be influenced by many genes of small effect, with conservative estimates of the number of contributing loci ranging from 31 to 310. Despite concordance between population‐specific heritabilities, we found no evidence for the presence of loci having similar effects in both populations. While population‐specific genetic architectures are possible, an undetected shared architecture cannot be rejected because of limited power to map loci of small and moderate effects. This study is one of few examples of genetic architecture analysis in replicated wild populations and highlights some of the challenges and limitations researchers will face when attempting similar molecular quantitative genetic studies in free‐living populations. 相似文献
8.
Using the data of crosses of multiple of inbred lines for mapping QTL can increase QTL detecting power compared with only cross of two inbred lines. Although many fixed-effect model methods have been proposed to analyze such data, they are largely based on one-QTL model or main effect model, and the interaction effects between QTL are always neglected. However, effectively separating the interaction effects from the residual error can increase the statistical power. In this article, we both extended the novel Bayesian model selection method and Bayesian shrinkage estimation approaches to multiple inbred line crosses. With two extensions, interacting QTL are effectively detected with high solution; in addition, the posterior variances for both main effects and interaction effects are also subjected to full Bayesian estimate, which is more optimal than two step approach involved in maximum-likelihood. A series of simulation experiments have been conducted to demonstrate the performance of the methods. The computer program written in FORTRAN language is freely available on request. 相似文献
9.
Most quantitative trait loci (QTL) mapping experiments typically collect phenotypic data on multiple correlated complex traits. However, there is a lack of a comprehensive genomewide mapping strategy for correlated traits in the literature. We develop Bayesian multiple-QTL mapping methods for correlated continuous traits using two multivariate models: one that assumes the same genetic model for all traits, the traditional multivariate model, and the other known as the seemingly unrelated regression (SUR) model that allows different genetic models for different traits. We develop computationally efficient Markov chain Monte Carlo (MCMC) algorithms for performing joint analysis. We conduct extensive simulation studies to assess the performance of the proposed methods and to compare with the conventional single-trait model. Our methods have been implemented in the freely available package R/qtlbim (http://www.qtlbim.org), which greatly facilitates the general usage of the Bayesian methodology for unraveling the genetic architecture of complex traits. 相似文献
10.
Linear regression-based quantitative trait loci/association mapping methods such as least squares commonly assume normality of residuals. In genetics studies of plants or animals, some quantitative traits may not follow normal distribution because the data include outlying observations or data that are collected from multiple sources, and in such cases the normal regression methods may lose some statistical power to detect quantitative trait loci. In this work, we propose a robust multiple-locus regression approach for analyzing multiple quantitative traits without normality assumption. In our method, the objective function is least absolute deviation (LAD), which corresponds to the assumption of multivariate Laplace distributed residual errors. This distribution has heavier tails than the normal distribution. In addition, we adopt a group LASSO penalty to produce shrinkage estimation of the marker effects and to describe the genetic correlation among phenotypes. Our LAD-LASSO approach is less sensitive to the outliers and is more appropriate for the analysis of data with skewedly distributed phenotypes. Another application of our robust approach is on missing phenotype problem in multiple-trait analysis, where the missing phenotype items can simply be filled with some extreme values, and be treated as outliers. The efficiency of the LAD-LASSO approach is illustrated on both simulated and real data sets. 相似文献
11.
Yang R Li J Wang X Zhou X 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2011,123(3):483-492
Without consideration of other linked QTLs responsible for dynamic trait, original functional mapping based on a single QTL
model is not optimal for analyzing multiple dynamic trait loci. Despite that composite functional mapping incorporates the
effects of genetic background outside the tested QTL in mapping model, the arbitrary choice of background markers also impact
on the power of QTL detection. In this study, we proposed Bayesian functional mapping strategy that can simultaneously identify
multiple QTL controlling developmental patterns of dynamic traits over the genome. Our proposed method fits the change of
each QTL effect with the time by Legendre polynomial and takes the residual covariance structure into account using the first
autoregressive equation. Also, Bayesian shrinkage estimation was employed to estimate the model parameters. Especially, we
specify the gamma distribution as the prior for the first-order auto-regressive coefficient, which will guarantee the convergence
of Bayesian sampling. Simulations showed that the proposed method could accurately estimate the QTL parameters and had a greater
statistical power of QTL detection than the composite functional mapping. A real data analysis of leaf age growth in rice
is used for the demonstration of our method. It shows that our Bayesian functional mapping can detect more QTLs as compared
to composite functional mapping. 相似文献
12.
Bayesian mapping of quantitative trait loci for complex binary traits 总被引:13,自引:0,他引:13
A complex binary trait is a character that has a dichotomous expression but with a polygenic genetic background. Mapping quantitative trait loci (QTL) for such traits is difficult because of the discrete nature and the reduced variation in the phenotypic distribution. Bayesian statistics are proved to be a powerful tool for solving complicated genetic problems, such as multiple QTL with nonadditive effects, and have been successfully applied to QTL mapping for continuous traits. In this study, we show that Bayesian statistics are particularly useful for mapping QTL for complex binary traits. We model the binary trait under the classical threshold model of quantitative genetics. The Bayesian mapping statistics are developed on the basis of the idea of data augmentation. This treatment allows an easy way to generate the value of a hypothetical underlying variable (called the liability) and a threshold, which in turn allow the use of existing Bayesian statistics. The reversible jump Markov chain Monte Carlo algorithm is used to simulate the posterior samples of all unknowns, including the number of QTL, the locations and effects of identified QTL, genotypes of each individual at both the QTL and markers, and eventually the liability of each individual. The Bayesian mapping ends with an estimation of the joint posterior distribution of the number of QTL and the locations and effects of the identified QTL. Utilities of the method are demonstrated using a simulated outbred full-sib family. A computer program written in FORTRAN language is freely available on request. 相似文献
13.
Li S Wang X Li J Yang T Min L Liu Y Lin M Yang R 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2012,124(8):1561-1571
Genomic imprinting, an epigenetic phenomenon of parent-of-origin-specific gene expression, has been widely observed in plants,
animals, and humans. To detect imprinting genes influencing quantitative traits, the least squares and maximum likelihood
approaches for fitting a single quantitative trait locus (QTL) and Bayesian methods for simultaneously modeling multiple QTL
have been adopted, respectively, in various studies. However, most of these studies have only estimated imprinting main effects
and thus ignored imprinting epistatic effects. In the presence of extremely complex genomic imprinting architectures, we introduce
a Bayesian model selection method to analyze the multiple interacting imprinted QTL (iQTL) model. This approach will greatly
enhance the computational efficiency through setting the upper bound of the number of QTLs and performing selective sampling
for QTL parameters. The imprinting types of detected main-effect QTLs can be estimated from the Bayes factor statistic formulated
by the posterior probabilities for the genetic effects being compared. The performance of the proposed method is demonstrated
by several simulation experiments. Moreover, this method is applied to dissect the imprinting genetic architecture for body
weight in mouse and fruit weight in tomato. Matlab code for implementing this approach will be available from the authors
upon request. 相似文献
14.
A fully Bayesian method for quantitative genetic analysis of data consisting of ranks of, e.g., genotypes, scored at a series of events or experiments is presented. The model postulates a latent structure, with an underlying variable realized for each genotype or individual involved in the event. The rank observed is assumed to reflect the order of the values of the unobserved variables, i.e., the classical Thurstonian model of psychometrics. Parameters driving the Bayesian hierarchical model include effects of covariates, additive genetic effects, permanent environmental deviations, and components of variance. A Markov chain Monte Carlo implementation based on the Gibbs sampler is described, and procedures for inferring the probability of yet to be observed future rankings are outlined. Part of the model is rendered nonparametric by introducing a Dirichlet process prior for the distribution of permanent environmental effects. This can lead to potential identification of clusters of such effects, which, in some competitions such as horse races, may reflect forms of undeclared preferential treatment. 相似文献
15.
Structured antedependence models for genetic analysis of repeated measures on multiple quantitative traits 总被引:5,自引:0,他引:5
Simultaneous analysis of correlated traits that change with time is an important issue in genetic analyses. Several methodologies have already been proposed for the genetic analysis of longitudinal data on single traits, in particular random regression and character process models. Although the latter proved, in most cases, to compare favourably to alternative approaches for analysis of single function-valued traits, they do not allow a straightforward extension to the multivariate case. In this paper, another methodology (structured antedependence models) is proposed, and methods are derived for the genetic analysis of two or more correlated function-valued traits. Multivariate analyses are presented of fertility and mortality in Drosophila and of milk, fat and protein yields in dairy cattle. These models offer a substantial flexibility for the correlation structure, even in the case of complex non-stationary patterns, and perform better than multivariate random regression models, with fewer parameters. 相似文献
16.
17.
The testing of Bayesian point null hypotheses on variance component models have resulted in a tough assignment for which no clear and generally accepted method exists. In this work we present what we believe is a succeeding approach to such a task. It is based on a simple reparameterization of the model in terms of the total variance and the proportion of the additive genetic variance with respect to it, as well as on the explicit inclusion on the prior probability of a discrete component at origin. The reparameterization was used to bypass an arbitrariness related to the impropriety of uninformative priors onto unbounded variables while the discrete component was necessary to overcome the zero probability assigned to sets of null measure by the usual continuous variable models. The method was tested against computer simulations with appealing results. 相似文献
18.
Bayesian mapping of genomewide interacting quantitative trait loci for ordinal traits 总被引:2,自引:0,他引:2 下载免费PDF全文
Development of statistical methods and software for mapping interacting QTL has been the focus of much recent research. We previously developed a Bayesian model selection framework, based on the composite model space approach, for mapping multiple epistatic QTL affecting continuous traits. In this study we extend the composite model space approach to complex ordinal traits in experimental crosses. We jointly model main and epistatic effects of QTL and environmental factors on the basis of the ordinal probit model (also called threshold model) that assumes a latent continuous trait underlies the generation of the ordinal phenotypes through a set of unknown thresholds. A data augmentation approach is developed to jointly generate the latent data and the thresholds. The proposed ordinal probit model, combined with the composite model space framework for continuous traits, offers a convenient way for genomewide interacting QTL analysis of ordinal traits. We illustrate the proposed method by detecting new QTL and epistatic effects for an ordinal trait, dead fetuses, in a F(2) intercross of mice. Utility and flexibility of the method are also demonstrated using a simulated data set. Our method has been implemented in the freely available package R/qtlbim, which greatly facilitates the general usage of the Bayesian methodology for genomewide interacting QTL analysis for continuous, binary, and ordinal traits in experimental crosses. 相似文献
19.
Quantitative traits measured in human families can be analyzed to partition the total population variance into genetic and environmental components, or to elucidate the genetic mechanism involved. We review the estimation of variance components directly from human pedigree data, or in the form of path coefficients from correlations between pairs of relatives. To elucidate genetic mechanisms, a mixed model that allows for segregation at a major locus, a polygenic effect and a sibling environmental correlation is described for nuclear families. In each case appropriate likelihoods are derived as a basis, using numerical maximum likelihood methods, for parameter estimation and hypothesis testing. A general model is then described that allows for several familial sources of environmental variation, assortative mating, and both major gene and polygenic effects; and an algorithm for calculating the likelihood of a pedigree under this model is indicated. Finally, some of the remaining problems in this area of biometric analysis are pointed out. 相似文献