首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyzed the background impulse activity (BIA) generated by neurons of the rat hypothalamic supraoptic nucleus in the norm and under conditions of long-lasting vibrational stimulation (exposure 5, 10, or 15 days). Distributions of neurons by the level of regularity, dynamics of discharge trains, form of histograms of interspike intervals (ISIs), as well as distributions of neurons by the BIA frequency ranges, were studied. We also calculated the mean frequency of impulsation of the neurons under study and the coefficient of variation of ISIs. After vibrational influences, we found modifications of both the internal structure of the recorded spike trains and the mean frequency of impulsation within the entire studied group and different frequency subgroups. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 224–230, May–June, 2006.  相似文献   

2.
In acute experiments on albino rats anesthetized with Nembutal (40 mg/kg, i.p.), we recorded the background impulse activity (BIA) generated by neurons of the inferior olive in the norm and after 5-, 10-, and 15-daylong vibrational influence (60 Hz, 2 h, daily). We characterized the distributions of neurons according to the regularity of impulse successions, their dynamics, and pattern of histograms of interspike intervals (ISIs); we also calculated the mean frequency of impulsation and the coefficient of variation of ISIs. It was demonstrated that the most significant shifts of the characteristics of BIA generated by neurons of the inferior olive were formed within the first 10 days of the vibrational influence. These shifts were observed mainly in the mean discharge frequency (increased within the initial period) and, to a lesser extent, in the intrinsic structure of impulse trains. Such shifts in the background activity of the inferior olive caused by long-lasting vibrational influence result, perhaps, from intensification of the influences of excitatory cerebellar/mesodiencephalic inputs to olivary neurons within the early periods of action of the above factor and prevalence of GABAergic influences within the later periods. It seems possible that, under such conditions, the characteristics of electrical synapses of the olivary neurons are also subjected to modification. Neirofiziologiya/Neurophysiology, Vol. 40, No. 4, pp. 340–347, July–August, 2008.  相似文献   

3.
We analyzed background impulse activity of neurons of the supraoptic nucleus of the rat hypothalamus in the course of 15-day-long isolated action of generalized vibrational stimulation and combination of such stimulation with irradiation of the animal’s head with low-intensity extrahigh-frequency (EHF, millimeter-range) electromagmetic waves. The distributions of the neurons by the level of regularity and dynamics of spike trains, separate frequency ranges of impulsation, and pattern of interspike interval (ISI) histograms were estimated. We also calculated the mean frequency of discharges and coefficient of variation of ISIs. A trend toward decreases in the deviations of some parameters of neuronal spike activity generated by supraoptic neurons, which were evident within early time intervals of isolated action of vibration (5 to 10 days), was observed under the influence of EHF electromagnetic irradiation; thus, the latter factor probably exerts a sedative effect. Neirofiziologiya/Neurophysiology, Vol. 39, No. 6, pp. 433–442, November–December, 2007.  相似文献   

4.
In acute experiments on nembutal-anesthetized (40 mg/kg, i.p.) albino rats, we recorded extracellularly and analyzed the background impulse activity (BIA) of neurons of the fastigial nucleus of the cerebellum. Experiments were carried out on intact and labyrinthectomized rats in the norm and after long-lasting (up to 15 days) influence of general vertical vibration (60 Hz, 0.4 mm, 2-h-long everyday sessions). Distributions of the neurons according to the level of regularity of BIA, dynamics of spike trains, pattern of histograms of interspike intervals (ISIs), and different frequency ranges of BIA were plotted; the mean frequency of this activity and the coefficient of variation of ISIs were also calculated. Possible mechanisms of the effects of long-lasting vibration of different durations on the BIA generated by neurons of the fastigial cerebellar nucleus in intact animals and after switching off of labyrinth afferent inputs are discussed. Neirofiziologiya/Neurophysiology, Vol. 38, No. 1, pp. 32–39, January–February, 2006.  相似文献   

5.
We examined the neuronal activity of hypothalamic neurons in acute experiments on cats under ketamine anesthesia. Using glass microelectrodes, we extracellularly recorded the impulse activity (IA) of neurons of the anterior hypothalamus in the absence of controlled influences (background IA, BIA) and after stimulation of evolutionary heterogeneous zones of the brain cortex projecting to the hypothalamus (hippocampal CA3 area, pyriform, cingular, and proreal gyri). Electrical 5-sec-long stimuli were applied with frequencies of 12, 30, or 100 sec−1. In another experimental series, we recorded changes in the IA of hypothalamic neurons induced by visceral stimuli (heating or cooling by 7°C of the foot pad, cooling of the body of the animal, and infusions of 5% glucose, 0.2% NaCl, 3.0% NaCl, or phenylephrine in the carotid artery), modeling in such a way shifts of the constants of homeostasis within physiological limits. We also compared the parameters of neuronal BIA and stimulation-influenced IA in equal epochs of the analysis and classified the types of BIA. About 50% of the cells of the total studied sampling of hypothalamic neurons responded by a considerable modulation of their BIA with a significant change in the frequency in the course of and after stimulations of the above-mentioned modalities. In some neurons after cortical or visceral stimulation, a significant transformation of the temporal structure of the IA with no changes in the mean frequency occurred. We hypothesize that stimulation-induced transformation of the IA pattern with preservation of the mean discharge frequency can be one of the modes of encoding of information necessary for triggering of one efferent reaction or another, which are controlled by the hypothalamus. Examination of the BIA parameters of subcortical neurons, as well as comparison of the parameters of such an activity with the localization of cells and with the modality of stimulation that leads to modification of the IA, should allow one to reveal reasons for the formation and modification of the IA on neurons of the anterior hypothalamus. Since functional peculiarities of the neurons correlate with their BIA pattern, such data can provide an insight into the functional bases of the neurophysiological mechanisms underlying regulatory functions of the hypothalamus. Neirofiziologiya/Neurophysiology, Vol. 37, Nos. 5/6, pp. 463–474, September–December, 2005.  相似文献   

6.
Using computer analysis, we compared characteristics of the impulse background activity (BA) generated by neurons in the right and left medial vestibular nuclei (MVN) of the rats under control conditions and on the 5th, 10th, and 15th day with everyday 2-h-long sessions of vibrational stimulation. In the control group, the BA frequency generated by left-side MVN neurons was, on average, higher than that in the right MVN (23.6 ± 1.5 and 16.6 ± 1.7 sec-1, respectively); other main characteristics of the BA demonstrated no significant internuclear differences. Vibrational influences of different durations induced complex significant laterally specific modifications of the level of regularity and dynamic indices of BA generated by neurons of the right and left MVN, of proportions of the cells with different types of distribution of interspike intervals (ISI), and of coefficients of variations of ISI. The mean frequency of background spiking in the right MVN increased about twofold (to 31.6 ± 2.2 sec-1) after 10 days with vibration sessions, but dropped on the 15th day to 20.6 ± 1.7 sec-1. In the left MVN, the mean BA frequency monotonically decreased, to 11.6 ± 1.0 sec-1 after 15 days with vibration sessions. Therefore, chronic vibrational stimulation results in differential shifts of the characteristics of the BA generated by neurons of two MVN and in the formation of a new significantly asymmetrical pattern of such activity. Possible reasons for lateral asymmetry of the impulsation of MVN neurons and modifications of this asymmetry after long-term vibrational influences are discussed. We suppose that such an asymmetry can be one of the factors responsible for the development of motor and autonomic manifestations of vibration-induced motion sickness.  相似文献   

7.
We studied correlations between the frequency of background impulse activity (BIA) of dopaminergic (DAergic) neurons of the ventral tegmentum (VT) and spectral power (SP) of the frequency components of EEG samples recorded in awake cats. The EEG was recorded monopolarly (electrodes were fixed in the cranial bones) from the frontal, occipital, and right and left temporal regions of the cortex. In a great majority of the cases, the BIA frequency of VT DA-ergic neurons demonstrated significant positive correlations with changes in the SPs of the alpha and beta EEG rhythms. The closest correlations of the spiking frequency of DA-ergic cells with the SP of the alpha rhythm was observed in the occipital region, while those with the beta SP were found in the frontal area. Correlations of the activity of DA-ergic neurons with the SPs of the alpha and beta rhythms in the left temporal cortical zone were closer, as compared with those in the symmetrical right zone. Correlations of the SPs of the delta, theta, and gamma EEG components with the discharge frequency of VT DA neurons were of opposite directions, and in most cases such correlations did not reach the level of significance. The results of this study show that, in some cases, specific EEG patterns can be considered indicators of the state of the cerebral VT DA-ergic system. Neirofiziologiya/Neurophysiology, Vol. 40, No. 4, pp. 359–367, July–August, 2008.  相似文献   

8.
We analyzed the impulse background activity (BA) of neurons of the inferior vestibular nucleus (IVN) of rats during exposure to long-lasting vibration (daily 2-h-long sessions). It was demonstrated that 5 days after the beginning of vibration stimulation, practically all main characteristics of the BA of IVN neurons changed significantly. In the studied neuronal group, 10 days after the vibration onset we observed an increase in the mean frequency of the BA and shifts in many statistical parameters of the BA, while after 15 days of vibration only significant modifications of dynamic characteristics of the BA of IVN neurons were manifested.Neirofiziologiya/Neurophysiology, Vol. 37, No. 1, pp. 32–38, January–February, 2005.  相似文献   

9.
We recorded spike activity of noradrenergic neurons of zone A5 (n = 89) in the brain of anesthetized rats under conditions of hypoxic stimulation (breathing with pure N2, 10 sec), thermonociceptive stimulation (tail-flick test), and reversible hypothermal blocking of the central respiratory activity. Hypoxic stimulation of peripheral O2-sensitive chemoreceptors considerably increased the discharge frequency in all the examined neurons and induced tachypnea and a hypotensive reaction. Sixty-nine (77.5%) neurons of the studied group were tested using nociceptive stimulation (thermal stimulation of the tail); such stimulation resulted in a multifold increase in their discharge frequency. This was accompanied by tachypnea and a hypertensive response. Thus, we first demonstrated the role of nociception in the control of activity of noradrenergic neurons in zone A5 and the role of nociceptive afferent signals in the modulation of functions of the respiratory and cardiovascular systems mediated by neurons of the above zone. Under conditions of blocking of the central respiratory activity, we examined 36 (40.4%) neurons of zone A5 and first observed the effect of strong activation of a significant proportion of these cells upon switching off of respiration. This fact shows that there is an activating “respiratory” drive on neurons of zone A5 (probably, from the side of an expiratory neuronal population of the respiratory center) and allows us to hypothesize on the genesis of “respiratory” modulation of these cells. The activity of 16 (18.0%) cells was recorded under conditions of consecutive applications of the above stimuli; all the neurons were activated by the respective afferent influences. The simultaneously induced effects of hypoxic and nociceptive stimulations on the activity of neurons of zone A5 were additive. Thus, we first obtained proofs in favor of the multimodality of noradrenergic neurons of the above zone. This feature is a significant factor providing integrative interaction between the respiratory and cardiovascular systems and the system of nociception. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 305–313, July–August, 2006.  相似文献   

10.
We examined changes in the impulse activity (IA) generated by neurons of the anterior hypothalamus (including the preoptic region) resulting from infusions of hyper-and hypotonic NaCl solutions (3.0 and 0.2%, respectively; hyper-and hypoosmotic stimulations, respectively); the infused volumes did not exceed 200 μl. The effects of hyper-and hypoosmotic stimulations were studied in detail in 83 and 88 neurons, respectively. In 31.2% (26 cells) and 29.6% (26 cells) of the neurons of the above groups, these stimulations evoked changes in the IA frequency greater than +40 or −40% of the mean background IA frequency. In approximately 50% of the responding neurons in each group, such shifts in the IA frequency were observed in the course of infusions of test solutions (5 sec long) and within the subsequent 5 min after termination of the infusion. In another 50% of the neurons, changes in the IA frequency occurred within the afterperiod (30 sec long); these shifts could develop exclusively within the latter interval, or these changes accompanied an initial early reaction. In general, activating responses dominated (they were observed in 65% of the cases where test stimulations of both modalities were used). The possible aspects of the involvement of neurons of the anterior hypothalamus in the control of the water/salt balance in the organism are discussed. Neirofiziologiya/Neurophysiology, Vol. 38, No. 1, pp. 40–45, January–February, 2006.  相似文献   

11.
In experiments on 24 anesthetized rats with preserved spontaneous respiration, we first recorded the volley impulse activity of neurons (n = 30) in the brainstem A5 zone, which was induced by periodical stretchings of the forelimb flexors and hindlimb extensors. The frequency of action potentials in such volleys was, on average, 99.7 ± 19.6 sec−1. In the course of this kinesthetic stimulation, along with the activation of “proprioceptive” neurons of the A5 zone, we observed transitory drops in the arterial pressure and increases first recorded the activity of baroceptive neurons in subpial parts of the A5 zone (n = 4); the frequency of their background impulsation was, on average, 25.1 ± 0.8 sec−1. This activity in all cases was transitorily suppressed both upon increases of the blood pressure caused by constriction of the carotid arteries or nociceptive tail stimulation, as well as upon stretching of skeletal muscles. Therefore, we first obtained direct proof that neuronal systems of the A5 zone are involved in integration of visceral and somatic proprioceptive afferent influences. We hypothesize that the physiological role of this mechanism of integration of somatic and visceral information at the level of the A5 zone is directed toward lowering of the arterial pressure and intensification of respiration within the period of intensified motor activity. This mechanism is based on the interaction between “proprioceptive,” baroceptive, and, perhaps, multiceptive neurons within the A5 zone. Neirofiziologiya/Neurophysiology, Vol. 39, No. 6, pp. 443–452, November–December, 2007.  相似文献   

12.
We studied the effects of electrical stimulation of the raphe nuclei (RN) of the cat brain on postsynaptic potentials developing in somatosensory cortex neurons activated by nociceptive influences. Intracellular records were obtained from 15 cells, which were either selectively excited by stimulation of nociceptors (intense electrical stimulation of the dental pulp) or activated by both the above nociceptive and non-nociceptive (moderate stimulations of the infraorbital nerve or thalamic ventroposteromedial nucleus, VPMN) influences. In neurons of both groups, stimulation of both nociceptive afferents and the VPMN evoked complex responses (EPSP–AP–IPSP; IPSPs were 200 to 300 msec long). In some studied cortical neurons, isolated electrical stimulation of the RN (which caused the release of serotonin, 5-HT, in the cortex) resulted in relatively short-latency synaptic excitation, while inhibition was observed in other cells. In the case where stimulation of the RN was used as conditioning influence, such stimulation (independently of the kind of the initial response to RN stimulation) led to long-latency and long-lasting suppression of all components of the synaptic reactions evoked by excitation of nociceptors. The maximum of inhibition was observed at test intervals of 300 to 800 msec. The mechanisms underlying modulatory influences coming from the 5-HT-ergic brainstem system to neurons of the somatosensory cortex, which are activated by excitation of high-threshold (nociceptive) afferent inputs, are discussed.  相似文献   

13.
Factors affecting microspore embryogenesis of cow cockle (Saponaria vaccaria) were evaluated including donor plant growing conditions, genotype, bud size, density, medium composition, and culture conditions. Of the two donor plant (day/night) temperature regimes evaluated (10/5°C and 20/15°C), plants grown at 20/15°C were the most embryogenic. An embryogenic frequency of greater than 350 embryos/100 buds was observed in the most embryogenic genotype, cv. ‘White Beauty’. Buds from 3–9 mm in length were evaluated for their embryogenic potential; buds that were 4–7.9 mm produced the most embryos/100 buds. Of all the media compositions evaluated, NLN medium with 15% sucrose resulted in the most embryos. Cow cockle microspores required an initial period of 32°C for 3 days for production of microspore-derived embryos (MDEs).  相似文献   

14.
Vibrational stimulation of the tendon of the mm.gastrocnemius+soleus (100 sec–1) in rats anesthetized with chloral hydrate (400 mg/kg) resulted in the appearance of considerable Fos immunoreactivity in the lumbar spinal cord (L1-L6), as compared with that in intact animals. Total densities of Fos-immunopositive (Fos-ip) neurons in each of the examined segments were higher than 40 units per 40-μm-thick slice; the respective index reached the maximum at the L4 level (78.9 ± 2.3 cells). Most Fos-ip neurons were localized in laminae 4 to 7 of the gray matter, both ipsi- and contralaterally with respect to the side of stimulation (28.5 ± 0.6 and 28.4 ± 0.6, respectively). Single Fos-ip motoneurons were found bilaterally in the ventral horn motor nuclei. Thus, activation of muscle spindle receptors induced by vibrational stimulation applied to the Achilles tendon induces noticeable bilateral c-fos expression in spinal neuronal networks related to transmission of proprioceptive muscle-born impulsation.  相似文献   

15.
The activity of LVN neurons was recorded in decerebrate cats and analyzed during separate stimulation of macular vestibular and neck receptors elicited by sinusoidal rotation about the longitudinal axis at 0.026 Hz, 10 degrees peak amplitude. Of 119 LVN units examined, the great majority, i.e. 106, were vestibulospinal neurons antidromically identified following stimulation of the spinal cord at T12-L1, thus projecting to the lumbosacral segments of the spinal cord (IVS neurons); the remaining 13 units were nonantidromically activated. Among the 119 LVN neurons, 77 (64.7%) responded with a periodic modulation of their firing rate to roll tilt of the animal and 81 (68.1%) responded to neck rotation. Convergence of macular and neck inputs was found in 58/119 (48.7%) lateral vestibular neurons; in these units, the gain as well as the sensitivity of the first harmonic of responses corresponded on the average to 0.58 +/- 0.45, S.D. imp./sec/deg and 4.39 +/- 3.58, S.D.%/deg for the neck responses and 0.52 +/- 0.49, S.D. imp./sec/deg and 3.85 +/- 3.35, S.D.%/deg for the macular responses, respectively. In addition to these convergent units, 19/119 (16.0%) and 23/119 (19.3%) lateral vestibular units responded to selective stimulation either of macular receptors or of neck receptors only. These units, which showed on the average an higher firing rate and a lower conduction velocity of the corresponding vestibulospinal axons than the convergent units, displayed a significantly lower response gain and sensitivity to animal tilt and neck rotation with respect to those obtained from convergent units. Most of the convergent lateral vestibular units were maximally excited by the direction of stimulus orientation, the first harmonic of responses showing an average phase lead of +51.4 degrees with respect to neck position and +21.9 degrees with respect to animal position. Two populations of convergent neurons were observed. The first group of units (53/58, i.e. 91.4%) showed reciprocal ("out-of-phase") responses to the two inputs in that they were mainly excited during side-down animal tilt and side-up neck rotation. The remaining group of units (5/58, i.e. 8.6%) showed parallel ("in phase") responses to the two inputs and they were mainly excited by side-up neck rotation and animal tilt. Interestingly, the former group of units displayed an average gain and sensitivity to the labyrinth and neck inputs which were more than twice higher than the values obtained from the latter group of units.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The direct shoot organogenesis was achieved from leaf explant of two commercially important clones of Populus deltoides on MS medium enriched with 15 mg/l adenine sulphate, 5 mg/l Ascorbic acid, 250 mg/l (NH4)2SO4 (referred to as PD1 medium) supplemented with 2.5 µM each of 6-benzylaminopurine and indole-3-acetic acid. Higher shoot organogenic potential was recorded from the explants of clone ‘G48’ as compared to clone ‘L34’. The age of leaf explant also affected the shoot organogenic potential, and maximum shoot organogenesis was recorded in case of 5th leaf from the top of microshoot. Histological studies revealed altered cell division resulting in the formation of meristematic pockets after 5 days of culture, these meristematic pockets grew into dome protuberances by 10th day. Organized shoots were visible after 15 days of culture. A clear three phases of shoot organogenesis viz induction (0–4 days), initiation and organization (4–10 days) and growth (11–16 days onwards) were observed. Marked variation in the activity of enzymes such as catalase, peroxidase, polyphenol oxidase and acid phosphatase was observed during these phases. The activity of these enzymes was found to increase in cultures grown on the medium resulting in shoot organogenesis during shoot development (after 7 days of culture).  相似文献   

17.
Osmotic stimulation activates both estivated and inactivated specimens of Helix pomatia and increases their central arousal. High-pressure liquid chromatography has shown that, during activation, the level of both serotonin and dopamine decreases in the central nervous system (CNS) but increases in the foot and heart, organs that are involved in the eversion of the body. In isolated CNS from activated animals, the firing frequency of the heart-modulator serotonergic (RPas) neurons is significantly higher than that in the CNS of estivated or inactivated animals. These neurons innervate both the heart and the anterior aorta. In semi-intact preparations, distilled water (an osmotic stimulus) applied to the mantle collar increases their firing frequency, whereas tactile stimulation evokes their inhibition. Extracellularly applied monoamines mimic the effect of peripheral stimuli: serotonin (0.1–10 μM) increases the activity of the RPas neurons, whereas dopamine (0.1–10 μM) inhibits their activity. Tyrosine-hydroxylase immunocytochemistry and retrograde neurobiotin tracing have revealed similar bipolar receptor cells in the mantle collar and tail, organs that are exposed to environmental stimuli in estivated animals. Serotonin immunocytochemistry carried out on the same tissues does not visualize receptor cells but labels a dense network of fibers that appear to innervate neurobiotin-labeled receptor cells. The combination of neurobiotin-labeling of RPas neurons and immunolabeling suggests that RPas neurons receive direct dopaminergic inputs from receptor cells and serotonergic inputs from central serotonergic neurons, indicating that central serotonergic neurons are interconnected. Thus, the RPas neurons may belong to neuronal elements of the arousal system. This work was supported by Hungarian OTKA grants T037389, T046580, T037505, and K63451.  相似文献   

18.
The impulse background activity (BA) of neurons of the rat medial vestibular nucleus (MVN) was subjected to computer analysis, and its modifications related to long-term vibration were studied. It was shown that following 5 days of 2-h-long vibration sessions, statistically significant changes in some basic characteristics of BA generated by MVN neurons were observed. More than a twofold increase in the mean BA frequency and substantial shifts practically of all statistical BA parameters were found after 10 days of vibration. Following a 15-day-long vibration, MVN neurons showed a clear-cut tendency to restore control values of the BA indices, which probably was related to adaptation processes.  相似文献   

19.
We tested the action of proline-rich peptide (PRP-1) and cobra venom Naja Naja Oxiana (NOX) on Deiters’ nucleus neurons at 3rd, 15th and 35th days after unilateral labyrinthectomy (UL). Early and late tetanic, post-tetanic potentiation and depression of Deiters’neurons to bilateral high frequency stimulation of hypothalamic supraoptic and paraventricualar nuclei was studied. The analysis of spike activity was carried out by mean of on-line selection and special program. The complex averaged peri-event time and frequency histograms shows the increase of inhibitory and excitatory reactions of Deiters’ neurons at early stage of vestibular compensation following PRP-1 and NOX injection, reaching the norm at the end of tests. In histochemical study the changes in Ca2+-dependent acidic phosphatase (AP) activity in neurons was discovered. It was shown that in UL animals the total disappearance or delay of decolorizing of Deiters’ neurons lead to neurodegenerative pattern as cellular “shade”. AP activity after UL and PRP-1 injection exerts more effective recovery of neurons in comparison with events, observed after the administration of NOX. The data of this study indicate that PRP-1 and NOX are protectors, which may successfully recover the disturbed vestibular functions.  相似文献   

20.
Changes in the intracellular calcium concentration induced by activation of neurons of the isolated intact rat superior cervical ganglion were recorded. It is concluded that stimulation within the physiological range of frequencies can effectively increase the intracellular calcium concentration in these neurons. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 400–402, July–October, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号