首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《BBA》2020,1861(1):148089
Leaves of Arabidopsis thaliana plants grown in short days (8 h light) generate more reactive oxygen species in the light than leaves of plants grown in long days (16 h light). The importance of the two PsaE isoforms of photosystem I, PsaE1 and PsaE2, for O2 reduction was studied in plants grown under these different growth regimes. In short day conditions a mutant affected in the amount of PsaE1 (psae1-1) reduced more efficiently O2 than a mutant lacking PsaE2 (psae2-1) as shown by spin trapping EPR spectroscopy on leaves and by following the kinetics of P700+ reduction in isolated photosystem I. In short day conditions higher O2 reduction protected photosystem II against photoinhibition in psae1-1. In contrast in long day conditions the presence of PsaE1 was clearly beneficial for photosynthetic electron transport and for the stability of the photosynthetic apparatus under photoinhibitory conditions. We conclude that the two PsaE isoforms have distinct functions and we propose that O2 reduction at photosystem I is beneficial for the plant under certain environmental conditions.  相似文献   

2.
Reduction of the plastoquinone (PQ) pool is known to activate phosphorylation of thylakoid proteins. In the Arabidopsis thaliana mutants psad1-1 and psae1-3, oxidation of photosystem I (PSI) is impaired, and the PQ pool is correspondingly over-reduced. We show here that, under these conditions, the antenna protein Lhca4 of PSI becomes a target for phosphorylation. Phosphorylation of the mature Lhca4 protein at Thr16 is suppressed in stn7 psad1 and stn7 psae1 double mutants. Thus, under extreme redox conditions, hyperactivation of thylakoid protein kinases and/or reorganization of thylakoid protein complex distribution increase the susceptibility of PSI to phosphorylation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Anna Ihnatowicz and Paolo Pesaresi contributed equally to the article.  相似文献   

3.
4.
Lushy A  Verchovsky L  Nechushtai R 《Biochemistry》2002,41(37):11192-11199
Photosystem I (PSI) is a photochemically active membrane protein complex that functions at the reducing site of the photosynthetic electron-transfer chain as plastocyanin-ferredoxin oxidoreductase. PsaE, a peripheral subunit of the PSI complex, plays an important role in the function of PSI. PsaE is involved in the docking of ferredoxin/flavodoxin to the PSI complex and also participates in the cyclic electron transfer around PSI. The molecular characterization of the assembly of newly synthesized PsaE in the thylakoid membranes or in isolated PSI complexes is the subject of the present study. For this purpose the Mastigocladus laminosus psaE gene was cloned and overexpressed in Escherichia coli, and the resulting PsaE protein was purified to homogeneity by affinity chromatography. The purified PsaE was then introduced into thylakoids isolated from M. laminosus, and the newly introduced PsaE subunit saturates the membrane. The solubilization and separation of the different thylakoid protein complexes indicated that PsaE accumulates specifically in its functional location, the PSI complex. A similar stable assembly was detected when PsaE was introduced into purified PSI complexes, i.e., in the absence of other thylakoid components. This strongly indicates that the information for the stable assembly of PsaE into PSI lies within the polypeptide itself and within other subunits of the PSI complex that interact with it. To determine the nature of these interactions, the assembly reaction was performed in conditions affecting the ionic/osmotic strength. We found that altering the ionic strength significantly affects the capability of PsaE to assemble into isolated thylakoids or PSI complexes, strongly supporting the fact that electrostatic interactions are formed between PsaE and other PSI subunits. Moreover, the data suggest that the formation of electrostatic interactions occurs concomitantly with an exchange step in which newly introduced PsaE replaces the subunit present in situ.  相似文献   

5.
F Rousseau  P Stif    B Lagoutte 《The EMBO journal》1993,12(5):1755-1765
Of the stroma-accessible proteins of photosystem I (PSI) from Synechocystis sp. PCC 6803, the PSI-C, PSI-D and PSI-E subunits have already been characterized, and the corresponding genes isolated. PCR amplification and cassette mutagenesis were used in this work to delete the psaE gene. PSI particles were isolated from this mutant, which lacks subunit PSI-E, and the direct photoreduction of ferredoxin was investigated by flash absorption spectroscopy. The second order rate constant for reduction of ferredoxin by wild type PSI was estimated to be approximately 10(9) M-1s-1. Relative to the wild type, PSI lacking PSI-E exhibited a rate of ferredoxin reduction decreased by a factor of at least 25. After reassociation of the purified PSI-E polypeptide, the original rate of electron transfer was recovered. When a similar reconstitution was performed with a PSI-E polypeptide from spinach, an intermediate rate of reduction was observed. Membrane labeling of the native PSI with fluorescein isothiocyanate allowed the isolation of a fluorescent PSI-E subunit. Peptide analysis showed that some residues following the N-terminal sequence were labeled and thus probably accessible to the stroma, whereas both N- and C-terminal ends were probably buried in the photosystem I complex. Site-directed mutagenesis based on these observations confirmed that important changes in either of the two terminal sequences of the polypeptide impaired its correct integration in PSI, leading to phenotypes identical to the deleted mutant. Less drastic modifications in the predicted stroma exposed sequences did not impair PSI-E integration, and the ferredoxin photoreduction was not significantly affected. All these results lead us to propose a structural role for PSI-E in the correct organization of the site involved in ferredoxin photoreduction.  相似文献   

6.
In photosystem I (PSI) of oxygenic photosynthetic organisms the psaC polypeptide, encoded by the psaC gene, provides the ligands for two [4Fe-4S] clusters, FA and FB. Unlike other cyanobacteria, two different psaC genes have been reported in the cyanobacterium Synechocystis 6803, one (copy 1) with a deduced amino acid sequence identical to that of tobacco and another (copy 2) with a deduced amino acid sequence similar to those reported for other cyanobacteria. Insertion of a gene encoding kanamycin resistance into copy 2 resulted in a photosynthesis-deficient strain, CDK25, lacking the PsaC, PsaD and PsaE polypeptides in isolated thylakoid membranes, while the PsaA/PsaB and PsaF subunits were found. Growth of the mutant cells was indistinguishable from that of wild-type cells under light-activated heterotrophic growth (LAHG). A reversible P700+ signal was detected by EPR spectroscopy in the isolated thylakoids during illumination at low temperature. Under these conditions, the EPR signals attributed to FA and FB were absent in the mutant strain, but a reversible Fx signal was present with broad resonances at g=2.079, 1.903, and 1.784. Addition of PsaC and PsaD proteins to the thylakoids gave rise to resonances at g=2.046, 1.936, 1.922, and 1.880; these values are characteristic of an interaction-type spectrum of FA - and FB -. In room-temperature optical spectroscopic analysis, addition of PsaC and PsaD to the thylakoids also restored a 30 ms kinetic transient which is characteristic of the P700+ [FA/FB]- backreaction. Expression of copy 1 was not detected in cells grown under LAHG and under mixotrophic conditions. These results demonstrate that copy 2 encodes the PsaC polypeptide in PSI in Synechocystis 6803, while copy 1 is not involved in PSI; that the PsaC polypeptide is necessary for stable assembly of PsaD and PsaE into PSI complex in vivo; and that PsaC, PsaD and PsaE are not needed for assembly of PsaA-PsaB dimer and electron transport from P700 to Fx.  相似文献   

7.
The present study characterizes the assembly and organization of Photosystem I (PSI) complex, and its individual subunits into the thylakoid membranes of the thermophilic cyanobacterium, Mastigocladus laminosus. PSI is a multiprotein complex that contains peripheral as well as integral subunits. Hence, it serves as a suitable model system for understanding the formation and organization of membrane protein complexes. In the present study, two peripheral cytosol facing subunits of PSI, namely, PsaD and PsaE were overexpressed in E. coli and used for assembly studies. The gene encoding PsaK, an integral membrane spanning subunit of PSI, was cloned and the deduced amino acid sequence revealed PsaK to have two transmembrane alpha-helices. The characterization of the in vitro assembly of the peripheral subunits, PsaD and PsaE, as well as of the integral subunit, PsaK, was performed by incubating each subunit with thylakoids isolated from Mastigocladus laminosus. All three subunits studied were found to assemble into the thylakoids in a spontaneous mechanism, showing no requirement for cytosolic factors or NTP's (nucleotide 5'-triphosphate). Nevertheless, further characterization of the assembly of PsaK revealed its membrane integration to be most efficient at 55 degrees C. The associations and protein-protein interactions between different subunits within the assembled PSI complex were directly quantified by measurements performed using the BIACORE technology. The preliminary results indicated the existence of specific interaction between PsaD and PsaE, and revealed a very high binding affinity between PsaD and the PSI electron acceptor ferridoxin (Kd = 5.8 x 10(-11) M). PsaE has exhibited a much lower binding affinity for ferridoxin (Kd = 3.1 x 10(-5) M), thereby supporting the possibility of PsaE being one of the subunits responsible for the dissociation of ferridoxin from the PSI complex.  相似文献   

8.
Decreased stability of photosystem I in dgd1 mutant of Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Guo J  Zhang Z  Bi Y  Yang W  Xu Y  Zhang L 《FEBS letters》2005,579(17):3619-3624
The dgd1 mutant of Arabidopsis thaliana provides us with a powerful tool for revealing the specific role of digalactosyldiacylglycerol (DGDG) in photosynthesis. Blue-native polyacrylamide gel electrophoresis analysis revealed that photosystem I (PSI) subunits are assembled into a PSI complex, and that a PSI subcomplex lacking stroma side subunits was also present. PSI subunits in the dgd1 mutant were decreased to a similar level compared with that in the wild type (WT) Arabidopsis. Further experiments showed that PSI subunits in the stroma side, PsaD and PsaE, in the dgd1 mutant were more susceptible to removal by chaotropic agents than those in the WT plant, indicating that the stability of PsaD and PsaE is impaired in the dgd1 mutant. These results provide evidence that DGDG is important for the stability of the PSI complex.  相似文献   

9.
During photosynthetic state transitions, a fraction of the major light-harvesting complex (LHCII) shuttles between photosystems II (PSII) and I (PSI), depending on whether or not it is phosphorylated. Its phosphorylation state in turn depends on the relative activity of the two photosystems, which is a function of redox state and illumination parameters. In the psae1-1 mutant of Arabidopsis thaliana (L.) Heynh., amounts of the PSI subunits E, C, D, H and L are decreased. A fraction of LHCII is stably associated with PSI when plants are exposed to low light conditions, giving rise to a high-molecular-mass protein-pigment complex detectable in native protein gels. The formation of this abnormal LHCII-PSI complex is associated with an almost complete suppression of state transitions, a drastic increase in the levels of phosphorylated LHCII under all light regimes tested, and a permanent reduction in PSII antenna size. All these observations suggest that the altered polypeptide composition of PSI perturbs the docking of phosphorylated LHCII, making psae1-1 a unique mutant for the study of PSI-LHCII interactions and additional effects of the mutation, such as a decrease in grana stacking and increased adenylate kinase activity.  相似文献   

10.
Interorganellar signaling interactions are poorly understood. The maize non-chromosomal stripe (NCS) mutants provide models to study the requirement of mitochondrial function for chloroplast biogenesis and photosynthesis. Previous work suggested that the NCS6 mitochondrial mutation, a cytochrome oxidase subunit 2 (cox2) deletion, is associated with a malfunction of Photosystem I (PSI) in defective chloroplasts of mutant leaf sectors (Gu et al., 1993). We have now quantified the reductions of photosynthetic rates and PSI activity in the NCS6 defective stripes. Major reductions of the plastid-coded PsaC and nucleus-coded PsaD and PsaE PSI subunits and of their corresponding mRNAs are seen in mutant sectors; however, although thepsaA/B mRNA is greatly reduced, levels of PsaA and PsaB (the core proteins of PSI) are only slightly decreased. Levels of the PsaL subunit and its mRNA appear to be unchanged. Tested subunits of other thylakoid membrane complexes – PSII, Cyt b6/f, and ATP synthase, have minor (or no) reductions within mutant sectors. The results suggest that specific signaling pathways sense the dysfunction of the mitochondrial electron transport chain and respond to down-regulate particular PSI mRNAs, leading to decreased PSI accumulation in the chloroplast. The reductions of both nucleus and plastid encoded components indicate that complex interorganellar signaling pathways may be involved.  相似文献   

11.
Photosystem I (PSI) of higher plants contains 18 subunits. Using Arabidopsis En insertion lines, we have isolated knockout alleles of the genes psaG, psaH2, and psaK, which code for PSI-G, -H, and -K. In the mutants psak-1 and psag-1.4, complete loss of PSI-K and -G, respectively, was confirmed, whereas the residual H level in psah2-1.4 is due to a second gene encoding PSI-H, psaH1. Double mutants, lacking PSI-G, and also -K, or a fraction of -H, together with the three single mutants were characterized for their growth phenotypes and PSI polypeptide composition. In general, the loss of each subunit has secondary, in some cases additive, effects on the abundance of other PSI polypeptides, such as D, E, H, L, N, and the light-harvesting complex I proteins Lhca2 and 3. In the G-less mutant psag-1.4, the variation in PSI composition suggests that PSI-G stabilizes the PSI-core. Levels of light-harvesting complex I proteins in plants, which lack simultaneously PSI-G and -K, indicate that PSI subunits other than G and K can also bind Lhca2 and 3. In the same single and double mutants, psag-1.4, psak-1, psah2-1.4, psag-1.4/psah2-1.4, and psag-1.4/psak-1 photosynthetic electron flow and excitation energy quenching were analyzed to address the roles of the various subunits in P700 reduction (mediated by PSI-F and -N) and oxidation (PSI-E), and state transitions (PSI-H). Based on the results, we also suggest for PSI-K a role in state transitions.  相似文献   

12.
In Arabidopsis thaliana, the D-subunit of photosystem I (PSI-D) is encoded by two functional genes, PsaD1 and PsaD2, which are highly homologous. Knock-out alleles for each of the loci have been identified by a combination of forward and reverse genetics. The double mutant psad1-1 psad2-1 is seedling-lethal, high-chlorophyll-fluorescent and deficient for all tested PSI subunits, indicating that PSI-D is essential for photosynthesis. In addition, psad1-1 psad2-1 plants show a defect in the accumulation of thylakoid multiprotein complexes other than PSI. Of the single-gene mutations, psad2 plants behave like wild-type (WT) plants, whereas psad1-1 markedly affects the accumulation of PsaD mRNA and protein, and photosynthetic electron flow. Additional effects of the psad1-1 mutation include a decrease in growth rate under greenhouse conditions and downregulation of the mRNA expression of most genes involved in the light phase of photosynthesis. In the same mutant, a marked decrease in the levels of PSI and PSII polypeptides is evident, as well as a light-green leaf coloration and increased photosensitivity. Increased dosage of PsaD2 in the psad1-1 background restores the WT phenotype, indicating that PSI-D1 and PSI-D2 have redundant functions.  相似文献   

13.
Structural and functional analysis of the reducing side of photosystem I   总被引:2,自引:0,他引:2  
Structural analysis of the reducing side of photosystem I (PSI) has been carried out using chemical cross-linking and monospecific antibodies. Incubation of PSI isolated from barley (Hordeum vulgare L.) with the hydrophilic cross-linking agent N-ethyl-3-[3-(dimethylamino) propyl]-carbodiimide leads to cross-linking of the PSI-D subunit with the PSI-E and PSI-H subunits. In the presence of ferredoxin, cross-linking results in the formation of cross-linked products composed of PSI-D, PSI-E and ferredoxin and in a block in steady state NADP+ photoreduction. No cross-linking of ferredoxin occurs at elevated ionic strength or using heat-denatured ferredoxin. Cross-linking of ferredoxin does not inhibit electron transfer from plastocyanin to methyl viologen. Steady state NADP+ photoreduction was analyzed in PSI or thyla-koids incubated with antibodies against individual PSI subunits. Incubation with antibodies against PSI-C, -H, -I, or -L had no effect on PSI activity, whereas antibodies against PSI-D or PSI-E had similar effects and caused a large decrease in activity. The results provide evidence that the PSI-D and PSI-E subunits are localized on the reducing side of PSI, forming a barrier between PSI-C and the stroma as well as a docking site for ferredoxin. The PSI-H subunit has an exposed, stromal domain but this does not appear to contribute to the ferredoxin docking.  相似文献   

14.
Pale yellow green7-1 (pyg7-1) is a photosystem I (PSI)-deficient Arabidopsis (Arabidopsis thaliana) mutant. PSI subunits are synthesized in the mutant, but do not assemble into a stable complex. In contrast, light-harvesting antenna proteins of both photosystems accumulate in the mutant. Deletion of Pyg7 results in severely reduced growth rates, alterations in leaf coloration, and plastid ultrastructure. Pyg7 was isolated by map-based cloning and encodes a tetratrico peptide repeat protein with homology to Ycf37 from Synechocystis. The protein is localized in the chloroplast associated with thylakoid membranes and copurifies with PSI. An independent pyg7 T-DNA insertion line, pyg7-2, exhibits the same phenotype. pyg7 gene expression is light regulated. Comparison of the roles of Ycf37 in cyanobacteria and Pyg7 in higher plants suggests that the ancient protein has altered its function during evolution. Whereas the cyanobacterial protein mediates more efficient PSI accumulation, the higher plant protein is absolutely required for complex assembly or maintenance.  相似文献   

15.
Ycf4 is a thylakoid protein essential for the accumulation of photosystem I (PSI) in Chlamydomonas reinhardtii. Here, a tandem affinity purification tagged Ycf4 was used to purify a stable Ycf4-containing complex of >1500 kD. This complex also contained the opsin-related COP2 and the PSI subunits PsaA, PsaB, PsaC, PsaD, PsaE, and PsaF, as identified by mass spectrometry (liquid chromatography–tandem mass spectrometry) and immunoblotting. Almost all Ycf4 and COP2 in wild-type cells copurified by sucrose gradient ultracentrifugation and subsequent ion exchange column chromatography, indicating the intimate and exclusive association of Ycf4 and COP2. Electron microscopy revealed that the largest structures in the purified preparation measure 285 × 185 Å; these particles may represent several large oligomeric states. Pulse-chase protein labeling revealed that the PSI polypeptides associated with the Ycf4-containing complex are newly synthesized and partially assembled as a pigment-containing subcomplex. These results indicate that the Ycf4 complex may act as a scaffold for PSI assembly. A decrease in COP2 to 10% of wild-type levels by RNA interference increased the salt sensitivity of the Ycf4 complex stability but did not affect the accumulation of PSI, suggesting that COP2 is not essential for PSI assembly.  相似文献   

16.
PsaE is a small peripheral subunit of photosystem I (PSI) that is very accessible to the surrounding medium. It plays an essential role in optimizing the interactions with the soluble electron acceptors of PSI, ferredoxin and flavodoxin. The solution structure of PsaE from the cyanobacterium Synechocystis sp. PCC 6803 has been investigated by NMR with a special emphasis on its protein dynamic properties. PsaE is characterized by a well-defined central core that consists of a five-stranded beta-sheet (+1, +1, +1, -4x). Four loops (designated the A-B, B-C, C-D, and D-E loops) connect these beta-strands, the overall resulting structure being that of an SH3-like domain. As compared to previously determined PsaE structures, conformational differences are observed in the first three loops. The flexibility of the loops was investigated using (15)N relaxation experiments. This flexibility is small in amplitude for the A-B and B-C loops, but is large for the C-D loop, particularly in the region corresponding to the missing sequence of Nostoc sp. PCC 8009. The plasticity of the connecting loops in the free subunit is compared to that when bound to the PSI and discussed in relation to the insertion process and the function(s) of PsaE.  相似文献   

17.
18.
19.
Norihiro Sato  Kunihiro Suda 《BBA》2004,1658(3):235-243
Phosphatidylglycerol (PG) ubiquitous in thylakoid membranes of photosynthetic organisms was previously shown to contribute to accumulation of chlorophyll through analysis of the cdsA mutant of a cyanobacterium Synechocystis sp. PCC6803 defective in PG synthesis (SNC1). Here, we characterized effects of manipulation of the PG content in thylakoid membranes of Synechocystis sp. PCC6803 on the photosystem complexes to specify roles of PG in biogenesis of thylakoid membranes. SNC1 cells with PG deprivation in vivo, together with the chlorophyll decrease, exhibited a decline not in PSII, but in PSI, at the complex level as well as the subunit levels. On the other hand, the decrease in the PSI complex was accounted for by a remarkable decrease in the PSI trimer with an increase in the monomer. These symptoms of SNC1 cells were complemented in vivo by supplementation of PG. Besides, a reduction in the PG content of thylakoid membranes isolated from the wild type in vitro on treatment with phospholipase A2 (PLA2), similar to the PG-deprivation in SNC1 in vivo, brought about a decrease in the trimer population of PSI with accumulation of the monomer. These results demonstrated that PG contributes to the synthesis and/or stability of the PSI complex for maintenance of the cellular content of chlorophyll, and also to construction of the PSI trimer from the monomer at least through stabilization of the trimerized conformation.  相似文献   

20.
Some subunits of chloroplast NAD(P)H dehydrogenase (NDH) are related to those of the respiratory complex I, and NDH mediates photosystem I (PSI) cyclic electron flow. Despite extensive surveys, the electron donor and its binding subunits have not been identified. Here, we identified three novel components required for NDH activity. CRRJ and CRRL are J- and J-like proteins, respectively, and are components of NDH subcomplex A. CRR31 is an Src homology 3 domain-like fold protein, and its C-terminal region may form a tertiary structure similar to that of PsaE, a ferredoxin (Fd) binding subunit of PSI, although the sequences are not conserved between CRR31 and PsaE. Although CRR31 can accumulate in thylakoids independently of NDH, its accumulation requires CRRJ, and CRRL accumulation depends on CRRJ and NDH. CRR31 was essential for the efficient operation of Fd-dependent plastoquinone reduction in vitro. The phenotype of crr31 pgr5 suggested that CRR31 is required for NDH activity in vivo. We propose that NDH functions as a PGR5-PGRL1 complex-independent Fd:plastoquinone oxidoreductase in chloroplasts and rename it the NADH dehydrogenase-like complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号