首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Midzone microtubules of mammalian cells play an essential role in the induction of cell cleavage, serving as a platform for a number of proteins that play a part in cytokinesis. We demonstrate that PRC1, a mitotic spindle-associated Cdk substrate that is essential to cell cleavage, is a microtubule binding and bundling protein both in vivo and in vitro. Overexpression of PRC1 extensively bundles interphase microtubules, but does not affect early mitotic spindle organization. PRC1 contains two Cdk phosphorylation motifs, and phosphorylation is possibly important to mitotic suppression of bundling, as a Cdk phosphorylation-null mutant causes extensive bundling of the prometaphase spindle. Complete suppression of PRC1 by siRNA causes failure of microtubule interdigitation between half spindles and the absence of a spindle midzone. Truncation mutants demonstrate that the NH2-terminal region of PRC1, rich in alpha-helical sequence, is important for localization to the cleavage furrow and to the center of the midbody, whereas the central region, with the highest sequence homology between species, is required for microtubule binding and bundling activity. We conclude that PRC1 is a microtubule-associated protein required to maintain the spindle midzone, and that distinct functions are associated with modular elements of the primary sequence.  相似文献   

2.
Fu C  Yan F  Wu F  Wu Q  Whittaker J  Hu H  Hu R  Yao X 《Cell research》2007,17(5):449-457
During cell division, chromosome segregation is orchestrated by the interaction of spindle microtubules with thecentromere. A dramatic remodeling of interpolar microtubules into an organized central spindle between the separatingchromatids is required for the initiation and execution of cytokinesis. Central spindle organization requires mitotic kine-sins, the chromosomal passenger protein complex, and microtubule bundling protein PRC1. PRC1 is phosphorylated byCdc2 at Thr470 and Thr481 during mitosis. However, the functional relevance of PRC1 phosphorylation at Thr470 hasremained elusive. Here we show that expression of the non-phosphorylatable mutant PRC1~(T470A) but not the phospho-mimi-cking mutant PRC1~(T470E) causes aberrant organization of the central spindle. Immunoprecipitation experiment indicatesthat both PRC1~(T470A) and PRC1~(T470E) mutant proteins associate with wild-type PRC1, suggesting that phosphorylationof Thr470 does not alter PRC1 self-association. In addition, in vitro co-sedimentation experiment showed that PRC1binds to microtubule independent of the phosphorylation state of Thr470. Gel-filtration experiment suggested that phos-phorylation of Thr470 promotes oligomerization of PRC1. Given the fact that prevention of the Thr470 phosphorylationinhibits PRC1 oligomerization in vitro and causes an aberrant organization of central spindle in vivo, we propose thatthis phosphorylation-dependent PRC1 oligomerization ensures that central spindle assembly occurs at the appropriatetime in the cell cycle.  相似文献   

3.
Spindle positioning in animal cells is thought to rely upon the interaction of astral microtubules with the cell cortex. Information on the dynamics of astral microtubules during this process is scarce, in part because of the difficulty in visualising these microtubules by light microscopy. EB1 is a protein which specifically localises to growing microtubule distal tips. Immunostaining for EB1 therefore represents a powerful method for visualising the distribution of growing microtubule tips within cells. In this study we used EB1 immunostaining in mitotic NRK-52E cells to quantitatively analyse the length and number of growing astral microtubules during metaphase and anaphase. We observed a dramatic increase in growing astral microtubule length and number during anaphase. Furthermore, drug treatments which specifically destroyed astral microtubules resulted in an increase in misaligned anaphase but not metaphase spindles. We suggest that an anaphase-specific increase in growing astral microtubule length and number facilitates the maintenance of a correctly aligned spindle in mitotic NRK-52E cells.  相似文献   

4.
A number of proteins accumulate in the anaphase spindle midzone, but the interaction and precise role of these proteins in midzone organization remain obscure. Here, we found that the microtubule-bundling protein PRC1 bound separately to the three motor proteins, KIF4, MKLP1 and CENP-E, but not to the chromosomal passenger proteins. In KIF4-deficient cells, the central spindle was disorganized, and all midzone-associated proteins including PRC1 failed to concentrate at the midline, instead being dispersed along the loosened microtubule bundles of the central spindle. This suggests that KIF4 is essential for the organization of central spindles and for midzone formation. In PRC1-deficient cells, no midzone was formed, KIF4 and CENP-E did not localize to the disconnected half-spindle, and MKLP1 and chromosomal passenger proteins localized to discrete subdomains near microtubule plus ends in the half-spindle. Thus, PRC1 is required for interaction of the two half-spindles and for localization of KIF4 and CENP-E. These results suggest that KIF4 and its binding partner PRC1 play essential roles in the organization of central spindles and midzone formation.  相似文献   

5.
KinI kinesins are important in regulating the complex dynamics of the microtubule cytoskeleton. They are unusual in that they depolymerize, rather than move along microtubules. To determine the attributes of KinIs that distinguish them from translocating kinesins, we examined the ATPase activity, microtubule affinity, and three-dimensional microtubule-bound structure of a minimal KinI motor domain. Together, the kinetic, affinity, and structural data lead to the conclusion that on binding to the microtubule lattice, KinIs release ADP and enter a stable, low-affinity, regulated state, from which they do not readily progress through the ATPase cycle. This state may favor detachment, or diffusion of the KinI to its site of action, the microtubule ends. Unlike conventional translocating kinesins, which are microtubule lattice-stimulated ATPases, it seems that with KinIs, nucleotide-mediated modulation of tubulin affinity is only possible when it is coupled to protofilament deformation. This provides an elegant mechanistic basis for their unique depolymerizing activity.  相似文献   

6.
During cytokinesis, the organization of the spindle midzone and chromosome segregation is controlled by the central spindle, a microtubule cytoskeleton containing kinesin motors and non‐motor microtubule‐associated proteins. The anaphase spindle elongation 1/protein regulator of cytokinesis 1/microtubule associated protein 65 (Ase1/PRC1/MAP65) family of microtubule‐bundling proteins are key regulators of central spindle assembly, mediating microtubule crosslinking and spindle elongation in the midzone. Ase1/PRC1/MAP65 serves as a complex regulatory platform for the recruitment of other midzone proteins at the spindle midzone. Herein, we summarize recent advances in understanding of the structural domains and molecular kinetics of the Ase1/PRC1/MAP65 family. We summarize the regulatory network involved in post‐translational modifications of Ase1/PRC1 by cyclin‐dependent kinase 1 (Cdk1), cell division cycle 14 (Cdc14) and Polo‐like kinase 1 (Plk1) and also highlight multiple functions of Ase1/PRC1 in central spindle organization, spindle elongation and cytokinesis during cell division.  相似文献   

7.
8.
9.
癌症高表达蛋白--Hec1在纺锤体组装检查点中的作用   总被引:3,自引:0,他引:3  
瞿颖  刘炳亚 《生命科学》2004,16(5):275-279
细胞增殖依赖于细胞分裂前染色体的复制及随后的姐妹染色单体分离到达两极。纺锤体组装检查点具有确保染色体信息传递保真性的作用,检查点的缺失可能导致染色体的分离异常和肿瘤形成。癌症高表达蛋白(Hec1)通过与调控G2/M期的蛋白间的相互作用而在染色体的分离中发挥重要作用。Hec1与Nuf2的复合物,在G2/M期与动粒相结合,Hec1的缺失将导致严重的染色体分离错误。Hec1具有召集Mps1和Mad1/Mad2复合物结合到动粒上的作用,这种结合可以激活纺锤体组装检查点途径中非常重要的APCCdc20途径。但是Hec1、Mps1、Mad1三者之间的相互作用仍未明了。Hec1还可以通过与26S蛋白酶复合物的不同亚基结合调控其功能。Hec1是一种丝氨酸磷酸化蛋白,其磷酸化是由Nek2在G2/M期完成的。  相似文献   

10.
Previous studies on the role of microtubule-associated protein 1B (MAP1B) in adapting microtubules for nerve cell-specific functions have examined the activity of the entire MAP1B protein complex consisting of heavy and light chains and revealed moderate effects on microtubule stability. Here we have analyzed the effects of the MAP1B light chain in the absence or presence of the heavy chain by immunofluorescence microscopy of transiently transfected cells. Distinct from all other MAPs, the MAP1B light chain–induced formation of stable but apparently flexible microtubules resistant to the effects of nocodazole and taxol. Light chain activity was inhibited by the heavy chain. In addition, the light chain was found to harbor an actin filament binding domain in its COOH terminus. By coimmunoprecipitation experiments using epitope-tagged fragments of MAP1B we showed that light chains can dimerize or oligomerize. Furthermore, we localized the domains for heavy chain–light chain interaction to regions containing sequences homologous to MAP1A. Our findings assign several crucial activities to the MAP1B light chain and suggest a new model for the mechanism of action of MAP1B in which the heavy chain might act as the regulatory subunit of the MAP1B complex to control light chain activity.  相似文献   

11.
12.
The activation of M-phase promoting factor (MPF) in one-cell mouse embryo is independent from the nucleus. Other autonomous phenomena include the cortical activity observed at the end of the first cell cycle and the reorganization of the microtubule network. Here, we observed that the autonomous control of MPF activation is present also in two-cell mouse embryos (H1 kinase activity being higher in the first than in the second cell cycle). Moreover, the disappearance of the cortical activity in anucleated halves is observed when MPF activation takes place. The rounding up of the cytoplast and the mitotic reorganization of the microtubule network correlates with the maximum activity of H1 kinase in anucleated halves from one-cell embryos. In anucleated halves of two-cell stage blastomeres neither the cortical activity nor the microtubule reorganization were observed. The degree of activation of histone H1 kinase, and, as a consequence, the cortical activity and the microtubule reorganization, does not depend on the distribution of cyclin B. Finally, the level of cyclin B synthesis is similar in anucleated and nucleated halves derived from both one- and two-cell embryos.  相似文献   

13.
p53 plays a critical role as a tumour-suppressor in restricting the proliferation of damaged cells, thus preventing formation of genetically altered cell clones. Its inactivation leads, in particular, to accumulation of polyploid and aneuploid cells. To elucidate the role of p53 in control of chromosome number, we analysed its participation in the cell cycle checkpoints controlling: (1) spindle assembly; and (2) G1-to-S transitions in cells with disintegrated microtubule cytoskeleton. Treatment with 8-10 ng/ml of colcemid causing no visible destruction of the spindle leads to arrest of metaphase-to-anaphase transition in both p53-positive and p53-negative murine fibroblasts, as well as in p53-positive REF52 cells and their counterparts (where the p53 function was inactivated by transduction of dominant-negative p53 fragment). Furthermore, p53-positive and p53-defective rodent and human cells showed no significant difference in kinetics of metaphase-to-interphase transitions in cultures treated with high colcemid doses preventing spindle formation. These data argue against the hypothesis that p53 is a key component of the spindle-assembly checkpoint. However, p53 mediates activation of the G1 checkpoint in response to depolymerization of microtubules in interphase cells. Treatment of synchronized G0/G1 cells with colcemid causes arrest of G1-to-S transition. Inactivation of the p53 function by transduction of dominant-negative p53 fragment abolishes the G1 checkpoint that prevents entry into S phase of cells with disrupted microtubules. Transduction of kinase-defective dominant-negative c- raf mutant or application of PD 098059, a specific inhibitor of MEK1, also abrogates the G1 cell cycle arrest in cells with disintegrated microtubule system. It seems that Raf-MAP-kinase signalling pathways are responsible for p53 activation induced by depolymerization of microtubules.  相似文献   

14.
The kinesin superfamily protein, KIF1Bβ, a splice variant of KIF1B, is involved in the transport of synaptic vesicles in neuronal cells, and is also expressed in various non-neuronal tissues. To elucidate the functions of KIF1Bβ in non-neuronal cells, we analyzed the intracellular localization of KIF1Bβ and characterized its isoform expression profile. In COS-7 cells, KIF1B colocalized with lysosomal markers and expression of a mutant form of KIF1Bβ, lacking the motor domain, impaired the intracellular distribution of lysosomes. A novel isoform of the kinesin-like protein, KIF1Bβ3, was identified in rat and simian kidney. It lacks the 5th exon of the KIF1Bβ-specific tail region. Overexpression of KIF1Bβ3 induced the translocation of lysosomes to the cell periphery. However, overexpression of KIF1Bβ3-Q98L, which harbors a pathogenic mutation associated with a familial neuropathy, Charcot-Marie-Tooth disease type 2 A, resulted in the abnormal perinuclear clustering of lysosomes. These results indicate that KIF1Bβ3 is involved in the translocation of lysosomes from perinuclear regions to the cell periphery.  相似文献   

15.
AtMAP65-1 bundles cortical microtubules and we examined how this property is regulated during division in time-lapse studies of Arabidopsis suspension cells expressing GFP-AtMAP65-1. Spindle fluorescence is diffuse during metaphase, restored to the central spindle at anaphase and then compacted at the midline during late anaphase/early telophase. However, mutagenesis of the microtubule-associated protein (MAP) consensus Cdk site to a non-phosphorylatable form allows premature decoration of microtubules traversing the central region of the metaphase spindle without affecting the timing of the subsequent compaction. This suggests that mutagenesis does not affect compaction but does affect a phosphorylation/dephosphorylation switch that normally targets AtMAP65-1 to the central spindle at the metaphase/anaphase transition. GFP-AtMAP65-1 continues to label the midline of the early phragmoplast, suggesting a structural continuity with the central spindle - both structures being composed of anti-parallel microtubules. However, once the cytokinetic apparatus expands into a ring the MAP becomes depleted at the midline. Despite this, cytokinesis is not arrested and membrane and callose are deposited at the cell plate. It is concluded that AtMAP65-1 plays a role in the central spindle at anaphase to early cytokinesis but is not essential at the midline of the phragmoplast at later stages.  相似文献   

16.
Polo‐like kinase 1 (PLK1) is a serine/threonine kinase that plays multiple and essential roles during the cell division cycle. Its inhibition in cultured cells leads to severe mitotic aberrancies and cell death. Whereas previous reports suggested that Plk1 depletion in mice leads to a non‐mitotic arrest in early embryos, we show here that the bi‐allelic Plk1 depletion in mice certainly results in embryonic lethality due to extensive mitotic aberrations at the morula stage, including multi‐ and mono‐polar spindles, impaired chromosome segregation and cytokinesis failure. In addition, the conditional depletion of Plk1 during mid‐gestation leads also to severe mitotic aberrancies. Our data also confirms that Plk1 is completely dispensable for mitotic entry in vivo. On the other hand, Plk1 haploinsufficient mice are viable, and Plk1‐heterozygous fibroblasts do not harbor any cell cycle alterations. Plk1 is overexpressed in many human tumors, suggesting a therapeutic benefit of inhibiting Plk1, and specific small‐molecule inhibitors for this kinase are now being evaluated in clinical trials. Therefore, the different Plk1 mouse models here presented are a valuable tool to reexamine the relevance of the mitotic kinase Plk1 during mammalian development and animal physiology.  相似文献   

17.
The eukaryotic spindle assembly checkpoint (SAC) delays anaphase in the presence of chromosome attachment errors. Bub3 has been reported to be required for SAC activity in all eukaryotes examined so far. We find that Bub3, unlike its binding partner Bub1, is not essential for the SAC in fission yeast. As Bub3 is needed for the efficient kinetochore localization of Bub1, and of Mad1, Mad2 and Mad3, this implies that most SAC proteins do not need to be enriched at the kinetochores for the SAC to function. We find that Bub3 is also dispensable for shugoshin localization to the centromeres, which is the second known function of Bub1. Instead, Bub3, together with Bub1, has a specific function in promoting the conversion from chromosome mono‐orientation to bi‐orientation.  相似文献   

18.
Inadequate trophoblastic invasion is considered as one of hallmarks of preeclampsia (PE), which is characterized by newly onset of hypertension (>140/90 mmHg) and proteinuria (>300 mg in a 24‐h urine) after 20 weeks of gestation. Accumulating evidence has indicated that long noncoding RNAs are aberrantly expressed in PE, whereas detailed mechanisms are unknown. In the present study, we showed that lncRNA Taurine upregulated 1 (TUG1) were downregulated in preeclamptic placenta and in HTR8/SVneo cells under hypoxic conditions, together with reduced enhancer of zeste homolog2 (EZH2) and embryonic ectoderm development (EED) expression, major components of polycomb repressive complex 2 (PRC2), as well as activation of Nodal/ALK7 signalling pathway. Mechanistically, we found that TUG1 bound to PRC2 (EZH2/EED) in HTR8/SVneo cells and weakened TUG1/PRC2 interplay was correlated with upregulation of Nodal expression via decreasing H3K27me3 mark at the promoter region of Nodal gene under hypoxic conditions. And activation of Nodal signalling prohibited trophoblast invasion via reducing MMP2 levels. Overexpression of TUG1 or EZH2 significantly attenuated hypoxia‐induced reduction of trophoblastic invasiveness via negative modulating Nodal/ALK7 signalling and rescuing expression of its downstream target MMP2. These investigations might provide some evidence for novel mechanisms responsible for inadequate trophoblastic invasion and might shed some light on identifying future therapeutic targets for PE.  相似文献   

19.
Piezo ion channels have been found to be essential for mechanical responses in cells. These channels were first shown to exist in Neuro2A cells, and the gene was identified by siRNAs that diminished the mechanical response. Piezo channels are approximately 2500 amino acids long, have between 24–32 transmembrane regions, and appear to assemble into tetramers and require no other proteins for activity. They have a reversal potential around 0 mV and show voltage dependent inactivation. The channel is constitutively active in liposomes, indicating that no cytoskeletal elements are required. Heterologous expression of the Piezo protein can create mechanical sensitivity in otherwise insensitive cells. Piezo1 currents in outside-out patches were blocked by the extracellular MSC inhibitor peptide GsMTx4. Both enantiomeric forms of GsMTx4 inhibited channel activity in a manner similar to endogenous mechanical channels. Piezo1 can adopt a tonic (non-inactivating) form with repeated stimulation. The transition to the non-inactivating form generally occurs in large groups of channels, indicating that the channels exist in domains, and once the domain is compromised, the members simultaneously adopt new properties. Piezo proteins are associated with physiological responses in cells, such as the reaction to noxious stimulus of Drosophila larvae. Recent work measuring cell crowding, shows that Piezo1 is essential for the removal of extra cells without apoptosis. Piezo1 mutations have also been linked to the pathological response of red blood cells in a genetic disease called Xerocytosis. These finding suggest that Piezo1 is a key player in cells’ responses to mechanical stimuli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号